
The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ORG ; ONE
Dec Hex Bin
1 1 00000001

The x86
Microprocessor

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

OBJECTIVES
this chapter enables the student to:

• Describe the Intel family of microprocessors from
8085 to Pentium®.
– In terms of bus size, physical memory & special features.

• Explain the function of the EU (execution unit) and
BIU (bus interface unit).

• Describe pipelining and how it enables the CPU
to work faster.

• List the registers of the 8086.
• Code simple MOV and ADD instructions.

– Describe the effect of these instructions on their operands.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

OBJECTIVES
this chapter enables the student to:

• State the purpose of the code segment,data
segment,stack segment, and extra segment.

• Explain the difference between a logical address
and a physical address.

• Describe the "little endian" storage convention
of x86 microprocessors.

• State the purpose of the stack.
• Explain the function of PUSH and POP instructions.
• List the bits of the flag register and briefly state the

purpose of each bit.

(cont)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

OBJECTIVES
this chapter enables the student to:

• Demonstrate the effect of ADD instructions on
the flag register.

• List the addressing modes of the 8086 and
recognize examples of each mode.

• Know how to use flowcharts and pseudocode in
program development.

(cont)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
evolution from 8080/8085 to 8086

• In 1978, Intel Corporation introduced the 16-bit
8086 microprocessor, a major improvement over
the previous generation 8080/8085 series.
– The 8086 capacity of 1 megabyte of memory exceeded

the 8080/8085 maximum of 64K bytes of memory.
– 8080/8085 was an 8-bit system, which could work on

only 8 bits of data at a time.
• Data larger than 8 bits had to be broken into 8-bit pieces

to be processed by the CPU.
– 8086 was a pipelined processor, as opposed to the

nonpipelined 8080/8085.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
evolution from 8080/8085 to 8086

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
evolution from 8086 to 8088

• The 8086 microprocessor has a 16-bit data bus,
internally and externally.
– All registers are 16 bits wide, and there is a 16-bit

data bus to transfer data in and out of the CPU
• There was resistance to a 16-bit external bus as

peripherals were designed around 8-bit processors.
• A printed circuit board with a 16-bit data also bus cost more.

• As a result, Intel came out with the 8088 version.
– Identical to the 8086, but with an 8-bit data bus.

• Picked up by IBM as the microprocessor in designing the PC.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
success of the 8088

• The 8088-based IBM PC was an great success,
because IBM & Microsoft made it an open system.
– Documentation and specifications of the hardware

and software of the PC were made public
• Making it possible for many vendors to clone the hardware

successfully & spawn a major growth in both hardware and
software designs based on the IBM PC.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
80286, 80386, and 80486

• Intel introduced the 80286 in 1982, which IBM
picked up for the design of the PC AT.
– 16-bit internal & external data buses.
– 24 address lines, for 16mb memory. (224 = 16mb)
– Virtual memory.

• 80286 can operate in one of two modes:
– Real mode - a faster 8088/8086 with the same maximum

of 1 megabyte of memory.
– Protected mode - which allows for 16M of memory.

• Also capable of protecting the operating system & programs
from accidental or deliberate destruction by a user.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745810

The 80286 and above - Modes of Operation

•Protected Mode
–Difference is in the new addressing mechanism and protection levels
–Each memory segment may range from a single byte to 4GB
–The addresses stored in the segment registers are now interpreted as pointers into a descriptor
table
–Each segment’s entry in this table is eight bytes long and identifies the base address of the
segment, the segment size, and access rights
–In 8088/8086 any program can access the core of the OS hence crash the system. Access Rights
are added in descriptor tables.
–A final protected mode feature is the ability to assign a privilege level to individual tasks (programs).
Tasks of lower privilege level cannot access programs or data with a higher privilege level. The OS
can run multiple programs each protected from each other.

•Real Mode
•The address space is limited to 1MB using address lines A0-19;
the high address lines are inactive
•The segmented memory addressing mechanism of the 8086 is retained with each segment limited to
64KB
•Two new features are available to the programmer

–Access to the 32 bit registers
–Addition of two new segments F and G

Brey 59

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745811

Virtual 8086 Mode

• Real Mode
– Only one program can be run one time
– All of the protection and memory management functions are turned off
– Memory space is limited to 1MB

• Virtual 8086 Mode
– The 386 hands each real mode program its own 1MB chunk of memory
– Multiple 8086 programs to be run simultaneously but protected from each

other (multiple MSDOS prompts)
– Due to time sharing, the response becomes much slower as each new

program is launched
– The 386 can be operated in Protected Mode and Virtual 8086 mode at the

same time.
– Because each 8086 task is assigned the lowest privilege level, access to

programs or data in other segments is not allowed thus protecting each task.
– We’ll be using the virtual 8086 mode in the lab experiments on PCs that do

have either Pentiums or 486s.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
80286, 80386, and 80486

• Virtual memory is a way of fooling the processor
into thinking it has access to an almost unlimited
amount of memory.
– By swapping data between disk storage and RAM.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745813

Virtual Memory

• 286 onward supported Virtual Memory Management and Protection
• Unlimited amount of main memory assumed

– Two methods are used:
• Segmentation
• Paging

• Both techniques involve swapping blocks of user memory with hard
disk space as necessary
– If the program needs to access a block of memory that is indicated to be

stored in the disk, the OS searches for an available memory block
(typically using a least recently used algorithm) and swaps that block with
the desired data on the hard drive

– Memory swapping is invisible to the user
– Segmentation: the block size is variable ranging up to 4GB
– Paging: Block sizes are always 4 KB at a time.

