
Week 5

Functions, Subroutines and Interrupts

MSP430 Teaching Materials

Hacettepe University

Copyright 2009 Texas Instruments
All Rights Reserved

2
Copyright 2009 Texas Instruments

All Rights Reserved

Functions and Subroutines

 It is good practice to break programs into short functions or

subroutines, for reasons that are explained in any textbook on

programming:

 It makes programs easier to write and more reliable to test and

maintain.

 Functions are obviously useful for code that is called from more

than one place but should be used much more widely, to

encapsulate every distinct function.

 They hide the detailed implementation of an activity from the high-

level, strategic level of the software.

 Functions can readily be reused and incorporated into libraries,

provided that their documentation is clear.

3
Copyright 2009 Texas Instruments

All Rights Reserved

What Happens when a Subroutine Is
Called?

 The call instruction first causes the return address, which is

the current value in the PC, to be pushed on to the stack.

 The address of the subroutine is then loaded into the PC and

execution continues from there.

 At the end of the subroutine the ret instruction pops the

return address off the stack into the PC so that execution

resumes with the instruction following the call of the

subroutine.

4
Copyright 2009 Texas Instruments

All Rights Reserved

 Nothing else is done automatically when a subroutine is called. This means

that the subroutine inherits the existing contents of the CPU registers,

including the status register.

 The behavior is different for interrupts, as we see shortly. Therefore a

subroutine and its calling routine must agree on whether the contents of

these registers should be preserved or may be overwritten.

 This must be made clear in the documentation. Such as:

call #DelayTenths ; Call subroutine: don't forget #

;---

; Subroutine to give delay of R12 *0.1s

; Parameter is passed in R12 and destroyed

; R4 is used for loop counter but is not saved and restored

; Works correctly if R12 = 0: the test executed first as in while (){}

;---

5
Copyright 2009 Texas Instruments

All Rights Reserved

 It is always wise to follow a convention for the use of registers

and this becomes essential when assembly code is mixed with C.

 The scratch registers R12 to R15 are used for parameter

passing and hence are not normally preserved across the

call.

 The other general-purpose registers, R4 to R11, are used

mainly for register variables and temporary results and

must be preserved across a call. This means that you must

save the contents of any register that you wish to use and

restore its original contents at the end.

6
Copyright 2009 Texas Instruments

All Rights Reserved

Storage for Local Variables

 Most functions need local variables and there are three ways in

which space for these can be allocated:

 CPU registers are simple and fast. The convention is that

registers R4–R11 may be used and their values should be

preserved. This is done by pushing their values on to the stack.

Storage for Local Variables

 A second approach is to use a fixed location in RAM; There are

two serious disadvantages to this approach. The first is that the

space in RAM is reserved permanently, even when the function is

not being called, which is wasteful. Second, the function is not

reentrant. This means that the function cannot call a second copy

of itself, either directly or with nested functions between. Both

copies would try to use the same variable and interfere with each

other, unless the intention was for them to share the variable.

This would obviously wreck a software delay loop, for instance.

7
Copyright 2009 Texas Instruments

All Rights Reserved

Storage for Local Variables

 The third approach is to allocate variables on the stack and is

generally used when a program has run out of CPU registers.

This can be slow in older designs of processors, but the

MSP430 can address variables on the stack with its general

indexed and indirect modes. Of course it is still faster to use

registers in the CPU when these are available.

8
Copyright 2009 Texas Instruments

All Rights Reserved

9
Copyright 2009 Texas Instruments

All Rights Reserved

R4 used for loop counter , stacked and
restored

DelayTenths:
push.w R4 ; Stack R4: will be overwritten in prog.
jmp LoopTest ; Start with test in case R12 = 0 (passed param)
OuterLoop:

mov.w #DELAYLOOPS ,R4 ; Initialize loop counter
DelayLoop: ; [clock cycles in brackets]

dec.w R4 ; Decrement loop counter [1]
jnz DelayLoop ; Repeat loop if not zero [2]
dec.w R12 ; Decrement number of 0.1s delays (parameter)
LoopTest:
cmp.w #0,R12 ; Finished number of 0.1s delays?

jnz OuterLoop ; No: go around delay loop again
pop.w R4 ; Yes: restore R4 before returning
ret ; Return to caller

10
Copyright 2009 Texas Instruments

All Rights Reserved

Operation of Stack

11
Copyright 2009 Texas Instruments

All Rights Reserved

Stack as variable storage
InfLoop: ; Loop forever
push.w #5 ; Push delay parameter on to stack
call #DelayTenths ; Call subroutine: don't forget the #!
incd.w SP ; Release space used for parameter
xor.b #LED1 ,& P2OUT ; Toggle LED
jmp InfLoop ; Back around infinite loop
; Iterations of delay loop for about 0.1s (6 cycles/iteration):
BIGLOOPS EQU 130
LITTLELOOPS EQU 100
;---
DelayTenths:
sub.w #4,SP ; Allocate 2 words (4 bytes) on stack
jmp LoopTest ; Start with test
OuterLoop:
mov.w #BIGLOOPS ,2(SP) ; Initialize big loop counter
BigLoop:

