Week 8

Memory and Memory Interfacing

Semiconductor Memory Fundamentals

- In the design of all computers, semiconductor memories are used as primary storage for data and code.
- They are connected directly to the CPU and they are the memory that the CPU asks for information (code or data)
- Among the most widely used are RAM and ROM
- Memory Capacity
 - The number of bits that a semiconductor memory chip can store is called its chip capacity (bits or bytes)
- Memory Organization
 - Each memory chip contains 2^x locations where x is the number of address pins on the chip
 - Each location contains y bits, where y is the number of data pins on the chip
 - The entire chip will contain $2^x * y$ bits
 - Ex. Memory organization of 4K x 4: 2¹² = 4096 locations, each location holding 4 bits
- Memory Speed (access time)

- Each memory device has at least one *chip select* (CS) or *chip enable* (CE) or *select* (S) pin that enables the memory device.
 - This enables read and/or write operations.
- Each memory device has at least one control pin.
 - For ROMs, an *output enable* (OE) or *gate* (G) is present. The OE pin enables and disables a set of tristate buffers.
 - For RAMs, a *read-write* (R/W) or *write enable* (WE) and *read enable* (OE) are present

Memory Types

•ROM (Read Only Memory

ROM is the type of memory that does not lose its contents when power is turned off. It is also called nonvolatile memory.

PROM (Programmable Memory)

User programmable (one-time programmable) memory

➢If the information burned into PROM is wrong, it needs to be discarded since internal fuses are blown permanently.

Special equipment needed: ROM burner or ROM programmer

EPROM (Erasable Programmable ROM) 2,000 times

- >Allows making changes in the contents of PROM after it is burned
- >One can program the memory chip and erase it thousands of times

Erasing its contents can take up to 20 minutes; the entire chip is erased

➢All EPROM chips have a window that is used to shine ultraviolet (UV) radiation to erase its contents

Also referred to as UV-EPROM

Memory Types

EEPROM (Electrically Erasable ROM) 500,000 times

- Method of erasure is electrical
- Moreover, one can select which byte to be erased
- Cost per bit is much higher than for UV-EPROM
- Flash Memory EPROM
 - First, the process of erasure of the entire contents takes less than a second, or one might say in a flash, hence its name: flash memory
 - When flash memory's contents are erased, the entire device is erased.
 - Even though flash memories are writeable, like EPROMs they find their widest use in microcomputer systems for storage of firmware
- RAM (Random Access Memory) infinite times
 - RAM memory is called volatile memory since cutting off the power to the IC will mean the loss of data.
 - Also referred to as R/WM (Read And Write Memory)

Minmode 8088 Microcomputer system memory circuitry

Figure 9-37 (a) Minimum-mode 8088 system memory interface. (Reprinted with permission of Intel Corporation, Copyright/Intel Corp. 1981) (b) Minimum-mode 8086 system memory interface. (Reprinted with permission of Intel Corporation, Copyright/Intel Corp. 1979) (c) Maximum-mode 8088 system memory interface. (Reprinted with permission of Intel Corporation, Copyright/Intel Corp. 1981)

Minmode 8086 Microcomputer system memory circuitry

Maxmode 8088 Microcomputer system memory circuitry

Figure 9–37 (continued)

Memory Interface

Bank Write Control Logic

Bank Read Control Logic

Address Bus Configuration with Address Decoding

Address Latch Circuit

Generation of MEMRD & MEMWR in Minmode

Control Signal Generation Circuit

8088 Memory and I/O address spaces

We first look at the memory addressing

Address Selection

(a)

74F139 2-line to 4-line decoder

(Ь)

ENABLE	SEL	ECT	OUTPUTS				
5	•		YO	¥1	¥2	¥3	
н	x	X	н	H	н	н	
L	L	L	L	rt.	н	H	
L	L	н	н	L	1-1	H	
L	н	L	н	н	L	H	
L	н	н	н	н	н	L	

Ξ

17

Memory Address Decoding

Inputs			Output										
E	nabl	e	Select								_		
G2A	G2B	Gl	С	В	Α	0	1	2	3	4	5	6	7
	Х	Χ	Х	Х	Х	1	1	1	1	1	1	1	1
Χ		Χ	Х	Χ	Χ	1	1	1	1	1	1	1	1
Χ	Χ		Х	Х	Х	1	1	1	1	1	1	1	1
D			0		Û	O	1	1	1	1	1	1	1
0			0			1		1	1	1	1	1	1
D			0		Û	1	1		1	1	1	1	1
0			0			1	1	1		1	1	1	1
0					O.	1	1	1	1	Û.	1	1	1
0						1	1	1	1	1	0	1	1
0					0	1	1	1	1	1	1		1
D						1	1	1	1	1	1	1	

3-8 Decoder (for example: 74LS138)

Address Decoder Circuit

Figure 8–35 Address decoder circuit

Example on Address Decoding

A circuit containing 32KB of RAM is to be interfaced to an 8088 based system, so that the first address of the RAM is at 48000H. What is the entire range of the RAM Address? How is the address bus used to enable the RAMs? What address lines should be used?