Mazidi 648

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745814

Memory Map of a PC

Conventional
memory

Upper memory
block

The 640 K Barrier
DOS was designed to run on the original
IBM PC
8088 microprocessor, 1Mbytes of main
memory

IBM divided this 1Mb address space into
specific blocks
640 K of RAM (user RAM)
384 K reserved for ROM functions (control
programs for the video system, hard drive
controller, and the basic input/output
system)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
80286, 80386, and 80486

• In 1985 Intel introduced 80386 (or 80386DX).
– 32-bit internally/externally, with a 32-bit address bus.
– Capable of handling memory of up to 4 gigabytes. (232)
– Virtual memory increased to 64 terabytes. (246)

• Later Intel introduced 386SX, internally identical, but
with a 16-bit external data bus & 24-bit address bus.
– This makes the 386SX system much cheaper.

• Since general-purpose processors could not handle
mathematical calculations rapidly, Intel introduced
numeric data processing chips.
– Math coprocessors, such as 8087, 80287, 80387.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
80286, 80386, and 80486

• On the 80486, in 1989, Intel put a greatly enhanced
80386 & math coprocessor on a single chip.
– Plus additional features such as cache memory.

• Cache memory is static RAM with a very fast access time.

• All programs written for the 8088/86 will run on
286, 386, and 486 computers.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
80286, 80386, and 80486

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
Pentium® & Pentium® Pro

• In 1992, Intel released the Pentium®. (not 80586)
– A name can be copyrighted, but numbers cannot.

• On release, Pentium® had speeds of 60 & 66 MHz.
– Designers utilized over 3 million transistors on the

Pentium® chip using submicron fabrication technology.
– New design features made speed twice that of 80486/66.

• Over 300 times faster than that of the original 8088.

• Pentium® is fully compatible with previous x86
processors but includes several new features.
– Separate 8K cache memory for code and data.
– 64-bit bus, and a vastly improved floating-point processor.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
Pentium® & Pentium® Pro

• The Pentium® is packaged in a 273-pin PGA chip
– BICMOS technology, combines the speed of bipolar

transistors with power efficiency of CMOS technology
– 64-bit data bus, 32-bit registers & 32-bit address bus.

• Capable of addressing 4gb of memory.

• In 1995 Intel Pentium® Pro was released—the sixth
generation x86.
– 5.5 million transistors.
– Designed primarily for 32-bit servers & workstations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
Pentium® & Pentium® Pro

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
Pentium® II

• In 1997 Intel introduced the Pentium® II processor
– 7.5-million-transistor processor featured MMX

(MultiMedia Extension) technology incorporated
into the CPU.

• For fast graphics and audio processing.

• In 1998 the Pentium® II Xeon was released.
– Primary market is for servers and workstations.

• In 1999, Celeron® was released.
– Lower cost & good performance make it ideal for PCs

used to meet educational and home business needs.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
Pentium® III

• In 1999 Intel released Pentium® III.
– 9.5-million-transistor processor.
– 70 new instructions called SIMD.

• Enhance video/audio performance in 3-D imaging, and
streaming audio.

• In 1999 Intel introduced the Pentium® III Xeon.
– Designed more for servers and business workstations

with multiprocessor configurations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
Pentium® 4

• The Pentium® 4 debuted late in 1999.
– Speeds of 1.4 to 1.5 GHz.
– System bus operates at 400 MHz

• Completely new 32-bit architecture, called NetBurst.
– Designed for heavy multimedia processing.

• Video, music, and graphic file manipulation on the Internet.
– New cache and pipelining technology & expansion of

the multimedia instruction set make the P4 a high-end
media processing microprocessor.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.1 BRIEF HISTORY OF THE x86 FAMILY
Intel 64 Architecture

• Intel has selected Itanium® as the new brand name
for the first product in its 64-bit family of processors.
– Formerly called Merced.

• The evolution of microprocessors is increasingly
influenced by the evolution of the Internet.
– Itanium® architecture is designed to meet Internet-driven

needs for servers & high-performance workstations.
– Itanium® will have the ability to execute many instructions

simultaneously, plus extremely large memory capabilities.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.2 INSIDE THE 8088/86

Figure 1-1
Internal Block Diagram of the 8088/86 CPU
(Reprinted by permission of Intel Corporation,
Copyright Intel Corp.1989)

• There are two ways to
make the CPU process
information faster:
– Increase the working

frequency.
• Using technology

available, with cost
considerations.

– Change the internal
architecture of the CPU.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.2 INSIDE THE 8088/86
pipelining

• 8085 could fetch or execute at any given time.
– The idea of pipelining in its simplest form is to allow the

CPU to fetch and execute at the same time.

Figure 1-2 Pipelined vs Nonpipelined Execution

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745827

Execution and Bus Interface Units

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745828

Fetch and Execute Cycle

• Fetch and execute cycles overlap
– BIU outputs the contents of the IP onto the address bus
– Register IP is incremented by one or more than one for the next

instruction fetch
– Once inside the BIU, the instruction is passed to the queue; this

queue is a first-in-first-out register sometimes likened to a pipeline
– Assuming that the queue is initially empty the EU immediately draws

this instruction from the queue and begins execution
– While the EU is executing this instruction, the BIU proceeds to fetch a

new instruction.
• BIU will fill the queue with several new instructions before the EU

is ready to draw its next instruction
– The cycle continues with the BIU filling the queue with instructions

and the EU fetching and executing these instructions

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.2 INSIDE THE 8088/86
pipelining

• Intel implemented pipelining in 8088/86 by splitting
the internal structure of the into two sections:
– The execution unit (EU) and the bus interface unit (BIU).