mov.w #LITTLELOOPS ,0(SP) ; Initialize little loop counter
LittleLoop: ; [clock cycles in brackets]

dec.w 0(SP) ; Decrement little loop counter [4]
jnz LittleLoop ; Repeat loop if not zero [2]
dec.w 2(SP) ; Decrement big loop counter [4]

jnz BigLoop ; Repeat loop if not zero [4]
dec.w 6(SP) ; Decrement number of 0.1s delays
LoopTest:
cmp.w #0,6(SP) ; Finished number of 0.1s delays?
jnz OuterLoop ; No: go around delay loop again
add.w #4,SP ; Yes: finished , release space on stack
ret ; Return to caller

; Subroutine to give delay of
n*0.1s
; Parameter n is passed on stack
; Space for two loop counters
created on stack. After this:
; 0(SP) is innermost (little) loop
counter; 2(SP) is big loop counter
; 4(SP) is return address ; 6(SP) is
parameter n passed on stack

12
Copyright 2009 Texas Instruments

All Rights Reserved

13
Copyright 2009 Texas Instruments

All Rights Reserved

 Stack Processes

14
Copyright 2009 Texas Instruments

All Rights Reserved

Mixing C and Assembly Language

 Check first to see whether an intrinsic function is available to do the

job without leaving C. Many of these are declared in the header file

intrinsics.h to perform functions that are not possible in standard C.

For example, the _ _swap_bytes() intrinsic function calls the swapb

instruction.

 Another possibility, when only a line or two of assembly language is

needed, use:

asm("mov.b &P1IN,&dest").

 The third method is to write a complete subroutine in assembly

language and call it from C.

15
Copyright 2009 Texas Instruments

All Rights Reserved

WHAT IS AN INTERRUPT?

 A signal indicating the occurrence of an event
that needs immediate CPU attention

 Provides for a more efficient event handling than
using polling

 Less CPU cycles wasted
 Advantages
 Compact & Modular Code
 Allow for Reduced Energy Consumption
 Faster Multi-event Response Time

16
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts

 They are like functions but with the critical distinction that they are

requested by hardware at unpredictable times rather than

called by software in an orderly manner

17
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts

 Interrupts are commonly used for a range of applications:

 Urgent tasks that must be executed promptly at higher priority than

the main code. However, it is even faster to execute a task directly by

hardware if this is possible.

 Infrequent tasks, such as handling slow input from humans. This

saves the overhead of regular polling.

 Waking the CPU from sleep. This is particularly important in the

MSP430, which typically spends much of its time in a low-power

mode and can be awakened only by an interrupt.

 Calls to an operating system. These are often processed through a

trap or software interrupt instruction but the MSP430 does not have

one.

A computer has 2 basic ways to
react to inputs:

 1)polling: The processor regularly looks at the input
and reacts as appropriate.

 +easy to implement and debug
 -processor intensive

 if event is rare, you waste a lot of time checking
 processor can’t go into low power (slow or stopped)

modes pgp(pp)
 2)interrupts: The processor is “interrupted” by an

event.
 +very efficient time-wise: no time wasted looking for

an event that hasn’t occurred.
 +very efficient energy-wise: processor can be asleep

most of the time.
 -can be hard to debug

18
Copyright 2009 Texas Instruments

All Rights Reserved

19
Copyright 2009 Texas Instruments

All Rights Reserved

• Non-vectored Systems
• Single, multidrop interrupt request line
• Single ISR for all devices
• CPU identifies source by polling service request (SRQ) flags

INTERRUPT IDENTIFICATION METHODS

21
Copyright 2009 Texas Instruments

All Rights Reserved

• Vectored Interrupts
• Require an Interrupt Acknowledgment (INTA) cycle
• Interfaces generate an ID number (vector) upon INTA
• ID number allows calculating ISR location

• Auto-vectored Interrupts
• Each device has a fixed vector or fixed ISR address
• No INTA cycle or vector issuing required
• CPU loads direct ISR address into PC to execute ISR
• Method used in MSP430 MCUs

INTERRUPT IDENTIFICATION METHODS

22
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupt Priority Management
Strategy to resolve multiple, simultaneous interrupt

requests
Priority scheme decides which one is served first

Non-vectored Systems
Polling order of SRQ flags decides priority

Vectored & Auto-vectored Systems
Hardware supported
Daisy Chain-based
Interrupt Controller-based

PRIORITY HANDLING (1/3)

23
Copyright 2009 Texas Instruments

All Rights Reserved

PRIORITY HANDLING (2/3)

• Daisy Chain-based Arbitration
• Devices linked by a daisy-chain element

• Simple to implement
• Hardwired priorities

• The closer the device to the CPU the higher the priority

24
Copyright 2009 Texas Instruments

All Rights Reserved

PRIORITY HANDLING (3/3)

 Interrupt Controller-
based Arbitration
 Uses central

arbiter for
resolving priorities

 Reduces interface
overhead for
vectored systems

 Allows for
configuring the
priority scheme

25
Copyright 2009 Texas Instruments

All Rights Reserved

MSP430 Interrupts

All Internal Peripherals are Interrupt Capable
Use an internal daisy-chain scheme
Support low-power operation

Auto-vectored Approach
Fixed interrupt table
Vector addresses depend on MCU family member

Types of MSP430 Interrupts
System Resets
Non-maskable
Maskable

SYSTEM RESETS

 Have the highest system priority
 Truly non-maskable
 Triggered by different events (multi-sourced)

 Power-up,
 External Reset,
 Watchdog Timer,
 FLASH key violation, etc.

