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ABSTRACT

A novel Multiple Instance Hidden Markov Model (MI-HMM)
is introduced for classification of ambiguous time-series data,
and its training is accomplished via Metropolis-Hastings sam-
pling. Without introducing any additional parameters, the MI-
HMM provides an elegant and simple way to learn the pa-
rameters of an HMM in a Multiple Instance Learning (MIL)
framework. The efficacy of the model is shown on a real
landmine dataset. Experiments on the landmine dataset show
that MI-HMM learning is very effective, and outperforms the
state-of-the-art models that are currently being used in the
field for landmine detection.

Index Terms— Multiple instance learning, hidden Markov
models, Metropolis-Hastings sampling, landmine detection,
ground penetrating radar, time series data,

1. INTRODUCTION

In standard learning techniques, an algorithm is typically pre-
sented with exemplar samples from some number of classes,
and its goal is to construct a characterization for each class.
Many of these methods attempt to identify areas in a feature
space that contain a dense number of target exemplars and a
low density of non-target exemplars. However, in some learn-
ing situations, class labels are not readily available for each
sample in the training data. For example, in content-based
image classification an image may contain multiple objects,
but it might not be easy to identify which of these objects are
the relevant ones [1-3]. This type of data is also known as
ambiguous data, and learning from ambiguous data remains a
hard problem [4,5]. One of the areas where ambiguous data
is encountered is landmine detection using ground penetrating
radar (GPR). In radar images produced by GPR sensors, there
are areas (subimages or feature sets) in an image that contain
a target and areas that do not. However, ground truth is pro-
vided only per image and not for the subimages. Therefore
this learning scenario provides one class label for multiple in-
stances (multiple feature sets).
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To combat this issue, researchers may segment the images
manually or semi-automatically to extract target and non-
target exemplars for training [6-9]. An example is shown in
Fig. 1 on a GPR image. However, this is not only an arduous
task, but also is prone to errors resulting from GPR echoes
and ground truthing errors, and furthermore, ambiguity still
remains. Therefore, rather than struggling against the am-
biguous nature of this learning problem, it may be best to use
a model that explicitly account for ambiguous data.

Data + Bounding Box

Fig. 1. Ground penetrating radar data with a landmine sig-
nature that looks like a hyperbola. Traditionally, a bounding
box is placed on the landmine signature and training sets are
formed from these signatures. Other signals in this image are
the ground, the GPR echo, and the signals from the soil itself.

One solution to learning from ambiguous data is Multiple
Instance Learning (MIL). In the MIL scenario, class labels of
all of the training data are not available, thus it is not possi-
ble to present an algorithm with exemplar samples from each
class [10-12]. Instead, an algorithm is presented with a col-
lection of bags, or sets of samples, that are labeled positive or
negative. Bags are labeled positive if there exists at least one
sample that induces a target concept and are labeled negative
if every sample is from the non-target class. This view is illus-
trated in Fig. 2 where the traditional classifiers are compared
to MIL classifiers.

The MIL model has also recently been used in land-
mine detection to eliminate the problems associated with the
bounding box approach, and has shown considerable suc-
cess [13, 14]. However, neither these studies nor the other



MIL models in the literature could utilize time series data.
Since hidden Markov model (HMM) based algorithms that
utilize time series data are known to be very useful in land-
mine detection [15-18], an MIL based model that can model
the temporal properties of the data is proposed.

In this study, a novel multiple instance hidden Markov
model (MI-HMM) that uses MIL for time series data is devel-
oped. In MI-HMM, labels are attached to the bags like in an
MIL, but a bag is a set of sequences and these sequences can
be of different lengths as shown in Fig. 2(c). The MI-HMM
provides an elegant and simple way to learn the parameters of
an HMM with a Metropolis-Hastings sampler that rejects or
accepts the parameters using the MIL algorithm. Experiments
on the landmine dataset have shown that MI-HMM learning
is very effective, and outperforms the state-of-the-art models
that are being used in the field for landmine detection.

