
1

Introduction to Computers II
Lecture 4

Dr Ali Ziya Alkar
Dr Mehmet Demirer

2

• Contents:
Utilizing the existing information
Top-down design

– Start with the broadest statement of the problem
– Works down to more detailed sub-problems.

Modular programming

3

Existing Information

• Programmers seldom start from scratch when writing
a program.

• Typically, you will reuse work that has been done by
yourself or others

For example, using printf and scanf
• You start with your algorithm, and then implement it

piece by piece
When implementing these pieces, you can save
effort by reusing functionality.

4

Utilizing existing information

• Generated system documents
Problem description (data requirement)
Solution algorithm

• Strategy
Editing the data requirements to conform constant
and variable definitions
Using initial algorithm and its refinements
(formulas) as the program comments.

5

Case Study

• Problem:
get the radius of a circle, compute and display
the circle’s area and circumference.

6

Analysis

• Data requirements:
Constant
PI = 3.14159
Input
radius
Output
area
circumference
Relevant formulas
area of a circle = PI * radius2

circumference = 2 * PI * radius

7

Design

• Algorithm
Get the circle radius
Calculate the area and circumference
Display the results

• Refinements:
Assign PI * radius * radius to area
Assign 2 * PI * radius to circumference

8

/*
* Calculate and display the area and circumference of a circle
*/

#include <stdio.h>
#define PI 3.14159 /* constant PI */

int main(void)
{

double radius; /* input – radius of a circle */
double area; /* output – area of a circle */
double circum; /* output – circumference */

/* Get the radius */

/* Calculate the area */
/* Assign PI * radius * radius to area */

/* Calculate the circumference */
/* Assign 2 * PI * radius to circumference */

/* Display the area and circumference */

return (0);
}

9

/*
* Calculate and display the area and circumference of a circle
*/

#include <stdio.h>
#define PI 3.14159 /* constant PI */

int main(void)
{
double radius; /* input – radius of a circle */
double area; /* output – area of a circle */
double circum; /* output – circumference */

/* Get the radius */
printf(“Enter radius> “);
scanf(“lf”, &radius);

/* Calculate the area */
area = PI*radius*radius;

/* Calculate the circumference */
circum = 2*PI*radius;

/* Display the area and circumference */
printf(“The area is %.4f\n”, area);
printf(“The circumference is %.4f\n”, circum);

return (0);
}

10

Solution reuse

• Use existing information (the solution for one
problem) to solve another.

11

Case Study

• Problem: computes the weight of a specified
quantity of flat washers.

Rim area = PI(d2/2)2 - PI(d1/2)2

d1d2

12

Data requirement

• Problem constant
PI 3.14159

• Problem input
double hole_diameter, edge_diameter
double thickness, density, quanlity

• Problem output
double weight

13

Data requirement (Cont.)

• Program variables
double hole_radius, edge_radius
double rim_area, unit_weight

• Relevant formulas
area of a circle = PI * radius2

radius of a circle = diameter / 2
rim area = area(outer) – area(inner)
unit weight = rim area * thickness * density

14

Design

1. Get the diameters and thickness, density,
quantity

2. Compute the rim area
3. Compute the weight of one flat washer
4. Compute the weight of the batch of washers
5. Display the weight of the batch of washers

15

Refinement

• 3.1 compute radius
• 3.2 rim_area is PI * edge_radius * edge_radius

– PI * hole_radius * hole_radius
• 4.1 unit_weight is rim_area * thickness *

density

16

17

18

Library Functions

• Predefined Functions and Code Reuse
• C Library Functions
• A Look at Where We Are Heading

19

Library functions

• Code-reuse
benefits: avoid redevelopment.

avoid errors.
• C providing many predefined functions that

can be used to perform certain tasks.
• For example, mathematic computations.

sqrt(x)

20

Example

• Display the square root of two numbers
provided as the input data (first and second)
and the square root of their sum.