• These two sections work simultaneously.

• The BIU accesses memory and peripherals, while
the EU executes instructions previously fetched.
– This works only if the BIU keeps ahead of the EU, so

the BIU of the 8088/86 has a buffer, or queue
• The buffer is 4 bytes long in 8088 and 6 bytes in 8086.

• 8088/86 pipelining has two stages, fetch & execute.
– In more powerful computers, it can have many stages.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.2 INSIDE THE 8088/86
pipelining

• If an instruction takes too long to execute, the
queue is filled to capacity and the buses will sit idle

• In some circumstances, the microprocessor must
flush out the queue.
– When a jump instruction is executed, the BIU starts to

fetch information from the new location in memory and
information fetched previously is discarded.

– The EU must wait until the BIU fetches the new
instruction

• In computer science terminology, a branch penalty.
– In a pipelined CPU, too much jumping around reduces

the efficiency of a program.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745831

Pipelined Architecture

• Three conditions that will cause the EU to enter a wait mode
– when the instruction requires access to a memory location not in the queue
– when the instruction to be executed is a jump instruction; the instruction

queue should be flushed out (known as branch penalty too much jumping
around reduces the efficiency of the program)

– during the execution of slow instructions
• for example the instruction AAM (ASCII Adjust for Multiplication) requires

83 clock cycles to complete for an 8086
• 8086 vs 8088

– BIU data bus width 8 bits for 8088, BIU data bus width 16 bits for 8086
– 8088 instruction queue is four bytes instead of six
– 8088 is found to be 30% slower than 8086

• WHY
– Long instructions provide more time for the BIU to fill the queue

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745832

Nonpipelined vs pipelined architecture

Fetch Execute FetchFetch ExecuteExecute

Time

BIU

F F F F F F

Wait E E E Er

Er: a request for data not in the queue

Read
Data

Wait E E Ej

FdFdFd

Ej: jump instruction occurs

Fd: Discarded

EU

FF

Wait E

Non-pipelined architecture

Pipelined architecture

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.2 INSIDE THE 8088/86
registers

• In the CPU, registers store information temporarily.
– One or two bytes of data to be processed.
– The address of data.

• General-purpose registers in 8088/86 processors
can be accessed as either 16-bit or 8-bit registers
– All other registers can be accessed only

as the full 16 bits.
• In 8088/86, data types are either 8 or 16 bits

– To access 12-bit data, for example, a 16-bit register
must be used with the highest 4 bits set to 0.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.2 INSIDE THE 8088/86
registers

• The bits of a register are numbered in descending
order, as shown:

• The first letter of each register indicates its use.
– AX is used for the accumulator.
– BX is a base addressing register.
– CX is a counter in loop operations.
– DX points to data in I/O operations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745835

Registers of the 8086/80286 by Category

Category Bits Register Names

General 16 AX,BX,CX,DX

8 AH,AL,BH,BL,CH,CL,DH,DL

Pointer 16 SP (Stack Pointer), Base Pointer (BP)

Index 16 SI (Source Index), DI (Destination Index)

Segment 16 CS(Code Segment)
DS (Data Segment)
SS (Stack Segment)
ES (Extra Segment)

Instruction 16 IP (Instruction Pointer)

Flag 16 FR (Flag Register)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745836

General Purpose Registers

• Data Registers are normally used for storing temporary results that will
be acted upon by subsequent instructions• Each of the registers is 16 bits wide (AX, BX, CX, DX)• General purpose registers can be accessed as either 16 or 8 bits e.g., AH:
upper half of AX, AL: lower half of AX

AX (Accumulator)

AH AL

BX (Base Register)

BH BL

CX (Used as a counter)

CH CL

DX (Used to point to data in I/O operations)

DH DL

15 8 7 0
H L

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745837

Data Registers

Register Operations

AX Word multiply, word divide, word I/O

AL Byte multiply, byte divide, byte I/O, decimal arithmetic

AH Byte multiply, byte divide

BX Store address information

CX String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, indirect I/O

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745838

Pointer and Index Registers

The registers in this group are all 16 bits wide
Low and high bytes are not accessible
These registers are used as memory pointers• Example: MOV AH, [SI]

Move the byte stored in memory location
whose address is contained in register SI to register AH

IP is not under direct control of the programmer

SP Stack Pointer

BP Base Pointer

SI Source Index

DI Destination Index

IP Instruction Pointer

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.2 INSIDE THE 8088/86
registers - SUMMARY

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING

• The CPU can work only in binary, very high speeds.
– It is tedious & slow for humans to deal with 0s & 1s in

order to program the computer.
• A program of 0s & 1s is called machine language.

– Early computer programmers actually coded programs
in machine language.

• Eventually, Assembly languages were developed,
which provided mnemonics for machine code.
– Mnemonic is typically used in computer science and

engineering literature to refer to codes & abbreviations
that are relatively easy to remember.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING

• Assembly language is referred to as a low-level
language because it deals directly with the internal
structure of the CPU.
– Assembly language programs must be translated into

machine code by a program called an assembler.
– To program in Assembly language, programmers

must know the number of registers and their size.
• As well as other details of the CPU.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING

• Today there are many different programming
languages, such as C/C++, BASIC, C#, etc.
– Called high-level languages because the programmer

does not have to be concerned with internal CPU details.
• High-level languages are translated into machine

code by a program called a compiler.
– To write a program in C, one must use a C compiler

to translate the program into machine language.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING

• There are numerous assemblers available for
translating x86 Assembly language programs
into machine code.
– One of the most commonly used assemblers is

MASM by Microsoft.
• The present chapter is designed to correspond to

Appendix A: DEBUG Programming.
– Provided with the Microsoft Windows operating system.

