ELE108
Introduction to Programming

Dr. Ali Ziya Alkar
Dr. Mehmet Demirer

Outline

e Overview of C
e General form of a C program
e C Language Elements

History & Philosophy

C is developed in 1972 by Dennis Ritchie at the
AT&T Bell Laboratories for use with the Unix.

C Is a minimalistic programming language.

The most commonly used programming language for
writing system software.

Machine independent: by minimal change in source
code, can be compiled in a wide variety of platform
and operating system.

Why C?

Many, many companies/research projects do
all their programming in C.

Small, compact code.
Produces optimized programs that runs faster.

Low-level access to computer memory via
machine addresses and pointers.

Low level (BitWise) programming readily
available.

Can be compiled on a variety of computers.

What’s Missing?

No Objects.

Poor error detection which can make It difficult to use
for the beginner
= No automatic garbage collection.

= No bounds checking of arrays and allocated memory
segments.

= No exception handling.

No native support for multithreading and networking,
}hboug_h these facilities are provided by popular
Ibraries

No standard libraries for graphics and several other
application programming needs

A Simple, Example C Program

/> helloworld.c */

#include <stdio.h>

int main(void) {
printf("'Hello World!I\n");
return(0);

¥

« Every C program has a main function. It Is very much the
same as the marn method In a Java class.

= printf isalso the name of a function. It can do much the
same as Java's System.out.print.

* This program can use the printf function, because of the line
#include <stdio.h> inthe source code. This line is
similar to Java's import java.i10.*

General Form of a C program

preprocessor directives * Preprocessor directives are

main function heading Instructions to C Preprocessor

(to modify The text ofa C
declarations program before compilation.

executable statements ° EVETY varl_able has to be
declared first.

Executable statements are translated into machine language and
eventually executed.

Executable statements perform computations on the declared
variables or input/output operations.

Miles to Kilometers conversion

/*
* Converts distances from miles to kilometers.
*/
standard header file comment
P T
preprocessor #include <stdio.h> /* printf, scanf definitions */
directive <: #define_KMS PER MILE 1.609 /* conversion constant */
,—-—-—""'ﬂ — — |
constant int
main(void)
{ Ly
double _miles, /* distance in miles
variable ——’——’//:kms: /* equivalent distance in kilometers */
A
/* Get the distance in miles. */ « —————— comment
standard printf("Enter the distance in miles> ");
identifier scanf("%1f", &miles);

/* Convert the distance to kilometers. */
kms =_KMS PER MILE *. miles;
special symbol
/* Display the distance in kilometers. */
printf("That equals %f kilometers.\n", kms);
reseg'@d » return (0); «<— punctuation //
wor } =<— special symbol

C Language Elements

Preprocessor Directives

Comments

The “main” function

Variable Declarations and Data Types
Executable Statements

Reserved Words

|dentifiers

Preprocessor Directives

[* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS_PER_MILE 1.609 [* conversion constant */

int main(void)

{

double miles, //distance in miles
kms; /lequivalent distance in kilometers

//Get the distance in miles
printf(*"Enter the distance in miles>"");
scanf("'%lf"", &miles);

/IConvert the distance to kilometers
kms = KMS_PER_MILE * miles;

/[Display the distance in kilometers
printf(**That equals %f kilometers.\n"', kms);

return (0);

10

Preprocessor Directives

* Preprocessor directives are commands that give
Instructions to the C preprocessor.

e Preprocessor is a system program that modifies a C
program prior to its compilation.

» Preprocessor directives begins with a #
= Example. #include or #define

11

#include

e #1nclude is used to include other source files into
your source file.

 The #1nclude directive gives a program access to a
library.

» Libraries are useful functions and symbols that are
predefined by the C language (standard libraries).

= Example: You must include stdio.h if you want to use
the printf and scanf library functions.

» # 1nclude<stdio.h> insert their definitions to your
program before compilation.

12

#define

* The #def1ne directive instructs the preprocessor to

replace each occurrence of a text by a particular
constant value before compilation.

e #define replaces all occurrences of the text you
specify with value you specify
= Example:
#define KMS PER MILES 1.60
#define PI 3.14159

13

comments

/* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS_PER_MILE 1.609 [* conversion constant */

int main(void)

{

double miles, //distance in miles
kms; /lequivalent distance in kilometers

//Get the distance in miles
printf(""Enter the distance in miles>"");
scanf("'%olf", &miles);

/IConvert the distance to kilometers
kms = KMS_PER_MILE * miles;

/[IDisplay the distance in kilometers
printf(""That equals %f kilometers.\n"*, kms);

return (0);

14

comments

Comments provide supplementary information making it
easier for us to understand the program, but are ignored by the
C compiler.

Two forms of comments:

= /**/-anything between them with be considered a comment, even if
they span multiple lines.