21

/*
* Perform three square root computation
*/

#include <stdio.h>
#include <math.h>

int main(void)
{
double first, second, /* input – two data value */
double first_sqrt; /* output – square root of first */
double second_sqrt; /* output – square root of second */
double sum_sqrt; /* output – square root of sum */

/* Get first number and display its square root */
printf(“Enter the first number> “);
scanf(“lf”, &first);
first_sqrt = sqrt(first);
printf(“The square root of the first number is %.2f\n”,first_sqrt);

/* Get second number and display its square root */
printf(“Enter the first number> “);
scanf(“lf”, &second);
second_sqrt = sqrt(second);
printf(“The square root of the second number is %.2f\n”,first_sqrt);

/* display the square root of the sum */
sum_sqrt = sqrt(first+second);
printf(“The square root of the sum is %.2f\n”,sum_sqrt);

return (0);
}

22

23

Standard math functions in C

• Comments:
Type conversion
int double, no problem
double int, lost fractional part
Other restrictions
arguments for log and log10 must be positive
arguments for sqrt can not be negative

24

Example

• Using pow and sqrt functions to compute the
roots of equation: ax2 + bx + c = 0

• disc= pow(b,2) – 4 * a * c
root_1 = (-b + sqrt(disc)) / (2 * a)
root_2 = (-b - sqrt(disc)) / (2 * a)

• a2 = b2 + c2 – 2bc cos α

25

Using your own functions

• find_area(r) returns the area
find_circum(r) returns the circumference

• rim_area = find_area(edge_radius) -
find_area(hole_radius)

26

Predefined Functions and Code Reuse
• The primary goal of software engineering is to write error-free

code.
• Reusing code that has already been written & tested is one way

to achieve this.
”Why reinvent the wheel?”

• C promotes reuse by providing many predefined functions. e.g.
Mathematical computations.
Input/Output: e.g. printf, scanf

• C’s standard math library defines a function named sqrt that
performs the square root computation. It is called like:
y = sqrt(x)

• This passes the argument x to the function sqrt. After the
function executes, the result is assigned to the left hand side
variable y.

27

Function sqrt.

Function sqrt as a black box.

first_sqrt = sqrt(25.0);

second_sqrt = sqrt(second);

third_sqrt = sqrt(first+second);

Z = 5.7 + sqrt(num);

28

C Library Functions
• The next slide lists some commonly used mathematical

functions (Table 3.1 in the text)
• In order to use them you must use #include with the

appropriate library.
Example, to use function sqrt you must include math.h.

• If one of the functions in the next slide is called with a numeric
argument that is not of the argument type listed, the argument
value is converted to the required type before it is used.

Conversion of type int to type double cause no problems
Conversion of type double to type int leads to the loss of any
fractional part.

• Make sure you look at documentation for the function so you
use it correctly.

29

Some Mathematical Library Functions
Function Header File Purpose Arguments Result

abs(x) <stdlib.h> Returns the absolute
value of its integer

argument x.

int int

sin(x),cos(x),
tan(x)

<math.h> Returns the sine,
cosine, or tangent of

angle x.

double
(in radians)

double

log(x) <math.h> Returns the natural
log of x.

double (must be
positive)

double

pow(x,y) <math.h> Returns xy double, double double

sqrt(x) <math.h> double (must be
positive)

doublex

30

Function we have seen so far
• We’ve seen a few other I/O library functions

– printf, scanf
– fprintf, fscanf
– fopen, fclose

To use them, have to use #include <stdio.h>
• Mathematical Functions

– sqrt, pow, sin, cos etc.
To use them, have to use #include <math.h>

• We use C’s predefined functions as building
blocks to construct a new program.

31

Where We are Heading?
• C also allows us to write our own functions.
• We could write our own functions to find area and

find circumference of a circle.
Function find_area(r) returns the area of a circle with radius
r.
Function find_circum(r) returns the circumference of a
circle with radius r.
The following statements can be used to find these values.
area = find_area(r);
circum = find_circum(r);

32

Top Down Design
• Use the top-down approach for analyzing all complex

problems.
• The solution to any complex problem is conceptually

simpler if viewed hierarchically as a tree of
subproblems.

• It is more convenient to design your solution first
with rough blocks, and then refine them gradually.

• You first break a problem up into its major
subproblems and then solve those subproblems to
derive the solution to the original problem.

33

Example: Top-down approach

• Drawing a Stick Figure in the
screen as an example of
problem solving with Top-
down design approach.

• We can draw this figure with
the basic three components

Circle
Intersecting lines
Base line

34

Structure Chart for Drawing Stick Figure

• Structure chart is an software engineering
documentation tool.

35

Function main for Stick Figure

36

Void Functions without Arguments

• Functions that do not have arguments and return no
values.

Output is normally placed in some place else (e.g. screen)

• Why would you want to do these?
They can help with top down design of your program.
Instead of writing all of your code in your main function,
separate it into separate functions for each subproblem.