• We will use the emulatorsupplied on the web page
x86emu.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
assembly language programming

• An Assembly language program consists of a series
of lines of Assembly language instructions.

• An Assembly language instruction consists of a
mnemonic, optionally followed by one or two
operands.
– Operands are the data items being manipulated.
– Mnemonics are commands to the CPU, telling it

what to do with those items.
• Two widely used instructions are move & add.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
MOV instruction

• The MOV instruction copies data from one location
to another, using this format:

• This instruction tells the CPU to move (in reality,
copy) the source operand to the destination
operand.
– For example, the instruction "MOV DX,CX" copies the

contents of register CX to register DX.
– After this instruction is executed, register DX will have

the same value as register CX.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
MOV instruction

• This program first loads CL with value 55H, then
moves this value around to various registers
inside the CPU.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
MOV instruction

• The use of 16-bit registers is shown here:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
MOV instruction

• In the 8086 CPU, data can be moved among all the
registers, as long as the source and destination
registers match in size (Except the flag register.)
– There is no such instruction as "MOV FR,AX“.

• Code such as "MOV AL,DX" will cause an error.
– One cannot move the contents of a 16-bit register

into an 8-bit register.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
MOV instruction

• Using the MOV instruction, data can be moved
directly into nonsegment registers only.
– The following demonstrates legal & illegal instructions.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
MOV instruction

• Values cannot be loaded directly into any segment
register (CS, DS, ES, or SS).
– To load a value into a segment register, load it to a non-

segment register, then move it to the segment register.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
MOV instruction

• If a value less than FFH is moved into a 16-bit
register, the rest of the bits are assumed to be zeros.
– For example, in "MOV BX,5" the result will be BX = 0005.

• BH = 00 and BL = 05.

• Moving a value that is too large into a register will
cause an error.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
ADD instruction

– Executing the program above results in:
AL = 59H (25H + 34H = 59H) and BL = 34H.

• The contents of BL do not change.

• The ADD instruction has the following format:

• ADD tells the CPU to add the source & destination
operands and put the result in the destination.
– To add two numbers such as 25H and 34H, each can

be moved to a register, then added together:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
ADD instruction

• The program above can be written in many ways,
depending on the registers used, such as:

– The program above results in DH = 59H
and CL = 34H.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
ADD instruction

• Is it necessary to move both data items into
registers before adding them together?
– No, it is not necessary.

– In the case above, while one register contained one
value, the second value followed the instruction as
an operand.

• This is called an immediate operand.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
ADD instruction

• An 8-bit register can hold numbers up to FFH.
– For numbers larger than FFH (255 decimal), a 16-bit

register such as AX, BX, CX, or DX must be used.
• The following program can add 34EH & 6A5H:

– Running the program gives DX = 9F3H.
• (34E + 6A5 = 9F3) and AX = 34E.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.3 INTRODUCTION TO ASSEMBLY PROGRAMMING
ADD instruction

• Any 16-bit nonsegment registers could have been
used to perform the action above:

– The general-purpose registers are typically used in
arithmetic operations

• Register AX is sometimes referred to as the accumulator.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS

• A typical Assembly language program consists of
at least three segments:
– A code segment - which contains the Assembly

language instructions that perform the tasks that the
program was designed to accomplish.

– A data segment - used to store information (data) to
be processed by the instructions in the code segment.

– A stack segment - used by the CPU to store information
temporarily.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
origin and definition of the segment

• A segment is an area of memory that includes up
to 64K bytes, and begins on an address evenly
divisible by 16 (such an address ends in 0H)
– 8085 addressed a maximum of 64K of physical memory,

since it had only 16 pins for address lines. (216 = 64K)
• Limitation was carried into 8088/86 design for compatibility.

• In 8085 there was 64K bytes of memory for all code,
data, and stack information.
– In 8088/86 there can be up to 64K bytes in each category.

• The code segment, data segment, and stack segment.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745859

Advantages of Segmented Memory

• One program can work on several different sets of data. This
is done by reloading register DS to a new value.

• Programs that reference logical addresses can be loaded
and run anywhere in the memory: relocatable

• Segmented memory introduces extra complexity in both
hardware in that memory addresses require two registers.

• They also require complexity in software in that programs
are limited to the segment size

• Programs greater than 64 KB can be run on 8086 but the
software needed is more complex as it must switch to a new
segment.

• Protection among segments is provided.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745860

Segment Registers

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
logical address and physical address

• In literature concerning 8086, there are three types
of addresses mentioned frequently:
– The physical address - the 20-bit address actually on

the address pins of the 8086 processor, decoded by the
memory interfacing circuitry.

• This address can have a range of 00000H to FFFFFH.
• An actual physical location in RAM or ROM within the 1 mb

memory range.
– The offset address - a location in a 64K-byte segment

range, which can can range from 0000H to FFFFH.
– The logical address - which consists of a segment value

and an offset address.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745862

Logical and Physical Addresses

• Addresses within a segment can range from address 0 to address FFFFh.
This corresponds to the 64Kbyte length of the segment called an offset

• An address within a segment is called the logical address
• Ex. Logical address 0005h in the code segment actually corresponds to

B3FF0h + 5 = B3FF5h.

