
1

ELE108 lecture 3

Alkar + Demirer

2

Overview

• C Arithmetic Expressions
• Formatting Numbers in Program Output
• Interactive Mode, Batch Mode, and Data Files
• Common Programming Errors
• Programming Style

3

Arithmetic Expressions

• Operators
• Data Type of Expression
• Mixed-Type Assignment Statement
• Type Conversion through Cast
• Expressions with Multiple Operators
• Writing Mathematical Formulas in C

4

Why Arithmetic Expressions

• To solve most programming problems, you will need
to write arithmetic expressions that manipulate type
int and double data.

• The next slide shows all arithmetic operators. Each
operator manipulates two operands, which may be
constants, variables, or other arithmetic expressions.

• Example
5 + 2
sum + (incr* 2)
(B/C) + (A + 0.5)

5

C Operators
Arithmetic Operator Meaning Examples

+ (int,double) Addition
5 + 2 is 7
5.0 + 2.0 is 7.0

- (int,double) Subtraction
5 - 2 is 3
5.0 - 2.0 is 3.0

* (int,double) Multiplication
5 * 2 is 10
5.0 * 2.0 is 10.0

/ (int,double) Division
5 / 2 is 2
5.0 / 2.0 is 2.5

% (int) Remainder 5 % 2 is 1

6

Operator / & %
• Division: When applied to two positive integers, the

division operator (/) computes the integral part of the
result by dividing its first operand by its second.

For example 7.0 / 2.0 is 3.5 but the but 7 / 2 is only 3
The reason for this is that C makes the answer be of the
same type as the operands.

• Remainder: The remainder operator (%) returns the
integer remainder of the result of dividing its first
operand by its second.

Examples: 7 % 2 = 1, 6 % 3 = 0
The value of m%n must always be less than the divisor n.
/ is undefined when the divisor (second operator) is 0.

7

Data Type of an Expression
• The data type of each variable must be specified in its

declaration, but how does C determine the data type
of an expression?

Example: What is the type of expression x+y when both x
and y are of type int?

• The data type of an expression depends on the type(s)
of its operands.

If both are of type int, then the expression is of type int.
If either one or both is of type double, then the
expression is of type double.

• An expressions that has operands of both int and
double is a mixed-type expression.

8

Mixed-Type Assignment Statement
• The expression being evaluated and the variable to

which it is assigned have different data types.
Example what is the type of the assignment y = 5/2
when y is of type double?

• When an assignment statement is executed, the
expression is first evaluated; then the result is
assigned to the variable to the left side of assignment
operator.

• Warning: assignment of a type double expression
to a type int variable causes the fractional part of
the expression to be lost.

What is the type of the assignment y = 5.0 / 2.0
when y is of type int?

9

Type Conversion Through Casts

• C allows the programmer to convert the type of an
expression.

• This is done by placing the desired type in
parentheses before the expression.

• This operation called a type cast.
(double)(5/2) is the double value 2.5, and not 2 as
seen earlier.
(int)(3.0/2.0) is the int value 1

• When casting from double to int, the decimal
portion is just truncated – not rounded.

10

Expressions with Multiple Operators

• Operators can be split into two types: unary and
binary.

• Unary operators take only one operand
- (negates the value it is applied to)

• Binary operators take two operands.
+,-,*,/

• A single expression could have multiple operators
-5 + 4 * 3 - 2

11

Rules for Evaluating Expressions
• Rule (a): Parentheses rule - All expressions in parentheses

must be evaluated separately.
Nested parenthesized expressions must be evaluated from the
inside out, with the innermost expression evaluated first.

• Rule (b): Operator precedence rule – Multiple operators in
the same expression are evaluated in the following order:

First: unary –
Second: *, /, %
Third: binary +,-

• Rule (c): Associativity rule
Unary operators in the same subexpression and at the same
precedence level are evaluated right to left
Binary operators in the same subexpression and at the same
precedence level are evaluated left to right.

12

Figure 2.8 Evaluation Tree for
area = PI * radius * radius;

13

Figure 2.11 Evaluation Tree and
Evaluation for z - (a + b / 2) + w * -y

14

Writing Mathematical Formulas in C

• You may encounter two problems in writing a mathematical
formula in C.

• First, multiplication often can be implied in a formula by
writing two letters to be multiplied next to each other. In C,
you must state the * operator

For example, 2a should be written as 2 * a.