Example on Address Decoding

Memory Address Decoding

Memory Address Decoding

Memory Addressing

Partial Address Decoding

Not all the address lines need to be used.(A14-A19 not used).So FFFF0, 3BFF0, 07FF0 pr C3FF0 get the same data.

(+) The purpose is get the job done in minimum hardware.

• (-) Feature expansion of the memory is impossible, and may cause invalid data reads due to overlapping memory segment reads (a fatal error)

Partial Address Decoding

26

Generating Wait States in Hardware

A complete RAM/EPROM Memory

Examples: Find different addressing for CS (A0-A13 used by memories)

ROM

ROM

Figure 9-4 Read-only memory interface.

EPROM

Intel 2716 EPROM (2K X 8):

EPROM Critical Timing

Sample of the data sheet for the 2716 A.C. Characteristics.

Symbol	Paramatar		Limits		Unit	Test Condition	
Symbol	1 al ameter	Min	Тур.	Max	Umt		
t _{ACC1}	Addr. to Output Delay		250	450	ns	$PD/PGM = CS = V_{IL}$	
t _{OH}	Addr. to Output Hold	0			ns	$PD/PGM = CS = V_{IL}$	
t _{DF}	Chip Deselect to Output Float	0		100	ns	PD/PGM=V _{IL}	
						•••	

This EPROM would need a READY generation to work with a 8086 with 5Mhz.

RAM types

• SRAM (Static RAM)

- Storage cells are made of flip-flops and therefore they do not require refreshing to keep their data
- Cells handling one bit requires 6 or 4 transistors each, which is too many
- SRAMS are widely used for cache memory and battery-backed memory systems.
- Speeds as fast as 10ns. But limited in size ~256Kx8
- DRAM (Dynamic RAM)
 - Uses MOS capacitors to store a bit
 - Requires constant refreshing due to leakage (every 2ms 4ms)
 - Advantages
 - High density (capacity) ~1GBX8
 - Cheaper cost per bit
 - Lower power consumption
 - Disadvantage
 - While it is being refreshed, data cannot be accessed
 - Larger access times
 - Too may pins due to large size

SRAM

Figure 9--12 16K × 16-bit SRAM circuit.

SRAM

SRAM	Density (bits)	Organization		
4361	64K	64K × 1		
4363	64K	16K × 4		
4364	64K	8K × 8		
43254	256K	64K × 4		
43256A	256K	32K × 8		
431000A	1M	128K × 8		

Figure 9–13 devices.

Figure 9-14 (a) 4364 pin layout. (b) 43256A pin layout.

DRAM

DRAM	Density (bits)	Organization
2164B	64K	64K×1
21256	256K	256K×1
21464	256K	64K×4
421000	1M	1M×1
424256	1M	256K×4
44100	4M	4M × 1
44400	4M	1M×4
44160	4M	256K×16
416800	16M	8M×2
416400	16M	4M×4
416160	16M	1M × 16

Figure 9–19 Standard DRAM devices.

Figure 9–21 Block diagram of the 2164B DRAM.

Figure 9-20 (a) 2164B pin layout. (b) 21256 pin layout. (c) 421000 pin layout.

(c)

DRAM

 In DRAM, the 8 address lines are latched accordingly by the strobe of the RAS and CAS signals.

 For example: To load a 16 bit address into the DRAM 8 bits of the address are first latched by pulling RAS low, then other 8 bits are presented to A0-A7 and CAS is pulled low.

DRAM Internal

Refresh time example:

For a 256K X 1 DRAM with 256 rows, a refresh must occur every 15.6us (4ms/256).

For the 8086, a read or write occurs every 800ns.

This allows **19** memory reads/writes per refresh or **5%** of the time.

.59

DRAM Addressing

Figure 9–22 64K × 16-bit DRAM circuit.

DRAM Packaging

Larger DRAMs are available which are organized as 1M X 1, 4M X 1, 16M X 1, 64M X 1, 256M X 1.
DRAMs are typically placed on SIMM (Single In-line Memory Modules) boards. **30-pin** SIMMs come in 1M X 8, 1M X 9 (parity), 4M X 8, 4M X 9. **72-pin** SIMMs come in 1/2/3/8/16M X 32 or 1M X 36 (parity).

Pentiums have a 64-bit wide data bus. The **30-pin** and **72-pin** SIMMs are not used on these systems. Rather, **64-bit DIMMs** (*Dual In-line Memory Modules*) are the standard. These organize the memory 64-bits wide. The board has DRAMs mounted on both sides and is **168** pins

DRAM Refresh

DRAM can be refreshed by an external circuitry including an 8 bit counter

HOLD/HLDA used

• Only the columns of the matrix (256 x 256 for a 64K bit matrix is needed to be refreshed.