OFFSET VALUE

15 0

SEGMENT REGISTER 0h

0519

ADDER

20 BIT PHYSICAL ADDRESS

Example 1:
Segment base value: 1234h
Offset: 0022h

12340h
0022h

12362h is the physical 20 bit
address

+

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745863

•If DS=7FA2H and the offset is 438EH
a) Calculate the physical address

FFFF

Example

b) calculate the lower range

c) Calculate the upper range of the data segment

d) Show the logical Address

7FA2:438E

7FA20 + 438E = 83DAE

83DAE

7FA20 + FFFF = 8FA1F

8FA1F

7FA20 + 0000 = 7FA20

7FA20

mazidi

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745864

Example

Question:
Assume DS=578C. To access a Data in 67F66 what should we do?

578C0

678BF

DS=578C capability

67F66

change
DS

To any value
between
57F7h - 67F6h

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745865

Another Example

• What would be the offset required to map to
physical address location 002C3H if the contents
of the corresponding segment register is
002AH?

• Solution: the offset value can be obtained by shifting the contents of the
segment register left by four bit positions and then subtracting from the
physical address. Shifting gives:
002A0H

Now subtracting, we get the value of the offset:
002C3H-002A0H=0023H

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment

• To execute a program, 8086 fetches the instructions
(opcodes and operands) from the code segment.
– The logical address of an instruction always consists of a

CS (code segment) and an IP (instruction pointer), shown
in CS:IP format.

– The physical address for the location of the instruction
is generated by shifting the CS left one hex digit, then
adding it to the IP.

• IP contains the offset address.

• The resulting 20-bit address is called the physical
address since it is put on the external physical
address bus pins.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment

• Assume values in CS & IP as shown in the diagram:

– The offset address contained in IP, is 95F3H.
– The logical address is CS:IP, or 2500:95F3H.
– The physical address will be 25000 + 95F3 = 2E5F3H

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment

• Calculate the physical address of an instruction:

– The microprocessor will retrieve the instruction from
memory locations starting at 2E5F3.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment

• Calculate the physical address of an instruction:

– Since IP can have a minimum value of 0000H and a
maximum of FFFFH, the logical address range in this
example is 2500:0000 to 2500:FFFF.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

– This means that the lowest memory location of the code
segment above will be 25000H (25000 + 0000) and the
highest memory location will be 34FFFH (25000 + FFFF).

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment

• Calculate the physical address of an instruction:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment

• What happens if the desired instructions are located
beyond these two limits?
– The value of CS must be changed to access those

instructions.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment logical/physical address

• In the next code segment, CS and IP hold the
logical address of the instructions to be executed.
– The following Assembly language instructions have been

assembled (translated into machine code) and stored in
memory.

– The three columns show the logical address of CS:IP,
the machine code stored at that address, and the
corresponding Assembly language code.

– The physical address is put on the address bus by the
CPU to be decoded by the memory circuitry.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment logical/physical address

Instruction "MOV AL,57" has a machine code of B057.
B0 is the opcode and 57 is the operand.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745874

Logical Address vs Physical Address in
the CS

CS:IP Machine
Language

Mnemonics

1132:0100 B057 MOV AL,57h
1132:0102 B686 MOV DH,86h
1132:0104 B272 MOV DL,72h
1132:0106 89D1 MOV CX,DX
1132:0108 88C7 MOV BH,AL
1132:010A B39F MOV BL,9F
1132:010C B420 MOV AH,20h
1132:010E 01D0 ADD AX,DX
1132:0110 01D9 ADD CX,BX
1132:0112 05351F ADD AX, 1F35h

• Show how the code resides physically in the memory

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
code segment logical/physical address

Instruction "MOV AL,57" has a machine code of B057.
B0 is the opcode and 57 is the operand.
The byte at address 1132:0100 contains B0, the opcode for moving
a value into register AL.
Address 1132:0101 contains the operand to be moved to AL.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment

• Assume a program to add 5 bytes of data, such as
25H, 12H, 15H, 1FH, and 2BH.
– One way to add them is as follows:

– In the program above, the data & code are mixed together
in the instructions.

• If the data changes, the code must be searched for every
place it is included, and the data retyped

• From this arose the idea of an area of memory strictly for data

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment

• In x86 microprocessors, the area of memory set
aside for data is called the data segment.
– The data segment uses register DS and an offset value.
– DEBUG assumes that all numbers are in hex.

• No "H" suffix is required.
– MASM assumes that they are in decimal.

• The "H" must be included for hex data.

• The next program demonstrates how data can
be stored in the data segment and the program
rewritten so that it can be used for any set of data.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment

• Assume data segment offset begins at 200H.
– The data is placed in memory locations:

– The program can be rewritten as follows:

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment

• The offset address is enclosed in brackets, which
indicate that the operand represents the address
of the data and not the data itself.

– If the brackets were not included, as in
"MOV AL,0200", the CPU would attempt to move 200
into AL instead of the contents of offset address 200.
decimal.

• This program will run with any set of data.
• Changing the data has no effect on the code.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment

• If the data had to be stored at a different offset
address the program would have to be rewritten
– A way to solve this problem is to use a register to hold

the offset address, and before each ADD, increment the
register to access the next byte.

• 8088/86 allows only the use of registers BX, SI,
and DI as offset registers for the data segment
– The term pointer is often used for a register holding

an offset address.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment

• In the following example, BX is used as a pointer:

• The INC instruction adds 1 to (increments) its
operand.
– "INC BX" achieves the same result as "ADD BX,1“
– If the offset address where data is located is changed,

only one instruction will need to be modified.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment logical/physical address

• The physical address for data is calculated using
the same rules as for the code segment.
– The physical address of data is calculated by shifting DS

left one hex digit and adding the offset value, as shown
in Examples 1-2, 1-3, and 1-4.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment logical/physical address

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
data segment logical/physical address

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
little endian convention

• Previous examples used 8-bit or 1-byte data.
– What happens when 16-bit data is used?

