
1

ELE108
Introduction to Programming

Dr. Ali Ziya Alkar
Dr. Mehmet Demirer

2

Outline

• Overview of C
• General form of a C program
• C Language Elements

3

History & Philosophy

• C is developed in 1972 by Dennis Ritchie at the
AT&T Bell Laboratories for use with the Unix.

• C is a minimalistic programming language.
• The most commonly used programming language for

writing system software.
• Machine independent: by minimal change in source

code, can be compiled in a wide variety of platform
and operating system.

4

Why C?
• Many, many companies/research projects do

all their programming in C.
• Small, compact code.
• Produces optimized programs that runs faster.
• Low-level access to computer memory via

machine addresses and pointers.
• Low level (BitWise) programming readily

available.
• Can be compiled on a variety of computers.

5

What’s Missing?

• No Objects.
• Poor error detection which can make it difficult to use

for the beginner
No automatic garbage collection.
No bounds checking of arrays and allocated memory
segments.
No exception handling.

• No native support for multithreading and networking,
though these facilities are provided by popular
libraries

• No standard libraries for graphics and several other
application programming needs

6

A Simple, Example C Program
/* helloworld.c */

#include <stdio.h>
int main(void) {
printf("Hello World!\n");
return(0);

}

• Every C program has a main function. It is very much the
same as the main method in a Java class.

• printf is also the name of a function. It can do much the
same as Java's System.out.print.

• This program can use the printf function, because of the line
#include <stdio.h> in the source code. This line is
similar to Java's import java.io.*

7

General Form of a C program
• Preprocessor directives are

instructions to C Preprocessor
to modify The text of a C
program before compilation.

• Every variable has to be
declared first.

• Executable statements are translated into machine language and
eventually executed.

• Executable statements perform computations on the declared
variables or input/output operations.

8

Miles to Kilometers conversion

9

C Language Elements

• Preprocessor Directives
• Comments
• The “main” function
• Variable Declarations and Data Types
• Executable Statements
• Reserved Words
• Identifiers

10

Preprocessor Directives
/* Converts distances from miles to kilometers */

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

11

Preprocessor Directives

• Preprocessor directives are commands that give
instructions to the C preprocessor.

• Preprocessor is a system program that modifies a C
program prior to its compilation.

• Preprocessor directives begins with a #
Example. #include or #define

12

#include
• #include is used to include other source files into

your source file.
• The #include directive gives a program access to a

library.
• Libraries are useful functions and symbols that are

predefined by the C language (standard libraries).
Example: You must include stdio.h if you want to use
the printf and scanf library functions.
include<stdio.h> insert their definitions to your
program before compilation.

13

#define
• The #define directive instructs the preprocessor to

replace each occurrence of a text by a particular
constant value before compilation.

• #define replaces all occurrences of the text you
specify with value you specify

Example:
#define KMS_PER_MILES 1.60
#define PI 3.14159

14

Comments
/* Converts distances from miles to kilometers */

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

15

Comments
• Comments provide supplementary information making it

easier for us to understand the program, but are ignored by the
C compiler.

• Two forms of comments:
/* */ - anything between them with be considered a comment, even if
they span multiple lines.
// - anything after this and before the end of the line is considered a
comment.

• Comments are used to create Program Documentation
Information that help others read and understand the program.

• The start of the program should consist of a comment that
includes programmer’s name, date of the current version, and a
brief description of what the program does.

• Always Comment your Code!

16

The “main” Function
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

17

The “main” Function

• The heading int main(void) marks the beginning of the
main function where program execution begins.

• Every C program has a main function.
• Braces ({,}) mark the beginning and end of the body of

function main.
• A function body has to parts:

declarations - tell the compiler what memory cells are
needed in the function
executable statements - (derived from the algorithm) are
translated into machine language and later executed by the
compiler.

18

Variables and Data Types
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

19

Variables Declarations
• Variable – The memory cell used for storing a

program’s data and its computational results
Variable’s value can change.
Example: miles, kms

• Variable declarations –Statements that communicates
to the compiler the names of variables in the program
and the kind of information they can store.

Example: double miles
• Tells the compiler to create space for a variable of type
double in memory with the name miles.

C requires you to declare every variable used in the program.

20

Data Types
• Data Types: a set of values and a set of operations that

can be performed on those values
int: Stores integer values – whole numbers

• 65, -12345
double: Stores real numbers – numbers that use a decimal
point.

• 3.14159 or 1.23e5 (which equals 123000.0)
char: An individual character value.

• Each char value is enclosed in single quotes. E.g. ‘A’, ‘*’.
• Can be a letter, a digit, or a special symbol

Arithmetic operations (+, -, *, /) and compare can be
performed in case of int and double. Compare can be
performed in char data.

21

Executable Statements
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

22

Executable Statements

• Executable Statements: C statements used to write or
code the algorithm. C compiler translates the
executable statements to machine code.