 Vector at address 0FFFEh
 Saves no PC and no PSW

 Non returning ISR
 Calls bootstrap sequence

26
Copyright 2009 Texas Instruments

All Rights Reserved

MASKABLE VS. NON-MASKABLE

Maskable Interrupts
 Can be blocked through a flag

• Global Interrupt Flag (GIE)
• Local Flags in Peripheral Interfaces

 Most common type of interrupt
 Disabled upon RESET
 By default disabled upon entrance into an ISR

 Non-maskable Interrupts (NMI)
 Cannot be masked, thus are always served
 Reserved for system critical events

27
Copyright 2009 Texas Instruments

All Rights Reserved

28
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts

 The code to handle an interrupt is called an interrupt handler

or interrupt service routine (ISR).

 The feature that interrupts arise at unpredictable times

means that an ISR must carry out its action and clean up

thoroughly so that the main code can be resumed without

error—it should not be able to tell that an interrupt has

occurred

29
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts

 Interrupts can be requested by most peripheral modules and

some in the core of the MCU, such as the clock generator.

 Each interrupt has a flag, which is raised (set) when the

condition for the interrupt occurs. For example, Timer_A sets

the TAIFG flag in the TACTL register when the counter

TAR returns to 0. We polled this earlier!

30
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts

 Most interrupts are maskable, which means that they are

effective only if the general interrupt enable (GIE) bit is set

in the status register (SR).

 They are ignored if GIE is clear.

 Therefore both the enable bit in the module and GIE must

be set for interrupts to be generated.

 The (non)maskable interrupts cannot be suppressed by

clearing GIE. BUT These interrupts also require bits to be

set in special function or peripheral registers to enable

them. Thus even the nonmaskable interrupts can be

disabled and indeed all are disabled by default.

31
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts

 The MSP430 uses vectored interrupts, which means that the

address of each ISR—its vector—is stored in a vector table at a

defined address in memory

 Each interrupt vector has a distinct priority, which is used to select

which vector is taken if more than one interrupt is active when the

vector is fetched. The priorities are fixed in hardware and cannot

be changed by the user

 They a re given simply by the address of the vector: A higher

address means a higher priority. The reset vector has address

0xFFFE, which gives it the top priority, followed by 0xFFFC for the

single nonmaskable interrupt vector.

32
Copyright 2009 Texas Instruments

All Rights Reserved

Vector
Address MSP430G2553

0xFFE4 Port_1

33
Copyright 2009 Texas Instruments

All Rights Reserved

The interrupt vector table is mapped at the very highest end of memory space (upper
16 words of Flash/ROM), in locations 0FFE0h through to 0FFFEh (see the device-
specific datasheets).
The priority of the interrupt vector increases with the word address.
The push button, Port 1 or P1.3, the interrupt vector address 0xFFE4 contains the
address of the interrupt service routine (ISR) for the push button.
The prototype defining a Port 1 ISR that includes the P1.3 push button:
#pragma vector=PORT1_VECTOR

__interrupt void Port_1(void)

34
Copyright 2009 Texas Instruments

All Rights Reserved

35
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts

 The vectors for the maskable interrupts depend on the peripherals

in a particular device and are listed in a table of Interrupt Vector

Addresses in the data sheet

 The MSP430 stacks both the return address and the status

register. The SR gets this privileged treatment because it controls

the low-power modes and the MCU must return to full power while

it processes the interrupt

 The other registers must be saved on the stack (or RAM) and

restored if their contents are modified in the ISR.

36
Copyright 2009 Texas Instruments

All Rights Reserved

37
Copyright 2009 Texas Instruments

All Rights Reserved

What Happens when an Interrupt Is
Requested?

 A lengthy chain of operations lies between the cause of a

maskable interrupt and the start of its ISR.

 It starts when a flag bit is set in the module when the

condition for an interrupt occurs. For example, TAIFG is set

when the counter TAR returns to 0. This is passed to the

logic that controls interrupts if the corresponding enable bit

is also set, TAIE in this case. The request for an interrupt is

finally passed to the CPU if the GIE bit is set.

38
Copyright 2009 Texas Instruments

All Rights Reserved

What Happens when a Subroutine Is
Called?

39
Copyright 2009 Texas Instruments

All Rights Reserved

Hardware
then performs the following steps to launch the ISR:

1. Any currently executing instruction is completed if the CPU was

active when the interrupt was requested. MCLK is started if the

CPU was off.