In the remainder of this paper, first standard MIL learning
is described. Then, notation for HMMs is introduced. Next
MI-HMM model is proposed. Finally, the MI-HMM results
on landmine GPR data are presented and discussed.

2. STANDARD MULTIPLE INSTANCE LEARNING

Let x denote a feature vector and Y, denote the label of this
vector. In the MI scenario, a learner is presented with N sets
(referred to as bags in the literature) of mpy vectors, or sam-
ples. For the purposes of learning, a set, X C Z, is la-
beled target (Yx = 1) if there exists at least one target sample
within the set. A set X is labeled negative (Yx = 0) if all
constituent samples are non-target. Thatis, dJv € X : Y, =
l1=Yx =1andVzx € X : Y, =0 = Yx = 0. With this
learning paradigm, the idea of uncertainty is incorporated us-
ing the set (or bag) structure; and learning the target concept
from these bags of samples is called the MIL problem.

Maron et al. developed the Diverse Density (DD) [10] ap-
proach which provides a statistical solution to the MIL prob-
lem based on Pearl’s Noisy OR-Gate model [19]. Most MIL
solutions adopt this Noisy OR-Gate Model, which assumes
that only one target sample within a bag is necessary and suf-
ficient for a bag to induce a target concept. In standard DD ap-
proaches, a target concept, which is characterized by a feature
vector f, is learned given a collection of positively labeled
bags, BT and a collection of negatively labeled bags B™. As-
suming observed sets X are independent, the target concept,
f, 1s chosen to maximize the expression in Eq. 1 [10]

f=argmax; [[ PUIX) [ PC-FIX) ()

XeBt XeB™

where f is the desired target concept, and —f are the sam-
ples that are not the targets. Assuming a Noisy OR-Gate
model [19], the posterior probability factors in Eq. 1 can be
calculated in terms of the constituent samples in each bag
(x € X) as follows :

P(fIX)=1- ] 0= P(f|2)) 2)
xeX
P(-f1X) =[] (1= P(f]x)) 3)
xeX

In Eq. 1, the idea is to increase the probability of the target
concept in the positive bag and to also increase the probabil-
ity of the non-target concepts in the negative bags. With the
noisy-OR assumption, in Eqgs. 2 and 3, the right hand side of
the equations have been described solely in terms of the target
concept f.

3. HIDDEN MARKOV MODELS

Hidden Markov Model (HMM) is a very popular tool to repre-
sent time-series data as it considers the statistical dependence
among samples. In this section, we will only provide the very
basics and notations for HMM as they are used in Sec. 4. The
notation for HMMs is as follows:

e W =number of states.

e M = number of symbols in the codebook.

e T =length of observation sequence.

e V = {v1,..., v} the discrete set of observation symbols.

e © =< zix2..x7 > denotes an observation sequence, where
x; € V is the observation at time ¢.

e () = qi1gz2...qr is a fixed state sequence, where ¢, is the state
attime ¢ .

e S ={51,5,...,Sw} are the individual states.

e © = {m, A, B} is the notation for an HMM model

e The initial state distribution 7 = {m.}/;, where 7, =
P(Ql = Sr')

e The state transition probability A = {{a,;},Z;}}Z,, where
arj = P(ge+1 = Sjlg: = Sr)

e The emission probability B = {{b;(m)}}L,};m—1, where
bj(m) = P(vm at t|g = j)

Given an HMM model, the probability of a sequence is

computed as:

T—1
Puan (£10) = Y 7, [] tarararba, (E). @
Q =1

Parameters of the HMM model are typically learned gener-
atively by the maximum likelihood (ML) criterion [20, 21],
or discriminatively by the the minimum classification error
(MCE) criterion [16, 22,23]. The ML criterion, when im-
plemented by the expectation-maximization (EM) algorithm
leads to a local optimum in the parameter space. Similarly,
MCE models are generally learned using gradient-based ap-
proaches which also converge to a local minimum. One possi-
bility to get around this problem is to use Markov chain Monte
Carlo (MCMC) sampling methods to estimate the parameters
of an HMM [24,25].
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Fig. 2. Traditional, MIL and MI-HMM classifiers. (a) Traditional classifier with labeled samples. In traditional supervised
learning algorithms, a label is attached to each training sample, and the classifier is trained with these labeled samples. (b) In
MIL, training class labels are attached to bags. A bag is a set of samples, and the samples within each bag are called instances.
A bag is labeled as positive if and only if at least one of its instances is positive; otherwise, it is labeled as negative [10]. The
bags on the right contain at least one red (positive) sample, which makes them positively labeled. (c) In MI-HMM, a bag is a set
of sequences. These sequences can be of different lengths. A bag is labeled positive if and only if at least one of its sequences
is positive. The bags on the right contain at least one red (positive) sequence, which makes the bags positively labeled.

4. MI-HMM: FROM BAGS OF SEQUENCES

MI-HMM is a tool that permits the learning of sequence mod-
els under the MI learning scenario. In Sec. 4.1, we formu-
late the MI-HMM which is a discriminative model. Learning
the parameters in a discriminative HMM model is generally
difficult, and using gradient based approaches are commonly
subject to learning locally optimal parameter sets [16,22,23].
Furthermore, due to the Noisy-OR formulation of MIL mod-
els, standard optimization methods will not yield a closed
form solution. Therefore in Sec. 4.2 we describe Metropolis-
Hastings sampling to update the parameters of MI-HMM.

4.1. Formulation

Assume & =< Tq,...,T;,...,o7 >= {x;}1_ is a sequence,
and each observation in the sequence, z; € V C X%, is a
d-dimensional vector. A bag, i.e. a set of sequences, X, is
labeled target (Yx = 1) if there exists at least one target se-
quence with in the set. A set X is labeled negative (Yx = 0)
if all constituent sequences are non-target. That is, 3% € X :
Y;=1=Yx=1andVi € X,Y; =0 = Yx = 0. Given
a collection of positively labeled bags, B and a collection of
negatively labeled bags B™, a standard approach would be to
learn the HMM parameters given the following objective:
O = argmaxg P(Yx,, ..., Yxp, X1,... XN|©)  (5)
The objective in Eq. 5 is to maximize the joint probability
of the bags of sequences and the corresponding class labels
for the bags. Assuming independence between the bags and
assuming the Noisy-OR relationship between the sequences
within each bag, Eq. 5 can be expanded as follows:

© =argmaxe, [[ P(Y =1/X,0) [[ P(Y =0/X,0)
XeBt XeB—

(6)

where
PY =1|X,0) =1~ [[ (0 = Pumu(£©))
rzeX

P(Y =0/X,0) = H (1 = Py (£)©))
rzeX

(7

It is worthwhile to emphasize that in Eqgs. 6 and 7, there
are no parameters due to MI learning. The only parameters
to learn are the HMM parameters from Eq. 4. Therefore, no
additional parameters have been introduced by providing the
MI learning of HMMs, but rather a new model has been in-
troduced that does not require individual labels for target se-
quences. We also alter Eq. 6 to be a likelihood ratio as in
Eq. 8, which helps to further separate the values of the proba-
bility of positive bags and negative bags.

: Miew: PY = 1/X,0)
© = argmaxg P*(©) = argmax S :
gmare 7 (9) ®Ies POV = 1X,6)

®)

4.2. Parameter Learning

The noisy-OR framework is not easy to solve with gradient
based algorithms, and the optimization task presented in Eq. 8
is quite difficult. Therefore a sampling based learning scheme
is proposed. The general idea behind the proposed sampling
scheme is to draw parameters © from a proposal density and
then perform a Metropolis rejection step based on our ob-
jective P* in Eq. 8. However, in this case, direct sampling
of © = {m, A, B} is also not easy, and it may consist of
a large number of parameters depending on the number of
states and number of distinct observations. The estimates of
7 are obtained from A using a ratio of transition counts. For
the other parameter estimates, a Metropolis-Hastings / Gibbs
sampling scheme is proposed. In this scheme, samples are
generated from a simpler distribution, the so-called proposal



density [26], and are used to search the parameter space of the
objective in Eq. 8.

