A Comparison of Markerless Body Part Tracking Algorithms Toward a Virtual Reality Environment for Weakly Electric Fish

Alper Endeş¹, Amine Adıgüzel¹, Burak Karaçayır¹, İlyas Emre Vergili¹ Supervised by Dr. İsmail Uyanık¹

Hacettepe University, Department of Electrical and Electronics Engineering

INTRODUCTION

Recent progress in deep learning algorithms enables the use of computer vision to study animal behavior in real time. Here, we investigated the behavioral responses of weakly electric fish via various convolutional neural network models. Our goal is to assess the performance of these algorithms toward building a real-time virtual reality environment for the weakly electric fish.

MOTIVATION

Eigenmannia virescens, a species of weakly electric fish, track the movement of a PVC refuge to remain hidden inside. To achieve this, Eigenmannia generates two counter propagating waves along its ribbon fin, which meet at a nodal point. Tracking this nodal point is especially challenging due to its dynamic behavior, which requires simultaneous analysis of consecutive frames.

METHODS

Design Requirements

Markerless Pose Estimation

Accurate Tracking of Nodal Points

Real-Time Object Detection

Over 50 FPS Tracking Performance

Tracking Nodal Points on Video Motion

Promising Tracking Algorithms

Haar Cascades

- ✓ Simple Neural Network with three features
- ✓ Uses features brightness to detect the object

- YOLOv3
- ✓ 106-layered CNN ✓ Uses Three Scale Method X Requires GPU for speed

GOTURN

- ✓ Offline training, online tracking
- Predicts over previous and current frame

MOSSE

- ✓ Location of the max. correlation output indicates new position of the target ✓ Filter is computed in FFT

Tracking Nodal Point Methods

DeepLabCut

- ✓ Ability to Implement Deep CNNs
 - ✓ Ability to Choose Different Models
- ✓ High Accuracy on Tracking Body Parts
- X Takes Time to Train

Custom CNN

- ✓ VGG16^[2] Inspired Custom Model
- ✓ Well Documented PyTorch Library
- Customizable Layers and Hyperparameters
 - **X** Requires Hand **Crafted Dataset**

RESULTS AND DISCUSSION

ACKNOWLEDGEMENTS

REFERENCES

Uyanik I, Sefati S, Stamper SA, Cho K, Ankaralı MM, Fortune ES and Cowan NJ (2020) Variability in locomotor dynamics reveals the critical role of feedback in task control. eLife 2020;9:e51219 DOI: 10.7554/eLife.51219 2 Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 1409.1556.