• Second, when dealing with division we often have:

This should be coded as (a + b) / (c + d).
dc
ba

+
+

15

Formatting Numbers in Program Output
(for integers)

• You can specify how printf will display numeric
values

• Use d for integers. %#d
% - start of placeholder
- field width (optional) – the number of columns to use to
display the output.
d - placeholder for integers

int n = 123;
printf("%1d\n", n);
printf("%3d\n", n);
printf("%4d\n", n);

123
123

123

16

17

Formatting Numbers in Program Output
(for double)

• Use %n.mf for double
% - start of placeholder
n - field width (optional)
m – Number of decimal places (optional)

f - placeholder for real numbers

double n = 123.456;
printf("%8.0f\n", n);
printf("%8.2f\n", n);
printf("%8.3f\n", n);
printf("%8.4f\n", n);
Printf("%.2f\n", n);

123
123.46

123.456
123.4560
123.46

18

19

20

Computer operation modes

• Interactive Mode
user interact with the program and supply the
data

• Batch Mode
the program get the data from a file
using redirection, e.g. metric <mydata

21

Input Redirection
• In the next frame we will see the miles-to-kilometers

conversion program rewritten as a batch program.
• We assume here that the standard input device is associated

with a batch data file instead of with the keyboard.
• In most system, this association can be accomplished relatively

easily through input/output redirection using operating system
commands.

• Instead of calling the program as:
$ conversion

We would call it as:
$ conversion < myinput

• This redirects the text in the file myinput and uses it as the
program input.

• Here $ represents command prompt.

22

Miles to Kilometers conversion program in
interactive mode

/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

23

Miles to Kilometers conversion program
with input redirection.

/* Converts distances from miles to kilometers */

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get and echo the distance in miles
scanf("%lf", &miles);
printf(“The distance in miles is %.2f.\n”, miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

24

Echo Prints vs. Prompts
• In the above program scanf gets a value for miles from the

first (and only) line of the data file.
• Because the program input comes from a data file, there is no

need to precede this statement with a prompting message.
• Instead, we follow the call to scanf with the statement

printf(”The distance in miles is %.2f.\n”,miles);

• This statement echo prints or displays the value just stored in
miles.

• Without it, we would have no easy way of knowing what value
scanf obtained for miles.

• Whenever you convert an interactive program to a batch
program, make sure you replace each prompt with an echo
print after the scanf.

25

• Output redirection
metric >myoutput

• Input/output redirections
metric <mydata >myoutput

26

Output Redirection
• You can also redirect the output of the program to a

file instead of the screen.
• Then you can send the output file to the printer to

obtain a hard copy of the program output.
• The command line:

$ conversion > myoutput
sends the output of the program conversion to the
file myoutput.

• You can do both input and output redirection by
using:

$ conversion < myinput > myoutput

27

Program-controlled input/output files

• File pointer:
FILE *inp, *outp;

• fopen function
inp=fopen(“distance.dat”, “r”);
outp=fopen(“distance.out”, “w”);

• Access mode
r, w, a

• fclose function
fclose(inp);
fclose(outp);

28

Program Controlled Input and Output Files

• As an alternative to input/output redirection, C
allows a program to read/write from/to files within
the program.

• To do this, you need to:
1. Include stdio.h
2. Declare a variable of type FILE
3. Open the file for reading/writing.
4. Read/write from/to the file.
5. Close the file.

• In the example (next slide) you will see each of
these steps.

29

Miles to Kilometers conversion using
program controlled input/output

#include <stdio.h>
#define KMS_PER_MILE 1.609

int main(void) {
double kms, miles;
FILE *inp, *outp;

inp = fopen(“myinput","r");
outp = fopen(“myoutput","w");
fscanf(inp, "%lf", &miles);
fprintf(outp, "The distance in miles is %.2f.\n", miles);

kms = KMS_PER_MILES * miles;

fprintf(outp, "That equals %.2f kilometers.\n", kms);
fclose(inp);
fclose(outp);
return (0);

}

30

#include <stdio.h>
#define KMS_PER_MILE 1.609
int main(void)
{

double miles, kms;
FILE *inp, *outp;

/* open the input and output files */
inp = fopen(“distance.dat”,”r”);
outp = fopen(“distance.out”,”w”);

/* Get the distance in miles */
fscanf(inp,“%lf”,&miles);
fprintf(outp, “The distance in miles is %.2f. \n”, miles);

/* Convert the distance to kilometers */
kms= KMS_PER_MILE * miles;

/* Display the distance in kilometers */
fprintf(outp,“That equals %f kilometers.\n”, kms);

fclose(inp);
fclose(outp);
return (0);

}

31

Program errors

• Syntax errors
• Run-time errors
• Undetected errors
• Logic errors

Debugging a program (error correcting
process) is necessary

32

Syntax Errors
• A syntax error occurs when your code violates one or

more grammar rules of C
This is detected by the compiler as it attempts to translate
your program.
If a statement has a syntax error, it cannot be translated and
your program will not be executed.

• Common syntax errors:
Missing semicolon
Undeclared variable
Last comment is not closed

33

Syntax errors

• The code violates one or more grammar rules
of C and is detected by the complier.

• The complier will list the line number of the
error and the possible problem.

• This type of errors are usually caused by
mistyping, thus, these errors are easy to find
and correct.