Note that the rows in the state transition matrix A,;, and
rows in the emission matrix B;, are all multinomial distribu-
tions. Therefore, an intuitive choice for the proposal density
is the Dirichlet distribution Z(«) [27]. Our proposed method
assumes a mixture of Dirichlet distributions as given in Eq. 9

Vj, A.j ~ cl.@(/ﬁa) + CQ.@(k‘QO{)

9
Vi, Bie ~ 01@(k1a> + CQ.@([{?QO() ©)

where parameters c; and co are the mixture components, and
k1, and ko determine the “focused” or “random” nature of
the component in sampling. Using Eq. 9, new samples of
the parameters are drawn from the Dirichlet mixture. Then
a Metropolis step (accept or reject decision) is performed af-
ter each Gibbs draw (or iteration), thus the Dirichlet mixture
is our Metropolis proposal distribution. For the Metropolis
step, variable 6’ forthwith denotes new draws (known in the
literature as the tentative new states) of either A.j or B;, and
0¢ denotes the sample accepted at iteration ¢ (known in the
literature as the current state). The new state, 6’, is accepted
or rejected based on the ratio r at iteration ¢ + 1 [26]. This
ratio is computed as:

N P(0") (6 0")
Tet1(0") _mm{l’P*(OC)@(Q’;Hc)} (10)

Therefore, 6 is accepted if r.1(6") is equal to or larger than
one. Otherwise, ¢’ is accepted with probability 7.1 (6"). Due
to this accept/reject property, the Metropolis-Hastings sam-
pling training of MI-HMM is able to evolve with new param-
eters and can avoid getting stuck in local minimum.

Although the notations are similar, it is important to no-
tice that in Eq. 9, random samples are generated from the
Dirichlet distribution which requires only one set of param-
eters, whereas in Eq. 10 the Dirichlet distribution is being
evaluated which requires two sets of parameters.

5. LANDMINE DETECTION

In the following, a real-world landmine dataset is tested. In
GPR images, scanning from left to right, a landmine signa-
ture would appear as a rising edge followed by a falling edge
as shown in Fig. 3. Therefore, edge features are computed
from GPR images and edge feature sequences are constructed
for each horizontal image scan. The goal is to learn the hor-
izontal patterns indicative of a landmine signature using an
HMM model. In the following, first the dataset is described,
then MI-HMM is compared to a state-of-the-art HMM [17]; a
benchmark approach that is currently used in the field, which
is referred to hereafter as the “standard HMM”.

A NIITEK Inc. landmine detection system with a GPR
sensor was used to collect data from various test sites consist-
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Fig. 3. Three GPR downtrack images showing landmine and
clutter signatures (which are circled). The foreground and
background areas used for preprocessing are also shown.

ing of gravel and dirt roads containing buried landmines and
clutter objects. Typical landmine and clutter signatures are
shown in Fig. 3. Subsurface objects appear as hyperbolic sig-
natures within the GPR data. To lessen the computational bur-
den of more complex algorithms, a standard prescreening al-
gorithm is run to identify areas of interest, also called alarms.
The resulting data collection consists of approximately 1,000
target alarms and 2,500 non-target alarms. A GPR alarm is a
3-dimensional data cube: 416 samples in depth, 61 samples
downtrack (down the road) and 24 samples crosstrack (for
each channel in the GPR antenna). Several feature extraction
steps are performed in order to construct the observation se-
quences, as explained in detail in [8,28]. With these steps,
horizontal image scans are converted into feature vector se-
quences that indicate the presence of various edge types. As
a result, at each fixed depth there is a horizontal sequence of
edge feature vectors of length 15. Each image has 416 poten-
tial training sequences but has only one class label associated
with the image. Therefore, to reduce the number of non-target
sequences from a target image, the selection of training sam-
ples is aided using a Markov Random Field (MRF) “bound-
ing box” [29]. The goal of the MRF is to bound the subimage
with the highest energy — the target. This is a standard and au-
tomated procedure to reduce the arduousness of the task and
the enormity of data typically used. Though this initial step
eliminates many of the non-target sequences within a target
image, it is not perfect and much ambiguity during training
remains.

