ACADEMICS
Course Details

ELE625 - Analytical Methods in Electromagnetics

2023-2024 Spring term information
The course is not open this term
ELE625 - Analytical Methods in Electromagnetics
Program Theoretýcal hours Practical hours Local credit ECTS credit
MS 3 0 3 8
Obligation : Elective
Prerequisite courses : -
Concurrent courses : -
Delivery modes : Face-to-Face
Learning and teaching strategies : Lecture, Question and Answer, Problem Solving
Course objective : Students successfully completing this course is expected to: - understand the fundamental theorems of electromagnetics. - be able to carry out modal analysis using plane wave functions.- be able to carry out modal analysis using cylindrical wave functions.- be able to carry out modal analysis using spherical wave functions.- be able to carry out wave transformations.
Learning outcomes : understand modal expansion concepts of electromagnetics, Model the problem s/he encounters using modal expansion theory, Know which method s/he can use to solve the problem s/he established, know the advantages and disadvantages of the method, Apply the techniques s/he learnt in class in her/his further studies, Be prepared to follow and understand advanced up-to-date electromagnetics methods.
Course content :
References : 1) Roger F. Harrington, ?Time Harmonic Electromagnetic Fields?, McGraw Hill, 1961.; 2) Advanced Engineerin Electromagnetics, Constantine A. Balanis, John Wiley & Sons, 1989.
Course Outline Weekly
Weeks Topics
1 Introduction.
2 Maxwell?s equations. Source Concepts.
3 Poynting vector, power balance equation in integral and differential form.
4 Equivalence principle. Induction equivalence.
5 Reciprocity. Integral equations.
6 Construction of solutions to wave equation.
7 Plane wave functions
8 Modal expansion using plane wave functions.
9 Analysis of rectangular waveguide discontinuities using modal expansion.
10 Midterm Exam
11 Cylindrical wave functions.Modal expansion in cylindrical coordinates.
12 Spherical wave functions.Modal expansion in spherical coordinates.
13 Analysis of radiation and scattering from cylindrical and spherical structures.
14 Wave transformations.
15 Final Exam
16 Final Exam
Assessment Methods
Course activities Number Percentage
Attendance 0 0
Laboratory 0 0
Application 0 0
Field activities 0 0
Specific practical training 0 0
Assignments 5 30
Presentation 0 0
Project 0 0
Seminar 0 0
Quiz 0 0
Midterms 1 30
Final exam 1 40
Total 100
Percentage of semester activities contributing grade success 60
Percentage of final exam contributing grade success 40
Total 100
Workload and ECTS Calculation
Course activities Number Duration (hours) Total workload
Course Duration 14 3 42
Laboratory 0 0 0
Application 0 0 0
Specific practical training 0 0 0
Field activities 0 0 0
Study Hours Out of Class (Preliminary work, reinforcement, etc.) 14 6 84
Presentation / Seminar Preparation 0 0 0
Project 0 0 0
Homework assignment 5 12 60
Quiz 0 0 0
Midterms (Study duration) 1 27 27
Final Exam (Study duration) 1 27 27
Total workload 35 75 240
Matrix Of The Course Learning Outcomes Versus Program Outcomes
Key learning outcomes Contribution level
1 2 3 4 5
1. Has general and detailed knowledge in certain areas of Electrical and Electronics Engineering in addition to the required fundamental knowledge.
2. Solves complex engineering problems which require high level of analysis and synthesis skills using theoretical and experimental knowledge in mathematics, sciences and Electrical and Electronics Engineering.
3. Follows and interprets scientific literature and uses them efficiently for the solution of engineering problems.
4. Designs and runs research projects, analyzes and interprets the results.
5. Designs, plans, and manages high level research projects; leads multidiciplinary projects.
6. Produces novel solutions for problems.
7. Can analyze and interpret complex or missing data and use this skill in multidiciplinary projects.
8. Follows technological developments, improves him/herself , easily adapts to new conditions.
9. Is aware of ethical, social and environmental impacts of his/her work.
10. Can present his/her ideas and works in written and oral form effectively; uses English effectively.
1: Lowest, 2: Low, 3: Average, 4: High, 5: Highest
General Information | Course & Exam Schedules | Real-time Course & Classroom Status
Undergraduate Curriculum | Minor Program For Non-departmental Students | Open Courses, Sections and Supervisors | Weekly Course Schedule | Examination Schedules | Information for Registration | Prerequisite and Concurrent Courses | Legal Info and Documents for Internship | Academic Advisors for Undergraduate Program | Information for ELE 401-402 Graduation Project | Virtual Exhibitions of Graduation Projects | Erasmus+ Program | Program Educational Objectives & Student Outcomes | ECTS Course Catalog | HU Registrar's Office
Graduate Curriculum | Open Courses and Supervisors | Weekly Course Schedule | Final Examinations Schedule | Schedule of Graduate Thesis Defences and Seminars | Information for Registration | ECTS Course Catalog - Master's Degree | ECTS Course Catalog - PhD Degree | HU Graduate School of Science and Engineering