Input/Output Operations and Functions
•printf Function
•scanf Function

Assignment Statements
return Statement

23

Input/Output Operations and Functions

• Input operation - data transfer from the outside
world into computer memory

• Output operation - program results can be displayed
to the program user

• Input/output functions - special program units that
do all input/output operations

• printf = output function
• scanf = input function

• Function call - in C a function call is used to call or
activate a function

Calling a function means asking another piece of code to
do some work for you

24

The printf Function

function name

printf(“That equals %f kilometers.\n”, kms);

function arguments

format string print list

place holder

25

Placeholders
• Placeholder always begins with the symbol %

It marks the place in a format string where a value will be printed out or
will be inputed (in this case, kms)

• Format strings can have multiple placeholders, if you are
printing multiple values

Placeholder Variable Type Function Use
%c char printf/scanf

%d int printf/scanf

%f double printf

%lf double scanf

• newline escape sequence – ‘\n’ terminates the current
line

26

Displaying Prompts

• When input data is needed in an interactive
program, you should use the printf function
to display a prompting message, or prompt,
that tells the user what data to enter.

Printf(“Enter the distance in miles> “);

27

The scanf Function

scanf(“%1f”, &miles);

function name
function arguments

format string variable list

place holder

• When user inputs a
value, it is stored in
variable miles.

• The placeholder type
tells the function
what kind of data to
store into variable
miles.

• The & is the C address of operator. The & operator in front of
variable miles tells the scanf function the location of
variable miles in memory.

28

Fig 2.6: Scanning data line Bob
char letter_1, letter_2, letter_3;
….
Scanf(“%c%c%c”, &letter_1, &letter_2, &letter_3);

29

Assignment Statements

• Assignment statement - Stores a value or a
computational result in a variable

kms = KMS_PER_MILE * miles;

• The assignment statement above assigns a value to
the variable kms. The value assigned is the result of
the multiplication of the constant KMS_PER_MILE
by the variable miles.

30

Figure 2.3 Effect of kms = KMS_PER_MILE
* miles;

31

Figure 2.2 Memory(a) Before and (b) After
Execution of a Program

32

More on Assignments
• In C the symbol = is the assignment operator

Read it as ”becomes”, ”gets”, or ”takes the value of” rather than
”equals” because it is not equivalent to the equal sign of mathematics.
In C, == tests equality.

• In C you can write assignment statements of the form:
sum = sum + item;

where the variable sum appears on both sides of the
assignment operator.
This is obviously not an algebraic equation, but it illustrates a
common programming practice. This statement instructs the
computer to add the current value of sum to the value of
item; the result is then stored back into sum.

33

return Statement

return (0);

• Transfers control from your program to the operating system.
• return (0) returns a 0 to the Operating System and

indicates that the program executed without error.
• It does not mean the program did what it was suppose to do. It

only means there were no syntax errors. There still may have
been logical errors.

• Once you start writing your own functions, you’ll use the
return statement to return information to the caller of the
function.

34

Reserved Words
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

35

Reserved words

• A word that has special meaning to C and can not be
used for other purposes.

• These are words that C reserves for its own uses
(declaring variables, control flow, etc.)

For example, you couldn’t have a variable named
return

• Always lower case
• Appendix E has a list of them all (ex: double,
int, if , else, ...)

36

Identifiers
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

37

Standard Identifiers

• Identifier - A name given to a variable or an
operation

In other words, Function names and Variable names

• Standard Identifier - An identifier that is defined in
the standard C libraries and has special meaning in C.

Example: printf, scanf
Standard identifiers are not like reserved words; you could
redefine them if you want to. But it is not recommended.

• For example, if you create your own function called printf, then
you may not be able to access the library version of printf.

38

User Defined Identifiers
• We choose our own identifiers to name memory cells that will

hold data and program results and to name operations that we
define (more on this in Chapter 3).

• Rules for Naming Identifiers:
An identifier must consist only of letters, digits, and
underscores.
An identifier cannot begin with a digit.
A C reserved word cannot be used as an identifier.
A standard identifier should not be redefined.

• Valid identifiers: letter1, inches, KM_PER_MILE
• Invalid identifiers: 1letter, Happy*trout, return

39

Few Guidelines for Naming Identifiers

• Some compliers will only see the first 31 characters of the
identifier name, so avoid longer identifiers

• Uppercase and lowercase are different
LETTER != Letter != letter
Avoid names that only differ by case; they can lead to hard to find bugs

• Choose meaningful identifiers that are easy to understand.
Example: distance = rate * time means a lot more
than x=y*z

• All uppercase is usually used for constant macros (#define)
KMS_PER_MILE is a defined constant
As a variable, we would probably name it KmsPerMile or
Kms_Per_Mile

40

Punctuation and Special Symbols
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

41

Punctuation and Special Symbols

• Semicolons (;) – Mark the end of a statement
• Curly Braces ({,}) – Mark the beginning and

end of the main function
• Mathematical Symbols (*,=) – Are used to

assign and compute values