37

Void Functions Without Arguments

• Function Prototypes
• Function Definitions
• Local variables.
• Placement of Functions in a Program
• Program Style
• Advantages of Using Function Subprograms

Procedural Abstraction
Reuse of Functions.

38

Function Prototype (1)
/* This program draws a circle in the screen */

#include <stdio.h>

/* Function prototypes */
void draw_circle(void); /* Draws a circle */

int main(void)
{

draw_circle();
return (0);

}

/* Draws a circle */
void draw_circle(void) {

printf(“ * *\n”);
printf(“ * *\n”);
printf(“ * *\n”);

}

39

Function Prototype (2)
• Like other identifiers in C, a function must be declared

before it can be referenced.
• To do this, you can add a function prototype before main

to tell the compiler what functions you are planning to use.
• A function prototype tells the C compiler:

1. The data type the function will return
– For example, the sqrt function returns a type of double.

2. The function name
3. Information about the arguments that the function

expects.
– The sqrt function expects a double argument.

• So the function prototype for sqrt would be:
double sqrt(double);

40

More on void Functions
• void draw_circle(void); is a void function

Void function - does not return a value
– The function just does something without

communicating anything back to its caller.
If the arguments are void as well, it means the
function doesn’t take any arguments.

• Now, we can understand what our main function
means:
int main(void)

• This means that the function main takes no
arguments, and returns an int

41

Function Definition (1)
/* This program draws a circle in the screen */

#include <stdio.h>

/* Function prototypes */
void draw_circle(void); /* Draws a circle */

int main(void)
{

draw_circle();
return (0);

}

/* Draws a circle */
void draw_circle(void) {

printf(“ * *\n”);
printf(“ * *\n”);
printf(“ * *\n”);

}

42

Function Definition (2)
• The prototype tells the compiler what arguments the function

takes and what it returns, but not what it does.
• We define our own functions just like we do the main

function
Function Header – The same as the prototype, except it is
not ended by the symbol ;
Function Body – A code block enclosed by {}, containing
variable declarations and executable statements.

• In the function body, we define what actually the function does
In this case, we call printf 3 times to draw a circle.
Because it is a void function, we can omit the return
statement.

• Control returns to main after the circle has been drawn.

43

Placement of Functions in a program

• In general, we will declare all of our function
prototypes at the beginning (after #include or
#define)

• This is followed by the main function
• After that, we define all of our functions.
• However, this is just a convention.
• As long as a function’s prototype appears before it is

used, it doesn’t matter where in the file it is defined.
• The order we define them in does not have any impact

on how they are executed

44

Execution Order of Functions
• Execution order of functions is determined by the

order of execution of the function call statements.
• Because the prototypes for the function subprograms

appear before the main function, the compiler
processes the function prototypes before it translates
the main function.

• The information in each prototype enables the
compiler to correctly translate a call to that function.

• After compiling the main function, the compiler
translates each function subprogram.

• At the end of a function, control always returns to the
point where it was called.

45

Figure 3.15 Flow of Control Between the
main Function and a Function Subprogram

46

Program Style

• Each function should begin with a comment that
describes its purpose.

• If the function subprograms were more complex, we
would include comments on each major algorithm
step just as we do in function main.

• It is recommended that you put prototypes for all
functions at the top, and then define them all after
main.

47

Advantages of Using Function
Subprograms

• There are two major reasons:
1. A large problem can be solved easily by breaking it

up into several small problems and giving the
responsibility of a set of functions to a specific
programmer.
• It is easer to write two 10 line functions than one 20 line

one and two smaller functions will be easier to read than
one long one.

2. They can simplify programming tasks because
existing functions can be reused as the building
blocks for new programs.
• Really useful functions can be bundled into libraries.

48

Procedural Abstraction
• Procedural Abstraction – A programming technique in

which a main function consists of a sequence of function calls
and each function is implemented separately.

• All of the details of the implementation to a particular
subproblem is placed in a separate function.

• The main functions becomes a more abstract outline of what
the program does.

When you begin writing your program, just write out your algorithm in
your main function.
Take each step of the algorithm and write a function that performs it for
you.

• Focusing on one function at a time is much easier than trying
to write the complete program at once.

49

Reuse of Function Subprograms

• Functions can be executed more than once in a
program.

Reduces the overall length of the program and the
chance of error.

• Once you have written and tested a function, you can
use it in other programs or functions.

50

A good use of void functions – A separate
function to display instructions for the user.