• The low byte goes to the low memory location and
the high byte goes to the high memory address.
– Memory location DS:1500 contains F3H.
– Memory location DS:1501 contains 35H.

• (DS:1500 = F3 DS:1501 = 35)
– This convention is called little endian vs big endian.

• From a Gulliver’s Travels story about how an egg should
be opened—from the little end, or the big end.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
little endian convention

• In the big endian method, the high byte goes to the
low address.
– In the little endian method, the high byte goes to the

high address and the low byte to the low address.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
little endian convention

• All Intel microprocessors and many microcontrollers
use the little endian convention.
– Freescale (formerly Motorola) microprocessors, along

with some other microcontrollers, use big endian.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
extra segment (ES)

• ES is a segment register used as an extra data
segment.
– In many normal programs this segment is not used.
– Use is essential for string operations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 0745889

16 bit Segment Register Assignments

Type of
Memory
Reference

Default
Segment

Alternate
Segment

Offset

Instruction Fetch CS none IP

Stack
Operations

SS none SP,BP

General Data DS CS,ES,SS BX, address

String Source DS CS,ES,SS SI, DI, address

String
Destination

ES None DI

Brey

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
memory map of the IBM PC

• The 20-bit address of 8088/86
allows 1mb (1024K bytes) of
memory space with the address
range 00000–FFFFF.
– During the design phase of the first

IBM PC, engineers had to decide
on the allocation of the 1-megabyte
memory space to various sections
of the PC.

• This memory allocation is
called a memory map.

Figure 1-3 Memory Allocation in the PC

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

Figure 1-3 Memory Allocation in the PC

1.4 INTRODUCTION TO PROGRAM SEGMENTS
memory map of the IBM PC

• Of this 1 megabyte, 640K bytes
from addresses 00000–9FFFFH
were set aside for RAM

• 128K bytes A0000H– BFFFFH
were allocated for video memory

• The remaining 256K bytes from
C0000H–FFFFFH were set aside
for ROM

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
more about RAM

• In the early 80s, most PCs came with 64K to 256K
bytes of RAM, more than adequate at the time
– Users had to buy memory to expand up to 640K.

• Managing RAM is left to Windows because...
– The amount of memory used by Windows varies.
– Different computers have different amounts of RAM.
– Memory needs of application packages vary.

• For this reason, we do not assign any values for the
CS, DS, and SS registers.
– Such an assignment means specifying an exact physical

address in the range 00000–9FFFFH, and this is beyond
the knowledge of the user.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
video RAM

• From A0000H to BFFFFH is set aside for video
– The amount used and the location vary depending

on the video board installed on the PC

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
more about ROM

• C0000H to FFFFFH is set aside for ROM.
– Not all the memory in this range is used by the PC's ROM.

• 64K bytes from location F0000H–FFFFFH are
used by BIOS (basic input/output system) ROM.
– Some of the remaining space is used by various adapter

cards (such as the network card), and the rest is free.
• The 640K bytes from 00000 to 9FFFFH is referred

to as conventional memory.
– The 384K bytes from A0000H to FFFFFH are called

the UMB (upper memory block).

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.4 INTRODUCTION TO PROGRAM SEGMENTS
function of BIOS ROM

• There must be some permanent (nonvolatile)
memory to hold the programs telling the CPU
what to do when the power is turned on
– This collection of programs is referred to as BIOS.

• BIOS stands for basic input-output system.
– It contains programs to test RAM and other

components connected to the CPU.
– It also contains programs that allow Windows to

communicate with peripheral devices.
– The BIOS tests devices connected to the PC when

the computer is turned on and to report any errors.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER

• Many Assembly language instructions alter flag
register bits & some instructions function differently
based on the information in the flag register.

• The flag register is a 16-bit register sometimes
referred to as the status register.
– Although 16 bits wide, only some of the bits are used.

• The rest are either undefined or reserved by Intel.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER

• Six flags, called conditional flags, indicate some
condition resulting after an instruction executes.

– These six are CF, PF, AF, ZF, SF, and OF.
– The remaining three, often called control flags, control

the operation of instructions before they are executed.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
bits of the flag register

• Flag register bits used in x86 Assembly language
programming, with a brief explanation each:
– CF (Carry Flag) - Set when there is a carry out, from d7

after an 8-bit operation, or d15 after a 16-bit operation.
• Used to detect errors in unsigned arithmetic operations.

– PF (Parity Flag) - After certain operations, the parity
of the result's low-order byte is checked.

• If the byte has an even number of 1s, the parity flag is set to 1;
otherwise, it is cleared.

– AF (Auxiliary Carry Flag) - If there is a carry from d3 to
d4 of an operation, this bit is set; otherwise, it is cleared.

• Used by instructions that perform BCD (binary coded
decimal) arithmetic.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
bits of the flag register

• Flag register bits used in x86 Assembly language
programming, with a brief explanation each:
– ZF (Zero Flag) - Set to 1 if the result of an arithmetic or

logical operation is zero; otherwise, it is cleared.
– SF (Sign Flag) - Binary representation of signed numbers

uses the most significant bit as the sign bit.
• After arithmetic or logic operations, the status of this sign

bit is copied into the SF, indicating the sign of the result.
– TF (Trap Flag) - When this flag is set it allows the

program to single-step, meaning to execute one
instruction at a time.