5.1. Experimental Results

The proposed MI-HMM is compared to the standard HMM
[17] using the aforementioned landmine data. The MI-HMM
uses discretized sequences, so the feature vectors were dis-
cretized (uniformly) to one of 25 different symbols. The



standard HMM uses non-discretized sequences as an input.
Both algorithms use a Gibbs sampling optimization schedule:
the proposed method uses an MIL objective; the standard
HMM uses a joint probability objective and two HMMs
(target model and background model). Training for the MI-
HMM is as follows: for each target image, five evenly spaced
sequences were selected from within the MRF bounding box
and placed into positive bags, and five randomly selected
sequences were chosen from non-target images and placed
into negative bags. The standard HMM algorithm makes use
of two HMMs. It trains a target HMM using a training set of
sequences from target images and trains a non-target HMM
using a training set of sequences from non-target images.
For a fair comparison, the same sequences used in MI-HMM
were used to train the two HMMs of the standard HMM.
Testing using the MI-HMM is performed by summing the
log of the probabilities of each of the 416 sequences in each
of the 24 images for each alarm. This accumulated value is
considered the target confidence for each alarm. Testing for
the standard HMM is the log of the ratio of the probability of
the target model over the probability of the non-target model.

In addition to the above comparison, we designed a sec-
ond experiment where we construct oracles for both the MI-
HMM and the standard HMM. Simply speaking, the main tar-
get concept that the HMMs should be learning is a sequence
with a rising edge followed by a falling edge. Therefore, the
oracle simply sifts through all of the test images and disre-
gards all sequences that do not have a strong rising edge fol-
lowed by a strong falling edge. These oracles show the upper
bounds of what an MI-HMM or standard HMM can achieve.

Classification results comparing the MI-HMM and the
Standard HMM are presented via a Receiver Operating Char-
acteristic (ROC) curve in Fig. 4 for ten fold cross validation.
A ROC curve is a plot of the probability of detection (PD)
vs. false alarm rate (FAR). Each ROC curve is shown with
error bars which show the 95% confidence interval assum-
ing a binomial distribution on the PD. The results show a
significant improvement in classification results using the
proposed MI-HMM vs. the standard HMM. FAR results are
decreased by 75% at PDs of 70 and 80 and show a greater
than 95% FAR reduction at a PD of 90%. In fact, the ROC
for the MI-HMM dominates the ROC for the standard HMM
at all operating thresholds above a PD of 70. Furthermore,
the MI-HMM ROC dominates well outside the 95% confi-
dence interval which indicates improved classification that
is statistically significant. The comparison of the HMMs to
their respective oracles is also quite notable. When the oracle
algorithm is used, both models have statistically similar per-
formances. This indicates that the standard HMM algorithm
had the same potential performance upperbound as the MI-
HMM, but failed to achieve similar performance results. On
the other hand, the MI-HMM could perform near to its oracle
even without the oracle algorithm.

6. CONCLUDING REMARKS

An HMM with a MI learning scheme has been presented. MI-
HMM has a very clean and elegant mathematical model since
there is no addition of parameters, but rather an assumption
of the learning scenario. Within the landmine data experi-
ments, the MI-HMM significantly outperformed a standard
HMM algorithm which made use of two HMMs (twice the
parameters). It also performed near to an “oracle” version of
itself. Given the results of these experiments, it is clear that
the use of an MI learning scheme when an MI scenario is
present can increase classification results.
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