2. The PC, which points to the next instruction, is pushed onto the

stack.

3. The SR is pushed onto the stack.

4. The interrupt with the highest priority is selected if

multiple interrupts are waiting for service.

40
Copyright 2009 Texas Instruments

All Rights Reserved

41
Copyright 2009 Texas Instruments

All Rights Reserved

Hardware
then performs the following steps to launch the ISR:

5. The interrupt request flag is cleared automatically for vectors

that have a single source. Flags remain set for servicing by

software if the vector has multiple sources, which applies to

the example of TAIFG.

6. The SR is cleared, which has two effects. First, further maskable

interrupts are disabled because the GIE bit is cleared;

nonmaskable interrupts remain active. Second, it terminates any

low-power mode.

7. The interrupt vector is loaded into the PC and the CPU starts

to execute the interrupt service routine at that address.

8. This sequence takes six clock cycles in the MSP430 before the

ISR commences.

42
Copyright 2009 Texas Instruments

All Rights Reserved

ISR

 An ISR looks almost identical to a subroutine but with two

distinctions:

 The address of the subroutine, for which we can use

its name (a label on its first line), must be stored in

the appropriate interrupt vector.

 The routine must end with RETI rather than RET so

that the correct sequence of actions takes place when it

returns.

43
Copyright 2009 Texas Instruments

All Rights Reserved

How to return from ISR

 An interrupt service routine must always finish with the special

return from interrupt instruction RETI, which has the following

actions:

1. The SR pops from the stack. All previous settings of GIE and

the mode control bits are now in effect, regardless of the

settings used during the interrupt service routine. In particular,

this reenables maskable interrupts and restores the previous

low-power mode of operation if there was one.

2. The PC pops from the stack and execution resumes at the point

where it was interrupted. Alternatively, the CPU stops and the

device reverts to its low-power mode before the interrupt.

Interrupt Programming
Requirements

 1) Stack Allocation
 Is where CPU saves the SR and PC
 Automatically allocated by C-compiler

 2) Vector Entry Setup
 Specify entry in vector table

 3) Provide the Actual ISR Code
 Short and quick
 Register transparent (in ASM)
 Do not use parameter passing or value return
 In ASM, always end with RETI

 4) Enable Interrupt Flags
 Both GIE and local enable

44
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts in Assembly
; Code assumes push-button in P1.3 is hardware debounced and wired to
; produce a high-to-low transition when depressed.
;---
#include "msp430g2231.h"
;---
RSEG CSTACK ; Stack declaration <------(1)
RSEG CODE ; Executable code begins
;---
Init MOV.W #SFE(CSTACK),SP ; Initialize stack pointer <--(1)
MOV.W #WDTPW+WDTHOLD,&WDTCTL ; Stop the WDT
;--------------------------- Port1 Setup ---------------------------------
BIS.B #0F7h,&P1DIR ; All P1 pins but P1.3 as output
BIS.B #BIT3,&P1REN ; P1.3 Resistor enabled
BIS.B #BIT3,&P1OUT ; Set P1.3 resistor as pull-up
BIS.B #BIT3,&P1IES ; Edge sensitivity now H->L
BIC.B #BIT3,&P1IFG ; Clears any P1.3 pending IRQ
Port1IE BIS.B #BIT3,&P1IE ; Enable P1.3 interrupt <--(4)
Main BIS.W #CPUOFF+GIE,SR ; CPU off and set GIE <---(4)
NOP ; Debugger breakpoint
;---
PORT1_ISR ; Begin ISR <--------------(3)
;---
BIC.C #BIT3,&P1IFG ; Reset P1.3 Interrupt Flag
XOR.B #BIT2,&P1OUT ; Toggle LED in P1.2
RETI ; Return from interrupt <---(3)
;---
; Reset and Interrupt Vector Allocation
;---
ORG RESET_VECTOR ; MSP430 Reset Vector
DW Init ;
ORG PORT1_VECTOR ; Port.1 Interrupt Vector
DW PORT1_ISR ; <-------(2)
END

45
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupts in C
//===
=#include <msp430g2231.h>
//--
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0xF7; // All P1 pins as out but P1.3
P1REN |= 0x08; // P1.3 Resistor enabled
P1OUT |= 0x08; // P1.3 Resistor as pull-up
P1IES |= 0x08; // P1.3 Hi->Lo edge selected
P1IFG &= 0x08; // P1.3 Clear any pending P1.3 IRQ
P1IE |= 0x08; // P1.3 interrupt enabled
//
_ _bis_SR_register(LPM4_bits + GIE); // Enter LPM4 w/GIE enabled <---(4)
}
//
//--
// Port 1 interrupt service routine
#pragma vector = PORT1_VECTOR // Port 1 vector configured <---(2)
_ _interrupt void Port_1(void) // The ISR code <----(3)
{
P1OUT ˆ= 0x04; // Toggle LED in P1.2
P1IFG &= ˜0x08; // Clear P1.3 IFG
}
//==

46
Copyright 2009 Texas Instruments

All Rights Reserved

47
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupt Service Routines in C

 An interrupt service routine cannot be written entirely in

standard C because there is no way to identify it as an ISR

rather than an ordinary function. In fact it would appear that

the function was dead code, meaning that it could never be

called, so the compiler would optimize it away. Some

extensions are therefore needed and these inevitably differ

between compilers.

