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Abstract 
 

Hidden Markov Models (HMMs) have been widely 

used in landmine detection with Ground Penetrating 

Radar (GPR) data; however, to the best of our 

knowledge, there are no other studies that investigated 

the simultaneous learning of the features and the HMM 

parameters. In this paper, we present a novel method 

based on Gibbs sampling that both learns a feature 

extraction model as well as an HMM model. The new 

system allows for the training of new features when the 

sensor systems are different. Experiments show that 

our algorithm is more robust to initialization and can 

find better solutions. 

  

1. Introduction 
 

In landmine detection, a moving GPR system 

collects multi-dimensional signals at regular intervals; 

and the features extracted from these signals are fed 

into an HMM model that converts the signals into 

probabilities [1, 2]. In current mine detection systems, 

although very noisy, mine signatures look like 

hyperbolas in 2-D GPR images; and morphological 

operations [3, 4] are used to evaluate the degree of a 

diagonal or anti-diagonal shape in small windows.  

In these systems, it is very important that the 

features represent the signal accurately and succinctly. 

However, often times, the features need to be modified 

to accommodate a change in sensor systems. Such a 

modification process is laborious and requires specific 

domain knowledge. Hence, it is worthwhile to 

investigate automatic feature learning methods.  

In this paper, we present a new learning method 

based on Gibbs sampling [5] which is one of the Monte 

Carlo Markov Chain (MCMC) sampling methods [6, 

7]. Instead of maximizing an objective function, Gibbs 

sampling samples the parameters from their conditional 

probability distributions. Becoming popular in the 

Bayesian community, it is more robust to initialization 

and usually achieves a better solution that is closer to 

the global optimum. 

 

2. Technical approach 
 

Our goal is to maximize the probability of mine 

signatures given the parameters of feature extraction 

and the parameters of the HMM model. In our 

Bayesian framework, we sample these parameters from 

their individual full conditional probability 

distributions when our probability assumptions match 

the true distributions of real data. In this section, we 

briefly describe Gibbs sampling, formulate the feature 

model, and state the assumptions to put the problem 

into the Bayesian framework.  

 

2.1 Gibbs sampling  
 

Gibbs sampling is used for joint distribution 

estimation when the full conditional distributions of all 

the random variables are available. Gibbs sampling 

provides samples to estimate the joint distribution of 

the random hidden variables and parameters. Then it 

uses those samples to estimate the parameters of 

models or compute the probabilities of new data given 

the model. Given joint density p(x1, x2, …, xp) for a set 

of random x1, x2, …, xp, we sample the variable xi from 

the condition distribution p(xi | xj; i ≠ j). Starting from 

initial values x1
(0)

, …, xp
(0)

, the Gibbs sampler draws 

samples of random variables as follows: 
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where τ denotes the index of iterations. 

It is shown that as τ → ∞, the distribution of (x1, x2, 

…, xp) converges to p(x1, x2, …, xp). Equivalently, as    

τ → ∞, the distribution of xi
(τ)

 converges to p(xi) for       

i = 1,…, p. So the Gibbs sampler treats the samples 

x1
(τ)

, …, xp
(τ)

, for τ > M as a sample from p(x1, x2, …, 

xp) by selecting some large value for M. The initial 

sampling procedure before convergence is known as 

the burn-in procedure. Now we can calculate the 

expectation of a function f(x) over the distribution p(xi) 

by Monte Carlo integration 
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where τ is the index of iterations in the sampling 

process, and ω is total number of samples collected. 

 

2.3 Model formulation 
 

A given image A is split into p overlapping N x K 

subimages as shown in Figure 1: 
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Figure 1: System for feature learning 

 

We transform each subimage to an NK x 1 vector 

Ai, i =1, …, p. Letting l = NK, for each image Ai, an l x 

1 binary hit mask Mi is applied using convolution 

operation as follows. We define the vector Bi as   

( )1

2,0~,,1, ×=+= Liii INpiMAB ζσζζ Lo
,  

where the symbol o denotes point wise (Hadamard) 

multiplication, and ζ represents a zero mean Gaussian 

perturbation with covariance matrix 1

2

×=∑ LIζζ σ .  

Therefore, the k-th element of Bi can be denoted as: 
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Now we define Di as the sum over B plus a zero 

mean additive Gaussian perturbation with variance ση
2
: 

( )2,0~, ησηη NBD
k

iki +=∑
  

Suppose we have T subimages along the row. For 

each column of subimages we define one feature xt, t = 

1,…, T, as the aggregation of Di with the additive zero 

mean Gaussian noise ε, i.e.,  

( )2,0~, εσεε NDx
i

it +=∑
 

Now we assign the label yt to the feature xt, given 

the threshold ξ. 
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We assign xt as the state probability density within 

HMM model framework. With the transition 

probability matrix, we can compute the probabilities of 

image sequences by an HMM algorithm [8]. 

To put the problem into the Bayesian framework, 

we assume the probability of binary hit mask M is 

given by a binomial distribution. 