 The refresh rate can be adjusted using a 555 timer circuitry.

Figure 10-21. 640K Bytes of DRAM with odd and even banks designation

Figure 10-22. 16-bit Data Connection in the 80286 System

Figure 9–23 Data-storage memory interface with parity-checker generator.

Parity circuits

Figure 9-24 (a) Block diagram of the 74AS280. (Texas Instruments Incorporated) (b) Function table. (Texas Instruments Incorporated) (c) Even-parity checker/generator connection.

NUMBER OF INPUTS A	OUTPUTS			
THRU I THAT ARE HIGH	$\Sigma EVEN$	Σ ODD		
0,2,4,6,8	н	L		
1,3,5,7,9	L	н		

(b)

Parity Error Detection Circuit

Checksum byte (used for ROM)

 \checkmark Add the bytes together and drop the carries

 \checkmark Take the 2's complement of the total sum, and that is the checksum byte, which becomes the last byte of the stored information.

✓ To perform the checksum operation add all the bytes, including the checksum byte. The result must be zero. If it is not zero, one or more bytes of data have been changed (corrupted)

Example: Assume that we have 5 bytes of hexadecimal data: 1A, 14, 82, FC, 3E.

- a) Find the checksum byte
- b) Perform the checksum operation to ensure integrity
- c) If the 3rd byte is changed to 44 show how the error is detected?
- a) The checksum is: $1A+14+82+FC+3E = 1EA \text{ drop } 1 \rightarrow EA$, take 2's comp => 16
- b) 1A+14+82+FC+3E+16 = 00
- c) $1A+14+44+FC+3E+16 = 1C2 \rightarrow Error!$

IBM PC Memory Map

- 00000h 9FFFh: RAM (640 Kb)
 - The first 1K used for the interrupt vector table (00000h to 003FFh)
 - 00400h to 004FFh is set aside for the BIOS temporary area
 - 00500h to 005FFh is set aside for the temporary storage of certain parameters in DOS and BASIC
 - A certain number of Kbytes is occupied by the operating system itself
- A0000h BFFFFh: Video Display RAM (128 Kb)
 - A total of 128 Kbytes is allocated for video
 - Of that 128K, only a portion is used for VDR, the amount depending on which type of video adapter card is installed in the system
- C0000h FFFFh: ROM (256 Kb)
 - 256 K is set aside for ROM
 - Used in
 - BIOS ROM, Basic language compiler ROM, hard disk controller, other peripheral board ROMS and the rest for expansion by the user

IBM PC Memory Map

Figure 11-6. Memory Map of the IBM PC

IBM PC Memory Map

Table 11-5: System Identification Byte for Some IBM Products

DIOS Date	Model
04/24/81	FF
10/19/81	FF
10/27/82	FF
11/08/82	FE
01/10/86	FB
05/09/86	FB
06/01/83	FD
01/10/84	FC
06/10/85	FC
11/15/85	FC
04/21/86	FC
09/13/85	F9
09/02/86	FA
* Y	FC
*	FC
+	F8
*	F8
	04/24/81 10/19/81 10/27/82 11/08/82 01/10/86 05/09/86 06/01/83 01/10/84 06/10/85 11/15/85 04/21/86 09/13/85 09/02/86 * *

Memory Loc	:a1	tion	Description
F000:E000	-	F000:E6F1	Power-On Start-Up Tests (POST)
F000:E6F2	-	F000:E728	Boot strap loader (INT 19H)
F000:E729	••	F000:E82D	RS-232 I/O (INT 14H)
F000:E82E	-	F000:E881	Keyboard I/O (INT 16H)
F000:E882	-	F000:E986	Keyboard scan code tables
F000:E987	-	F000:EC58	Keyboard (INT 9H)
F000:EC59	-	F000:EFD1	Diskette I/O (INT 13H)
F000:EFD2	-	F000:F044	Printer I/O (INT 17H)
F000:F045	-	F000:F840	Video I/O (INT 10H)
F000:F841	-	F000:F84C	Memory check (INT 12H)
F000:F84D	-	F000:F85B	Equipment check (INT 11H)
F000:F85C	-	F000:FA6D	Cassette I/O (INT 15H) - not used on XT
F000:FA6E	-	F000:FE6D	Graphics character table
F000:FE6E		F000:FEF2	Time of day (INT 1AH)
F000:FEF3	-	F000:FF52	Interrupt vector table
F000:FF53	-	F000:FF53	Dummy return point for unused interrupts
F000:FF54	-	F000:FFD9	Print screen (INT 5H)
F000:FFF0	-	F000:FFF4	First code executed after power-on
F000:FFF5	-	F000:FFFD	BIOS release date

Figure 11-11. PC/XT BIOS ROM Memory Map