34

35

Case Study: Finding the Value of Coins
(1/3)

• Write a program to determine the value of a
collection of coins

e.g., quarters, dimes, nickels, and pennies.
• The algorithmic flow:

1. Get and display the customer’s initials.
2. Get the count of each kind of coin.
3. Compute the total value in cents.
4. Find and display the value in dollars and change.

36

Case Study: Finding the Value of Coins
(2/3)

1. Read the
initials of the
customer

37

Case Study: Finding the Value of Coins
(3/3)2. Read the

count of each
kind of coins

3. Compute
the total
value in cents

4. Find and
display the
value in
dollars and
change

38

The input
can be read
from a file
instead of

from the user.

The output
can be

written into a
file instead of
on the screen.

Read input
from a file

Write the
result into a
file

39

A Program with Syntax Errors
Syntax error occurs
when the code
violates grammar
rules of C and is
detected by the
compiler.

40

A Program with a Run-Time Error
Run-time error occurs when the program directs the
computer to perform an illegal operation (e.g., divide by zero).

temp=0
divide by zero

41

A Common Error with Carriage Return
Suppose the user input “2003” and press enter key.
Then input “BMC” and press enter key.

Read “2003”

Read “\n”, “B”,
“M” instead of
“B”, “M”, “C”

42

A Common Error That Produces
Incorrect Results Due to & Omission

scanf does not know where to store the value entered by the
user, and just use the original value stored in first and second.

43

Common Programming Errors

• Syntax Errors - this occurs when your code violates one or
more grammar rules of C.

• Run-Time Errors - these are detected and displayed by the
computer during the execution of a program.

• Undetected Errors - many execution errors may not prevent a
C program from running to completion, but they may simply
lead to incorrect results.

• Logic Errors - these occur when a program follows a faulty
algorithm.

• Debugging - Finding bugs/errors in the program.

44

Run-time error

• During the computer execution, the computer
detects the program is performing an illegal
operation, such as dividing a number by 0.

45

Run-Time Errors

• Run-time errors are detected and displayed by the
computer during the execution of a program.

• A run-time error occurs when the program directs the
computer to perform an illegal operation, such as
dividing a number by zero.

• When a run-time errors occurs, the computer will
stop executing your program and will display a
diagnostic message

This message may indicate the line where the error was
detected.

46

47

Undetected errors

• The program can finish execution, but may
simply get an incorrect results. Thus, it is
essential for you to predict the results.

E.g. input of a mixture of characters and numeric
data

48

Undetected Errors

• Many execution errors may not prevent a C program from
running to completion, but they may simply lead to incorrect
results.

• It is essential that you predict the results your program should
produce and verify that the actual output is correct.

• A very common source of incorrect results in C programs is
the input of a mixture of character and numeric data.

These errors can be avoided if the programmer always keeps in mind
the scanf’s different treatment of %c and and %d/%1f placeholders.

• These may also occur if you make a mistake about the
evaluation order of an arithmetic expression with multiple
operators.

49

Logic errors

• Caused by the faulty algorithms. They are very
difficult to detect. To prevent logic errors, you
must carefully check your algorithm before the
implementation.

50

Logic Errors

• Logic errors occur when a program follows a faulty
algorithm.

• Because logic errors usually do not cause run-time
errors and do not display error messages, they are
difficult to detect.

• The only sign of a logic error may be incorrect
program output.

• You can detect logic errors by testing the program
thoroughly, comparing its output to calculated results.

51

Programming Style

• Why we need to follow conventions?
A program that ”looks good” is easier to read and
understand than one that is sloppy.
80% of the lifetime cost of a piece of software goes to
maintenance.
Hardly any software is maintained for its whole life by the
original author.
Program that follow the typical conventions are more
readable and allow engineers to understand the code more
quickly and thoroughly.

• Check your text book and some useful links page for
some directions.

52

White Spaces

• The complier ignores extra blanks between words and
symbols, but you may insert space to improve the
readability and style of a program.

• You should always leave a blank space after a comma
and before and after operators such as , −, and =.

• You should indent the lines of code in the body of a
function.

53

White Space Examples

Bad: Good:

int
main(void)
{

int foo, blah;
scanf("%d", foo);
blah = foo + 1;
printf("%d", blah);
return 0;

}

int main(void)
{ int foo,blah; scanf("%d",foo);
blah=foo+1;
printf("%d", blah);
return 0;}

54

Other Styles Concerns

• Properly comment your code
• Give variables sensible names
• Prompt the user when you want to input data
• Display things in a way that looks good

Insert new lines to make your information more
readable.
Format numbers in a way that makes sense for the
application

55

Bad Programming practices

• Missing statement of purpose
• Inadequate commenting
• Variables names are not meaningful
• Use of unnamed constant.
• Indentation does not represent program structure
• Algorithm is inefficient or difficult to follow
• Program does not compile
• Program produces incorrect results.
• Insufficient testing (e.g. Test case results are different than

expected, program branch never executed, borderline case not
tested etc.)