48
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupt Service Routines in C

 First is the #pragma line, which associates the function

with a particular interrupt vector.

 The second is the _ _interrupt keyword at the beginning

of the line that names the function. This ensures that

the address of the function is stored in the vector and

that the function ends with reti rather than ret. Again

there is no significance to the name of the function; it is

the name of the vector that matters.

49
Copyright 2009 Texas Instruments

All Rights Reserved

 An intrinsic function is needed to set the GIE bit
and turn on interrupts. This is called
_ _enable_interrupt.

 It is declared in intrinsics.h, which must be
included.

50
Copyright 2009 Texas Instruments

All Rights Reserved

Flow for Multisource Interrupt

51
Copyright 2009 Texas Instruments

All Rights Reserved

MULTI-SOURCE INTERRUPT

Multiple Events Served by
a Single Vector
 Single ISR for all events
 Specific event flags need

explicit clear
 ISR code must identify

actual trigger source
 Source Identification

• Polling ALL interrupt request flags
• Via calculated branching

52
Copyright 2009 Texas Instruments

All Rights Reserved

Using Calculated Branching

53
Copyright 2009 Texas Instruments

All Rights Reserved

Port 1 and 2 interrupts

54
Copyright 2009 Texas Instruments

All Rights Reserved

Programming the MSP430 for Push Button Interrupt

55
Copyright 2009 Texas Instruments

All Rights Reserved

Each device must be initialized to generate an interrupt and the
CPU must be enabled to respond to a maskable interrupt.
1. A mask setting determines which devices (e.g. push button) can generate an interrupt.
Interrupt mask, bit 3 (0x08) of P1.3 is the push button
; 1 enables/0 disables. Must be 1 for the device to trigger an interrupt.
P1IE |= 0x08; // Enables P1.3 to generate interrupt
2. Enable the push button P1.3
P1SEL &= ~0x08; // Select Port 1 P1.3 (push button)
P1DIR &= ~0x08; // Port 1 P1.3 (push button) as input, 0 is input
P1REN |= 0x08; // Enable Port P1.3 (push button) pull-up resistor

56
Copyright 2009 Texas Instruments

All Rights Reserved

3. Enable CPU interrupt response.
_BIS_SR(GIE); // Enable interrupts

4. Interrupt service routine (ISR).
The push button is part of port 1, a PORT1_VECTOR interrupt handler is
executed when a port 1 interrupt handler occurs.
__interrupt defines Port_1 procedure to be an ISR.
#pragma vector=PORT1_VECTOR

__interrupt void Port_1(void)

When interrupt occurs, the corresponding flag (bit) is set to 1.
An interrupt handler should normally disable the interrupt by setting flag to 0,
allowing another interrupt to occur.
P1IFG &= ~0x08; Clears the push button interrupt.

Programming the MSP430 for Push Button Interrupt

57
Copyright 2009 Texas Instruments

All Rights Reserved

Push button Interrupt
When the push button is pressed down, a counter is set to 0.
Press RESET button to clear any lingering effects of previous programs.
Set a breakpoint at: i = 0;

Programming the MSP430 for Push Button Interrupt

58
Copyright 2009 Texas Instruments

All Rights Reserved

#include <msp430g2553.h>
long i=0;
void main(void)
{
WDTCTL = WDTPW + WDTHOLD;
// Stop watchdog timer P1SEL &= ~0x08;
// Select Port 1 P1.3 (push button)
P1DIR &= ~0x08;
// Port 1 P1.3 (push button) as input, 0 is input
P1REN |= 0x08;
// Enable Port P1.3 (push button) pull-up resistor
P1IE |= 0x08;
// Port 1 Interrupt Enable P1.3 (push button)
P1IFG &= ~0x08;
// Clear interrupt flag
_BIS_SR(GIE);
// Enable interrupts
while(1)
i++;
// Execute some useful computation
}

Programming the MSP430 for Push Button Interrupt

Port 1 interrupt service routine

// Port 1 interrupt service routine

#pragma vector=PORT1_VECTOR

__interrupt void Port_1(void)

{

P1IFG &= ~0x08;

// P1.3 Interrupt Flag cleared

i = 0;
// Reset count

}

59
Copyright 2009 Texas Instruments

All Rights Reserved

Watchdog Timer Interrupt
 The Watchdog Timer (WDT) is typically used to trigger a system reset after

a certain amount of time. In most examples, the timer is stopped during the

first line of code.

 The WDT counts down from a specified value and either resets or interrupts

when count overflow is reached. A way to use this timer is to periodically

service it by resetting its counter so that the system “knows” that

everything is all right and there is no reset required. In this case, this

module is configured as an interval timer to generate interrupts at selected

time intervals.