= /[- anything after this and before the end of the line is considered a
comment.

Comments are used to create Program Documentation
= Information that help others read and understand the program.

The start of the program should consist of a comment that
Includes programmer’s name, date of the current version, and a
brief description of what the program does.

Always Comment your Code!

15

The “main” Function

/* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /[* conversion constant */

int main(void)

{

double miles, //distance in miles
kms; /lequivalent distance in kilometers

//Get the distance in miles
printf(*"Enter the distance in miles>"");
scanf("'%lf", &miles);

/IConvert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf(""That equals %f kilometers.\n"", kms);

return (0);

16

The “main” Function

The heading 1nt main(void) marks the beginning of the
main function where program execution begins.

Every C program has a main function.

Braces ({,}) mark the beginning and end of the body of
function main.
A function body has to parts:

= declarations - tell the compiler what memory cells are
needed in the function

= executable statements - (derived from the algorithm) are
translated into machine language and later executed by the
compiler.

17

Variables and Data Types

/* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /[* conversion constant */

int main(void)

{

double miles, //distance in miles
kms; /lequivalent distance in kilometers

//Get the distance in miles
printf(*"Enter the distance in miles>"");
scanf("'%lf", &miles);

/IConvert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf(""That equals %f kilometers.\n"", kms);

return (0);

18

Variables Declarations

* Variable — The memory cell used for storing a
program’s data and its computational results

» Variable’s value can change.
= Example: miles, kms

» Variable declarations —Statements that communicates
to the compiler the names of variables In the program
and the kind of information they can store.

= Example: double miles

 Tells the compiler to create space for a variable of type
double in memory with the name mi les.

= C requires you to declare every variable used in the program.

19

Data Types

e Data Types: a set of values and a set of operations that
can be performed on those values

Int: Stores integer values — whole numbers

* 65, -12345
double: Stores real numbers — numbers that use a decimal
point.

o 3.14159 or 1.23e5 (which equals 123000.0)

char: An individual character value.
« Each char value is enclosed in single quotes. E.g. ‘A’, **’.
» Can be a letter, a digit, or a special symbol

Arithmetic operations (+, -, *, /) and compare can be

performed in case of int and double. Compare can be
performed in char data.

20

Executable Statements

[* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS_PER_MILE 1.609 [* conversion constant */

int main(void)

{

double miles, //distance in miles
kms; /lequivalent distance in kilometers

//Get the distance in miles
printf(*’Enter the distance in miles>"");
scanf("'%lf"", &miles);

/[IConvert the distance to kilometers
kms = KMS _PER_MILE * miles;

/[Display the distance in kilometers
printf(*'That equals %f kilometers.\n"', kms);

return (0);

21

Executable Statements

e Executable Statements: C statements used to write or
code the algorithm. C compiler translates the
executable statements to machine code.

= |nput/Output Operations and Functions
eprintf Function

escant Function

= Assignment Statements
= return Statement

22

Input/Output Operations and Functions

* Input operation - data transfer from the outside
world into computer memory

e Output operation - program results can be displayed
to the program user

 Input/output functions - special program units that

do all input/output operations
e printf = output function
e scanT = input function

 Function call - in C a function call is used to call or
activate a function

= Calling a function means asking another piece of code to
do some work for you

23

The printf Function

function name function arguments

y \

printf(“That equals %f kilometers.\n”, kms);

N\ N
t

format string print list

place holder

24

Placeholders

 Placeholder always begins with the symbol %

= |t marks the place in a format string where a value will be printed out or
will be inputed (in this case, kms)

e Format strings can have multiple placeholders, if you are
printing multiple values

Placeholder Variable Type Function Use

%C char printf/scanf
%d int printf/scanf
%f double printf

%lf double scanf

e newline escape sequence — “‘\n’ terminates the current
line

25

Displaying Prompts

 \When input data Is needed In an interactive
program, you should use the printf function

to display a prompting message, or prompt,
that tells the user what data to enter.

Printf(“Enter the distance iIn miles> *);

26

The scanf Function

function name | e When user Inputs a
function arguments value, it Is stored in
/ \ variable mi les.

scanf(“%1f”, &miles); The placeholder type

I I tells the function
format string variable list what kind of data to

store into variable
place holder miles.

e The & Is the C address of operator. The & operator in front of
variable mr es tells the scanTt function the location of

variable miles in memory.

27

Fig 2.6: Scanning data line Bob

char letter_1, letter 2, letter 3;

Scanf(“%c%chc”, &letter_1, &letter_ 2, &letter_3);

letters entered Bob

letter 1

28

Assignment Statements

e Assignment statement - Stores a value or a
computational result in a variable

kms = KMS PER MILE * miles;

t
t

"he assignment statement above assigns a value to
ne variable kms. The value assigned is the result of

ne multiplication of the constant KMS PER_MILE

by the variable mi les.