• Single-stepping is used for debugging purposes.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
bits of the flag register

• Flag register bits used in x86 Assembly language
programming, with a brief explanation each:
– IF (Interrupt Enable Flag) - This bit is set or cleared to

enable/disable only external maskable interrupt requests.
– DF (Direction Flag) - Used to control the direction of

string operations.
– OF (Overflow Flag) - Set when the result of a signed

number operation is too large, causing the high-order
bit to overflow into the sign bit.

• Used only to detect errors in signed arithmetic operations.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
flag register and ADD instruction

• Flag bits affected by the ADD instruction:
– CF (carry flag); PF (parity flag); AF (auxiliary carry flag).
– ZF (zero flag); SF (sign flag); OF (overflow flag).

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
flag register and ADD instruction

• Flag bits affected by the ADD instruction:
– CF (carry flag); PF (parity flag); AF (auxiliary carry flag).
– ZF (zero flag); SF (sign flag); OF (overflow flag).

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
flag register and ADD instruction

• It is important to note differences between 8- and
16-bit operations in terms of impact on the flag bits.
– The parity bit only counts the lower 8 bits of the result

and is set accordingly.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
flag register and ADD instruction

• The carry flag is set if there is a carry beyond bit
d15 instead of bit d7.
– Since the result of the entire 16-bit operation is zero

(meaning the contents of BX), ZF is set to high.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
flag register and ADD instruction

• Instructions such as data transfers (MOV) affect no
flags.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
use of the zero flag for looping

• A widely used application of the flag register is the
use of the zero flag to implement program loops.
– A loop is a set of instructions repeated a number of times.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
use of the zero flag for looping

• As an example, to add 5 bytes of data, a counter
can be used to keep track of how many times the
loop needs to be repeated.
– Each time the addition is performed the counter

is decremented and the zero flag is checked.
• When the counter becomes zero, the zero flag is

set (ZF = 1) and the loop is stopped.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
use of the zero flag for looping

• Register CX is used to hold the counter.
– BX is the offset pointer.

• (SI or DI could have been used instead)

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
use of the zero flag for looping

• AL is initialized before the start of the loop
– In each iteration, ZF is checked by the JNZ instruction

• JNZ stands for "Jump Not Zero“, meaning that if ZF = 0,
jump to a new address.

• If ZF = 1, the jump is not performed, and the instruction
below the jump will be executed.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.6 FLAG REGISTER
use of the zero flag for looping

• JNZ instruction must come immediately after the
instruction that decrements CX.
– JNZ needs to check the effect of "DEC CX" on ZF.

• If any instruction were placed between them, that instruction
might affect the zero flag.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES

• The CPU can access operands (data) in various
ways, called addressing modes.
– The number of addressing modes is determined when

the microprocessor is designed & cannot be changed
• The x86 provides seven distinct addressing modes:

– 1 - Register
– 2 - Immediate
– 3 - Direct
– 4 - Register indirect

– 5 - Based relative
– 6 - Indexed relative
– 7 - Based indexed relative

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
register addressing mode

• Register addressing mode involves use of registers
to hold the data to be manipulated.
– Memory is not accessed, so it is relatively fast.

• Examples of register addressing mode:

– The the source & destination registers must match in size.
• Coding "MOV CL,AX" will give an error, since the source is

a 16-bit register and the destination is an 8-bit register.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
immediate addressing mode

• In immediate addressing mode, as the name
implies, when the instruction is assembled, the
operand comes immediately after the opcode.
– The source operand is a constant.

• This mode can be used to load information into any
of register except the segment and flag registers.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
immediate addressing mode

• To move information to the segment registers, the
data must first be moved to a general-purpose
register, then to the segment register.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
direct addressing mode

• In direct addressing mode, the data is in some
memory location(s).
– In most programs, the data to be processed is often

in some memory location outside the CPU.
– The address of the data in memory comes immediately

after the instruction.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
direct addressing mode

• The address of the operand is provided with the
instruction, as an offset address.
– Calculate the physical address by shifting left the DS

register and adding it to the offset:

• Note the bracket around the address.
– If the bracket is absent, executing the command will give

an error, as it is interpreted to move the value 2400
(16-bit data) into register DL.

• An 8-bit register.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458117

Direct Addressing Mode

02003 FF

Example:
MOV AL,[03]

AL=?

MOV CX, [address]

BEED

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
register indirect addressing mode

• In register indirect addressing mode, the address of
the memory location where the operand resides is
held by a register.
– The registers used for this purpose are SI, DI, and BX.

• If these three registers are used as pointers, they
must be combined with DS in order to generate
the 20-bit physical address.

– Notice that BX is in brackets.
– The physical address is calculated by shifting DS

left one hex position and adding BX to it.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
register indirect addressing mode

• The same rules apply when using register SI or DI.

• Example 1-16 shows 16-bit data.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458120

Example for Register Indirect Addressing

• Assume that DS=1120, SI=2498 and AX=17FE
show the memory locations after the execution
of:

MOV [SI],AX
DS (Shifted Left) + SI = 13698.

With little endian convention:

Low address 13698 FE

High Address 13699 17

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458121

Register Indirect Addressing Mode

MOV AX,

BX
DI
SI

BEED

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

– Alternatives are "MOV CX,[BX+10]" or "MOV
CX,10[BX]"

• Again the low address contents will go into CL
and the high address contents into CH.