 A computer watchdog is a hardware timer used to trigger a system reset if

software neglects to regularly service the watchdog (often referred to as

"petting", "kicking", or "feeding" the dog). In a watchdog mode, the

watchdog timer can be used to protect the system against software failure,

such as when a program becomes trapped in an unintended, infinite loop.

 60
Copyright 2009 Texas Instruments

All Rights Reserved

Watchdog Timer Interrupt

 The watchdog can also be configured as an interval timer instead of a

timeout device by setting the WDTTMSEL bit in the watchdog control

register (WDTCTL). When the timer reaches its limit in timer mode, the

counter restarts from 0.

 As an interval timer, the watchdog has its own interrupt vector (which is

not the same as the reset vector). An interrupt is generated only if the

WDTIE bit in the special function register IE1 and the GIE bit in the status

register are set. The WDTIFG flag is automatically cleared when the

interrupt is serviced. The watchdog can be polled if interrupts are not used

(we did this!).

 Applications needing a periodic "tick" may find the watchdog interval mode

ideal for generating a regular interrupt. The disadvantage is the limited

selection of interval times - only 4 intervals are available and they are

dependent upon the clock assigned to the watchdog.

61
Copyright 2009 Texas Instruments

All Rights Reserved

Constant Interval Clocks/Interval
(@1Mhz)

Intervals/Second
(@1Mhz)

WDT_MDLY_32 32ms (default) 32000 1000000/32000 = 31.25
WDT_MDLY_8 8ms 8000 1000000/8000 = 125

WDT_MDLY_0_5 0.5ms 500 1000000/500 = 2000
WDT_MDLY_0_064 0.064ms 64 1000000/64 = 15625

62
Copyright 2009 Texas Instruments

All Rights Reserved

Assuming the MSP430 system clock has a frequency of 1Mhz and the
watchdog timer is clocked by the sub-master clock (SMCLK), the following
intervals are available as an example
WDTCTL = WDT_MDLY_0_5
Sets the WDT to a 0.5ms interval or 2000 intervals/second.

Watchdog Timer Interrupt

WDT Int Example

 sets the WDT to an time interval of approximately 32 ms.

 enables WDT interrupts

 enables the red LED P1.0 for output

 enables interrupts.

 when a WDT interrupt, executes procedure __interrupt

watchdog_timer(void)

 if 10*32 ms. passed, toggle red LED and reset counter,

otherwise increment counter.

63
Copyright 2009 Texas Instruments

All Rights Reserved

#include <msp430g2553.h>
unsigned int counter = 0;
void main(void){

WDTCTL = WDT_MDLY_32; // Watchdog Timer interval to ≈32ms
IE1 |= WDTIE; // Enable WDT interrupt
P1DIR |= BIT0; // Set red LED P1.0 to output direction
_BIS_SR(GIE); // Enable interrupts
while(1);

}
#pragma vector=WDT_VECTOR // Watchdog Timer interrupt service routine
__interrupt void watchdog_timer(void)

if(counter == 10){ // 10 * 32 ms = 320 ms, ≈.3 s
P1OUT ^= BIT0; // P1.0 toggle, red LED
counter = 0;
}
else
counter++;

}

64
Copyright 2009 Texas Instruments

All Rights Reserved

WDT Int Example

Clock Interrupt

MSP430 CPU and other system devices use three internal clocks:
1.Master clock, MCLK, is used by the CPU and a few peripherals.

2.Subsystem master clock, SMCLK, is distributed to peripherals.

3.Auxiliary clock, ACLK, is also distributed to peripherals.

Typically SMCLK runs at the same frequency as MCLK, both in the
megahertz range.
ACLK is often derived from a watch crystal and therefore runs at a
much lower frequency. Most peripherals can select their clock from
either SMCLK or ACLK.
For the MSP430 processor, both the MCLK and SMCLK clocks are
supplied by an internal digitally controlled oscillator (DCO), which runs
at about 1.1 MHz.

65
Copyright 2009 Texas Instruments

All Rights Reserved

66
Copyright 2009 Texas Instruments

All Rights Reserved

DCO - Digitally Controlled Oscillator internal runs at about 1Mhz.
The frequency of the DCO is controlled through sets of bits in the module’s
registers at three levels. There calibrated frequencies of 1, 8, 12, and 16 MHz.
To change frequency simply copy values into the clock module registers.

Clock Source review

Timers/Counters

 Timers are fundamentally counters driven by a clock signal,
commonly incrementing or decrementing the counter on
each clock tick.

 When the counter reaches some predefined value (e.g. 0),
the timer can generate an interrupt. The result is a
reasonably accurate time base for executing functionality
such as maintaining a reference clock (seconds, minutes,
etc.) or performing some operation on a regular basis (blink
a LED every second).

 The count of a 16-bit timer in continuous mode below
repeats counting from 0 to FFFFh. Using UP mode, other
limits can be specified.

67
Copyright 2009 Texas Instruments

All Rights Reserved

68
Copyright 2009 Texas Instruments

All Rights Reserved

Timers/Counters

69
Copyright 2009 Texas Instruments

All Rights Reserved

The clock tick drives the counter, with each clock tick incrementing the
counter.