29

Figure 2.3 Effect of kms = KMS_PER_MILE

* miles;
Before assignment KMS PER MILE miles kms
1.609 10.00 ?

After assignment KMS PER MILE miles kms

1.609 10.00 16.090

30

Figure 2.2 Memory(a) Before and (b) After
Execution of a Program

memory memory
machine language machine language
miles-to-kms con- miles-to-kms con-
version program version program
miles miles
¢ 10.00
kms kms
? 16.09

(a) (b)

More on Assignments

* In C the symbol = is the assignment operator

= Read it as "becomes”, ”gets”, or "takes the value of” rather than

“equals” because it Is not equivalent to the equal sign of mathematics.
In C, == tests equality.

 In C you can write assignment statements of the form:
sum = sum + i1tem;

where the variable sum appears on both sides of the
assignment operator.

This is obviously not an algebraic equation, but it illustrates a

common programming practice. This statement instructs the
computer to add the current value of sum to the value of

1 tem: the result Is then stored back into sum.

32

return Statement

return (0);

 Transfers control from your program to the operating system.

return (0O) returns a 0 to the Operating System and
Indicates that the program executed without error.

It does not mean the program did what it was suppose to do. It
only means there were no syntax errors. There still may have

been logical errors.

Once you start writing your own functions, you’ll use the
return statement to return information to the caller of the

function.

33

Reserved Words

[* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS_PER_MILE 1.609 [* conversion constant */

int main(void)

{

double miles, //distance in miles
kms; /lequivalent distance in kilometers

/IGet the distance in miles
printf(""Enter the distance in miles> "');
scanf(*'%lf", &miles);

/[IConvert the distance to kilometers
kms = KMS PER_MILE * miles;

/[Display the distance in kilometers
printf(**That equals %f kilometers.\n"', kms);

return (0);

34

Reserved words

A word that has special meaning to C and can not be
used for other purposes.

These are words that C reserves for 1ts own uses
(declaring variables, control flow, etc.)

= For example, you couldn’t have a variable named
return

Always lower case

Appendix E has a list of them all (ex: double,
int, 1f , else, ..)

35

ldentifiers

/* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS PER_MILE 1.609 /[* conversion constant */

int main(void)

{

double miles, //distance in miles
kms; /lequivalent distance in kilometers

//Get the distance in miles
printf(*"Enter the distance in miles>"");
scanf(""%olf"", &miles);

/IConvert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf(**That equals %f kilometers.\n", kms);

return (0);

36

Standard Identifiers

 ldentifier - A name given to a variable or an
operation

= |n other words, Function names and Variable names

o Standard ldentifier - An identifier that is defined In
the standard C libraries and has special meaning in C.
= Example: printf, scanf

= Standard identifiers are not like reserved words; you could
redefine them if you want to. But it is not recommended.

» For example, if you create your own function called printf, then
you may not be able to access the library version of printf.

37

User Defined ldentifiers

We choose our own identifiers to name memory cells that will
hold data and program results and to name operations that we
define (more on this in Chapter 3).

Rules for Naming ldentifiers:

= An identifier must consist only of letters, digits, and
underscores.

= An identifier cannot begin with a digit.

= A C reserved word cannot be used as an identifier.

= A standard identifier should not be redefined.
Valid identifiers: letterl, i1nches, KM _PER _MILE
Invalid identifiers: 1letter, Happy*trout, return

38

Few Guidelines for Naming Identifiers

Some compliers will only see the first 31 characters of the
Identifier name, so avoid longer identifiers

Uppercase and lowercase are different
» LETTER !=Letter = letter
= Avoid names that only differ by case; they can lead to hard to find bugs

Choose meaningful identifiers that are easy to understand.
Example: distance = rate * time meansa lot more

than x=y*z
All uppercase is usually used for constant macros (#define)

= KMS_ PER_MILE is a defined constant

= As avariable, we would probably name it KmsPerMi le or
Kms Per_ Mile

39

Punctuation and Special Symbols

/* Converts distances from miles to kilometers */

#include <stdio.h> [* printf, scanf definitions */
#define KMS_PER_MILE 1.609 [* conversion constant */
int main(void)
{
double miles, //distance in miles
kms; /lequivalent distance in kilometers

//Get the distance in miles
printf(''Enter the distance in miles> "");
scanf(""%olf"’, &miles);

/[IConvert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf('"That equals %f kilometers.\n"', kms);

return (0);

40

Punctuation and Special Symbols

e Semicolons (;) — Mark the end of a statement

o Curly Braces ({,}) — Mark the beginning and
end of the main function

e Mathematical Symbols (*,=) — Are used to
assign and compute values

41