1.7 x86 ADDRESSING MODES
based relative addressing mode

• In based relative addressing mode, base registers
BX & BP, and a displacement value, are used to
calculate the effective address.
– Default segments used for the calculation of the

physical address (PA) are DS for BX and SS for BP.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
based relative addressing mode

• In the case of the BP register:

– Alternatives are "MOV AL,[BP+5]" or "MOV AL,5[BP]".
• BP+5 is called the effective address since the fifth byte from

the beginning of the offset BP is moved to register AL.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458124

Based-Relative Addressing Mode

MOV AH, [] + 1234hDS:BX
SS:BP

AX

DS

BX

1234

3AH
+

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
indexed relative addressing mode

• The indexed relative addressing mode works the
same as the based relative addressing mode.
– Except that registers DI & SI hold the offset address.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
indexed relative addressing mode

• The indexed relative addressing mode works the
same as the based relative addressing mode.
– Except that registers DI & SI hold the offset address.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458127

Indexed Relative Addressing Mode

MOV AH, [] + 1234hSI
DI

Example: What is the physical address MOV [DI-8],BL if DS=200 & DI=30h ?
DS:200 shift left once 2000 + DI + -8 = 2028

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
based indexed addressing mode

• By combining based & indexed addressing modes,
a new addressing mode is derived called the
based indexed addressing mode.

– The coding of the instructions can vary.

– One base register and one index register are used.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458129

Based-Indexed Addressing Mode

• Based Relative + Indexed Relative
• We must calculate the PA (physical address)

CS

SS BX SI 8 bit displacement
PA= DS : BP + DI + 16 bit displacement

ES

MOV AH,[BP+SI+29]
or
MOV AH,[SI+29+BP]
or
MOV AH,[SI][BP]+29

The register
order does not
matter

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458130

Based-Indexed Addressing Mode

MOV BX, 0600h
MOV SI, 0010h ; 4 records, 4 elements each.
MOV AL, [BX + SI + 3]

OR

MOV BX, 0600h
MOV AX, 004h ;
MOV CX,04h;
MUL CX
MOV SI, AX
MOV AL, [BX + SI + 3]

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
segment overrides

• The x86 CPU allows the program to override the
default segment and use any segment register.
– In "MOV AL,[BX]", the physical address of the operand

to be moved into AL is DS:BX.
• To override that default, specify the desired segment

in the instruction as "MOV AL,ES:[BX]"

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.7 x86 ADDRESSING MODES
summary

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
what is a stack? why is it needed?

• The stack is a section of read/write memory (RAM)
used by the CPU to store information temporarily.
– The CPU needs this storage area since there are

only a limited number of registers.
• There must be some place for the CPU to store

information safely and temporarily.

• The main disadvantage of the stack is access time.
– Since the stack is in RAM, it takes much longer to

access compared to the access time of registers.
• Some very powerful (expensive) computers do not

have a stack.
– The CPU has a large number of registers to work with.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
how stacks are accessed

• The stack is a section of RAM, so there must be
registers inside the CPU to point to it.
– The SS (stack segment) register.
– The SP (stack pointer) register.

• These registers must be loaded before any
instructions accessing the stack are used.

• Every register inside the x86 can be stored in the
stack, and brought back into the CPU from the
stack memory, except segment registers and SP.
– Storing a CPU register in the stack is called a push.
– Loading the contents of the stack into the CPU register

is called a pop.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
how stacks are accessed

• The x86 stack pointer register (SP) points at the
current memory location used as the top of the
stack.
– As data is pushed onto the stack it is decremented.
– As data is popped off the stack into the CPU, it is
incremented.

• When an instruction pushes or pops a general-
purpose register, it must be the entire 16-bit
register.
– One must code "PUSH AX".

• There are no instructions such as "PUSH AL" or "PUSH AH".

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
how stacks are accessed

• The SP is decremented after the push is to make
sure the stack is growing downward from upper
addresses to lower addresses.
– The opposite of the IP. (instruction pointer)

• To ensure the code section & stack section of the
program never write over each other, they are
located at opposite ends of the RAM set aside
for the program.
– They grow toward each other but must not meet.

• If they meet, the program will crash.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
pushing onto the stack

• As each PUSH is executed, the register contents are
saved on the stack and SP is decremented by 2.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
pushing onto the stack

• For every byte of data saved on the stack, SP is
decremented once.

Since the push
is saving the
contents of a
16-bit register,
it decrements
twice.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
pushing onto the stack

• In the x86, the lower byte is always stored in the
memory location with the lower address.

24H, the content
of AH, is saved
in the memory
location with the
address 1235.
AL is stored in
location 1234.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
popping the stack

• With every pop, the top 2 bytes of the stack are
copied to the x86 CPU register specified by the
instruction & the stack pointer is incremented twice.

While the data
actually remains
in memory, it is
not accessible,
since the stack
pointer, SP is
beyond that
point.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
logical vs physical stack address

• The exact physical location of the stack depends on
the value of the stack segment (SS) register and
SP, the stack pointer.
– To compute physical addresses for the stack, shift

left SS, then add offset SP, the stack pointer register.

– Windows assigns values for the SP and SS.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
a few more words about x86 segments

• Can a single physical address belong to many
different logical addresses?
– Observe the physical address value of 15020H.

• Many possible logical addresses represent this single
physical address:

– An illustration of the dynamic behavior of the segment
and offset concept in the 8086 CPU.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
a few more words about x86 segments

• When adding the offset to the shifted segment
register results in an address beyond the maximum
allowed range of FFFFFH, wrap-around will occur.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

1.5 THE STACK
overlapping

• In calculating the physical address, it is possible
that two segments can overlap.

The x86 PC
Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

ENDS ; ONE
Dec Hex Bin
1 1 00000001