MSP430 timers can interrupt (TAIFG) when the timer reaches a specified
limit, serving to perform accurately timed operations.

For example, a timer clock of FFFFh Hz and a count limit of FFFFh could
generate an interrupt every second by setting the TAIFG.

70
Copyright 2009 Texas Instruments

All Rights Reserved

Timer

TA0CTL Timer A0 control register.

71
Copyright 2009 Texas Instruments

All Rights Reserved

.

TAIE and TAIFG (bits 0 and 1) control the ability of the timer to trigger
interrupts

TACCTLx -- The Timer_A Capture/Compare Control Registers

correspond to the TACCRx registers. These set the behavior of how

the CCR's are used. CCIE and CCIFG (bits 4 and 0) are interrupts

associated with the CCR's.

TACCRx Holds the 16-bit count value. TACCRx -- The Timer_A

Capture/Compare Registers, of which there are two (TACCR0 and TACCR1)

are where specific values to use are stored.

In compare mode, the timer signals an event on the values. Particularly,

TACCR0 stores the value that Timer_A counts in up and up/down mode. In

capture mode, the processor will record the value of TAR when the MSP430 is

signaled to do so.

One important point is that timers can run independently to the CPU clock,

allowing the CPU to be turned off and then automatically turned on when an

interrupt occurs.

72
Copyright 2009 Texas Instruments

All Rights Reserved

 TAIV -- The Timer_A Interrupt Vector
Register; since there are multiple types of
interrupts that can be flagged by Timer_A,
this register holds details on what interrupts
have been flagged.
 The only bits used here are bits 1-3 (TAIVx),

which show the type of interrupt that has
happened, allowing us to take different actions
to resolve the different types of interrupts.

73
Copyright 2009 Texas Instruments

All Rights Reserved

#include <msp430g2553.h>
void main(void) {
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

P1DIR |= BIT0; // Set P1.0 to output direction
P1OUT &= ~BIT0; // Set the red LED off

P1DIR |= BIT6; // Set P1.6 to output direction
P1OUT &= ~BIT6; // Set the green LED off

TA0CCR0 = 12000; // Count limit (16 bit)
TA0CCTL0 = 0x10; // Enable Timer A0 interrupts, bit 4=1
TA0CTL = TASSEL_1 + MC_1; // Timer A0 with ACLK, count UP

TA1CCR0 = 24000; // Count limit (16 bit)
TA1CCTL0 = 0x10; // Enable Timer A1 interrupts, bit 4=1
TA1CTL = TASSEL_1 + MC_1; // Timer A1 with ACLK, count UP

//_BIS_SR(LPM0_bits + GIE); // LPM0 (low power mode) interrupts enabled
_BIS_SR(GIE); // interrupts enabled
while (1) {};

}

74
Copyright 2009 Texas Instruments

All Rights Reserved

#pragma vector=TIMER1_A0_VECTOR // Timer1 A0 interrupt service
routine

__interrupt void Timer1_A0 (void) {

P1OUT ^= BIT0; // Toggle red LED
}

#pragma vector=TIMER0_A0_VECTOR // Timer0 A0 interrupt service
routine

__interrupt void Timer0_A0 (void) {

P1OUT ^= BIT6; // Toggle green LED
}

75
Copyright 2009 Texas Instruments

All Rights Reserved

76
Copyright 2009 Texas Instruments

All Rights Reserved

A Timer Example in C
// timintC1.c - toggles LEDs with period of about 1.0s
// Toggle LEDs in ISR using interrupts from timer A CCR0
// in Up mode with period of about 0.5s
// Timer clock is SMCLK divided by 8, up mode , period 50000
// Olimex 1121STK , LED1 ,2 active low on P2.3,4
// J H Davies , 2006 -10 -11; IAR Kickstart version 3.41A
// --
#include <io430x11x1.h> // Specific device
#include <intrinsics.h> // Intrinsic functions
// --
// Pins for LEDs
#define LED1 BIT3
#define LED2 BIT4
// --
void main (void)
{

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer
P2OUT = ˜LED1; // Preload LED1 on , LED2 off
P2DIR = LED1|LED2; // Set pins with LED1 ,2 to output
TACCR0 = 49999; // Upper limit of count for TAR
TACCTL0 = CCIE; // Enable interrupts on Compare 0
TACTL = MC_1|ID_3|TASSEL_2|TACLR; // Set up and start
Timer A
// "Up to CCR0" mode , divide clock by 8, clock from SMCLK ,
clear timer
__enable _interrupt (); // Enable interrupts (intrinsic)
for (;;) { // Loop forever doing nothing
} // Interrupts do the work