( ) ( )kkkik pppMP −∝ 1|
 

 

We assume the prior of the binary mask is the 

conjugate prior of binomial distribution. So given the α 

and β, the prior for the probability pk is the beta 

distribution given as 

( )kkk betap βα ,~
 

 

2.4 Computation by Gibbs Sampling 
 

Since the posterior distribution is not available in 

explicit form, we use Gibbs sampling to sample all the 

needed variables M,B, D, and x as follows: 

 

 1) Sample the prior p given (M, α, β) from a beta 

distribution. 
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2) Sample the Mask M given (p, B, A).  

( )

( ) ( )( )22
2exp1

,,|1

ζσikikikk

ikik

MABp

ABpMP

−−−∝

=
 

 

After these two values are normalized, we sample M: 
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3)  Sample the variable B given (A, M).  
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Rather than sampling B as a matrix, it is better to 

sample component-wise from Gaussian distribution. 

 

( )





















+
+











+−+

−

−

∑
2
1

,

~,,|

ηζ

ηζ

ηζ

ττ
ττ

ττ ik

q

iqiikik

ikikikik

BBDMA

N

MABB

, 

where 
21στ =  denotes the precision of the Gaussian. 

 

4)  Sample the variable D given (x, B).  
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Similarly D is sampled component wise from the 

Gaussian distribution. 
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5) Sample the variable x given (y, D) from the 

truncated Gaussian distribution with threshold  ξ. 
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After the burn-in period we can get the Gibbs 

samples at the s-th iteration as [p
[s]

, M
[s]

, B
[s]

, D
[s]

, x
[s]

, 

s= 1,…I ]; and use these samples for prediction and 

posterior inference. 

 

 
 

The parameters were initialized with a random 

number generator, and the hyper-parameters were 

initialized based on the experiments. 

To predict the label of new sequences, in MCMC 

approach, P(ynew = 1 | Anew)  can be estimated by 

( )

( )∑
+

=

==

=
lM

Ms

ssss

newnew

newnew

xDMBAyP
l

AMAyP

)()()()( ,,,,|1
1

,,|1

 

However to make the computations easy, the mode of 

the samples is used as the estimated parameter.  

 

3. Experiments and Results 
 

Experiments were performed on images acquired 

from an arid test site with the NIITEK GPR [9]. The 

data set contains two classes (mines and non-mines). In 

this study, the data was first preprocessed such that 

each image was normalized and scaled to the [0, 1] 

interval. Then, the images were binarized and 

skeletonized to get the clean gray-level image, and a 

5x5 window was moved along the x-axis to get the 

image sequences. For each data sample of nine images, 

one image sequence was extracted. Twenty-five image 

sequence samples are shown in Figure 2, where each 

row is a sequence. Two sequences are separated by a 

horizontal gray bar, and two adjacent images in one 

sequence are separated by a vertical gray bar. It can be 

seen that the sequences consist of ascending-edge and 

descending-edge images. Two-hundred image 

The Gibbs Sampling Algorithm: 

Set hyper parameter α, β, σζ, ση, σε and threshold ξ. 

Start with the initial state sequences Q
[0]

. 

Loop  
Split all the images sequences as different image segments 

according to the state that they are associated to. 

 Loop for each state segments   

    Start with the initial [p[0], M[0], B[0], D[0], x[0]]. 

         Loop to sample the state parameters 

At the iteration s, 

Sample prior p[s] given (M[s-1], α, β). 

Sample M[s] given (p[s], B[s-1], A). 

Sample C[s] given (A, M[s]). 

Sample D[s] given (x[s-1], B[s]). 

Sample x[s] given (y, D[s]). 

    Stop after the required number of iterations. 

End loop of state segments 

Compute every state probability density with sampled state 

parameters for all the images sequences. 

Find the best state sequences by Viterbi algorithm 

Stop after the fix number of iterations 



sequences were extracted from landmine data for mine 

class in the training set. 

 
Figure 2: 25 sequences extracted from mine images 

 

Probability of Detection (PD) vs Probability of 

False Alarm (PFA) is displayed in Figure 3 for (1) 

baseline HMM (HMM-EM), (2) Our Gibbs sampling 

HMM algorithm without feature learning, (3) Our 

Gibbs sampling feature learning with the HMM 

algorithm.  Note that, the baseline HMM algorithm 

uses the parameters that has been extensively used over 

the years, and has become the standard in landmine 

detection. Our algorithm performs comparably to this 

baseline HMM, exceeding it at 90% detection, and also 

has the ability to adjust to different sensor 

configurations. 
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HMM-EM: 95/0.03063, 90/0.01383, 85/0.01103

HMMsampling: 95/0.02941, 90/0.01085, 85/0.00630

FeatLearnSamp: 95/0.02923, 90/0.01173, 85/0.00805

 
Figure 3: Receiver Operating Characteristic (ROC) 

curves comparing Gibbs feature learning without 

HMM learning, Gibbs feature and HMM learning 

and the standard HMM. 

4. Conclusion 
 

A new feature learning method based on Gibbs 

sampling with HMM model is proposed. It can extract 

the features and learn the parameters of the HMM 

model simultaneously. The Gibbs sampling method is 

used so that the method is more robust to initialization 

and achieves a better solution. The experiments show 

that this method rivals the performance of other 

methods in landmine detection, and has the ability to 

adjust to different datasets collected under various 

environmental conditions. For our future work, we will 

investigate a composite model of feature and HMM 

learning, and apply this method to other problems.  
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