}
// --
// Interrupt service routine for Timer A channel 0

// ---
#pragma vector = TIMERA0_VECTOR
__interrupt void TA0_ISR (void)
{

P2OUT ˆ= LED1|LED2;
// Toggle LEDs

}

77
Copyright 2009 Texas Instruments

All Rights Reserved

Assembly version

; timrint1.s43 - toggles LEDs with period of about 1s
; TACCR0 interrupts from timer A with period of about 0.5s
; Timer clock is SMCLK divided by 8, up mode , period 50000
; Olimex 1121STK , LED1 ,2 active low on P2.3,4
;---
#include <msp430x11x1.h> ; Header file for this device
;---
; Pins for LED on port 2
LED1 EQU BIT3
LED2 EQU BIT4
;---
RSEG CSTACK ; Create stack (in RAM)
;---
RSEG CODE ; Program goes in code memory
Reset: ; Execution starts here
mov.w #SFE(CSTACK),SP ; Initialize stack pointer
main: ; Equivalent to start of main() in C
mov.w #WDTPW|WDTHOLD ,& WDTCTL ; Stop watchdog timer
mov.b #LED2 ,& P2OUT ; Preload LED1 on , LED2 off
bis.b #LED1|LED2 ,& P2DIR ; Set pins with LED1 ,2 to output
mov.w #49999 ,& TACCR0 ; Period for up mode
mov.w #CCIE ,& TACCTL0 ; Enable interrupts on Compare 0
mov.w #MC_1|ID_3|TASSEL_2|TACLR ,& TACTL ; Set up Timer A
; Up mode , divide clock by 8, clock from SMCLK , clear TAR
bis.w #GIE ,SR ; Enable interrupts (just TACCR0)
jmp $; Loop forever; interrupts do all

;---
; Interrupt service routine for TACCR0 ,
; called when TAR = TACCR0
; No need to acknowledge interrupt explicitly
;- done automatically
TA0_ISR: ; ISR for TACCR0 CCIFG
xor.b #LED1|LED2 ,& P2OUT ; Toggle LEDs

reti ; That's all: return from interrupt
;---
COMMON INTVEC ; Segment for vectors (in Flash)
ORG TIMERA0_VECTOR
DW TA0_ISR ; ISR for TA0 interrupt
ORG RESET_VECTOR
DW Reset ; Address to start execution

DEALING WITH FALSE TRIGGERS

78
Copyright 2009 Texas Instruments

All Rights Reserved

Interrupt Signals Triggered by Unwanted Events
Cause undesirable effects

Causes of False Interrupt Triggers
Power glitches
Electromagnetic Interference (EMI)
Electrostatic Discharges
Other noise manifestations

Mitigation Mechanisms
Provide dummy ISR for unused sources

Write a “False ISR Handler”
Use Watchdog Timers
Consider the use of polling

INTERRUPT LATENCY HANDLING

79
Copyright 2009 Texas Instruments

All Rights Reserved

• Interrupt Latency
• Amount of time from IRQ to fetch of first ISR instruction
• Negligible in most applications

• An issue in fast, time sensitive real-time systems
• Affected by Hardware & Software factors

• Hardware Factors
• Propagation delays in IRQ and acknowledgment paths
• Source identification method

• Software Factors
• Scheduling & Priority Scheme
• ISR coding style

• Recommendations
• Minimize number of stages in IRQ & ACK path (if possible)
• Use vectored schemes with in-service hardware tracking
• Keep ISRs short & quick
• Avoid service monopolization (prioritization Vs. nesting)

INTERRUPT NESTING

80
Copyright 2009 Texas Instruments

All Rights Reserved

Achieved by re-enabling the GIE within an ISR
Use only when strictly necessary

Most applications don’t need it
Recommendations

Establish a strict prioritization
Exert SW stack depth control
Whenever possible, avoid re-entrancy
Avoid static variables – self-modification risk
Do not use self-modifying code

81

The Shared-Data Problem

 In many cases the ISRs need to communicate with the

task codes through shared variables.

 Example:

 Task code monitors

2 temperatures and

alarm if they differ

 An ISR reads

temperatures

from hardware

82

The Shared-Data Problem

 Now, consider the assembly code:

 When temperatures are 70 degrees and an interrupt occurs

between the two MOVES

 The temperatures now become 75 degrees

 On returning from ISR, iTemp[1] will be assigned 75 and an

alarm will be set off even though the temperatures were the

same

83

The Shared-Data Problem

 Problem is due to shared array iTemperatures.

 These bugs are very difficult to find as they occur

only when the interrupt occurs in between the

first 2 MOVE instructions, other than which code

works perfectly.

84

Solving Shared-Data Problem

 Disable interrupts during instructions that use the

shared variable and re-enabling them later
while (TRUE)
{

disable(); // Disable interrupts

iTemp0 = iTemperatures[0];

iTemp1 = iTemperatures[1];

enable(); // Re-enable interrupts

...

}

85

Solving Shared-Data Problem

 “Atomic” and “Critical Section”
 A part of a program that should not be interrupted

 Another Example:
 An ISR that updates iHours, iMinutes and iSeconds every

second through a hardware timer interrupt:
long iSecondsSinceMidnight (void) {

long lReturnVal;
disable();
lReturnVal = (((iHours*60)+iMinutes)*60)+iSeconds;
enable();
return (lReturnVal);

}

86
Copyright 2009 Texas Instruments

All Rights Reserved

