
Week 3
Further into the MSP430

MSP430 Teaching Materials

Hacettepe University

Copyright 2009 Texas Instruments
All Rights Reserved

2
Copyright 2009

Texas Instruments
All Rights Reserved

MSP430MtFaFbMc
• Mt: Memory Type

• C: ROM
• F: Flash
• P: OTP
• E: EPROM (for developmental use. There are few of these.)

• Fa, Fb: Family and Features
• 10, 11: Basic
• 12, 13: Hardware UART
• 14: Hardware UART, Hardware Multiplier
• 31, 32: LCD Controller
• 33: LCD Controller, Hardware UART, Hardware Multiplier
• 41: LCD Controller
• 43: LCD Controller, Hardware UART
• 44: LCD Controller, Hardware UART, Hardware Multiplier

• Mc: Memory Capacity
• 0: 1kb ROM, 128b RAM
• 1: 2kb ROM, 128b RAM
• 2: 4kb ROM, 256b RAM
• 3: 8kb ROM, 256b RAM
• 4: 12kb ROM, 512b RAM
• 5: 16kb ROM, 512b RAM
• 6: 24kb ROM, 1kb RAM
• 7: 32kb ROM, 1kb RAM
• 8: 48kb ROM, 2kb RAM
• 9: 60kb ROM, 2kb RAM

3
Copyright 2009

Texas Instruments
All Rights Reserved

Example

• The MSP430F435 is a Flash memory device with an LCD controller, a
hardware UART, 16 kb of code memory, and 512 bytes of RAM.

4
Copyright 2009

Texas Instruments
All Rights Reserved

Microcontroller characteristics
• Integration: Able to implement a whole design onto a single chip.

• Cost: Are usually low-cost devices (a few $ each);

• Clock frequency: Compared with other devices (microprocessors and DSPs),
MCUs use a low clock frequency:

• MCUs today run up to 100 MHz/100 MIPS (Million Instructions Per Second).

• Power consumption: Low power (battery operation);

• Bits: 4 bits (older devices) to 32 bits devices;

• Memory: Limited available memory, usually less than 1 MByte;

• Input/Output (I/O): Low to high (8 to 150) pin-out count.

5
Copyright 2009

Texas Instruments
All Rights Reserved

MSP430 main characteristics (1/3)
• Low power consumption:

• 0.1 A for RAM data retention;

• 0.8 A for real-time clock mode operation;

• 250 A/MIPS during active operation.

• Low operation voltage (from 1.8 V to 3.6 V);

• < 1 s clock start-up;

• < 50 nA port leakage;

• Zero-power Brown-Out Reset (BOR).

6
Copyright 2009

Texas Instruments
All Rights Reserved

MSP430 main characteristics (3/3)
• Flexibility:

• Up to 256 kByte Flash;
• Up to 100 pins;
• USART, I2C, Timers;
• LCD driver;
• Embedded emulation;
• And many more peripherals modules…

• Microcontroller performance:
• Instruction processing on either bits, bytes or words
• Reduced instructions set;
• Compiler efficient;
• Wide range of peripherals;
• Flexible clock system.

• 1.8–3.6V operation

7
Copyright 2009

Texas Instruments
All Rights Reserved

MSP430 Architecture

MACHINE VS. ASSEMBLY LANGUAGE

Copyright 2009 Texas Instruments
All Rights Reserved 8

Machine Language Instructions
 Sequence of zeros and ones understood by the CPU

 Hard to read by humans

 Consists of several fields
 Opcode, source and destination fields, and an optional datum

 Assembly Language Instructions
 A human understandable notation for machine language

 One assembly instruction per machine language instruction

 Consists of several fields
 A mnemonic followed by zero or more operands

 Assembly Process
 Converts an assembly language program into a machine language program

Machine vs Assembly language

Copyright 2009 Texas Instruments
All Rights Reserved 9

ISA 10

Computer Instructions
• Computer program consists of a sequence of instructions

• instruction = verb + operand(s)

• stored in memory as 1’s and 0’s

• called machine code.

• Instructions are fetched from memory
• The program counter (PC) holds the memory address of the next

instruction (or operand).

• The instruction is stored internal to the CPU in the instruction
register (IR).

• Programs execute sequentially through memory
• Execution order is altered by changing the program counter (PC).

• A computer clock controls the speed and phases of instruction
execution.

Computer Instructions

ISA 11

Machine vs Assembly Code

Computer Instructions

Disassembler

0100000100111111

0000011000000000

0100000010110010

0100001100001110

0101001101011110

1111000001111110

0001001000110000

1000001110010001

0010001111111101

0100000000110001

0101101000011110

0000000100100000

0000000000001111

0000000000001110

0000000000000000

Machine Code

mov.w #0x0600,r1

mov.w #0x5a1e,&0x0120

mov.w #0,r14

add.b #1,r14

and.b #0x0f,r14

push #0x000e

sub.w #1,0(r1)

jne $-4

mov.w @r1+,r15

Assembly Code

Assembler

ISA 12

“Add the value in Register 4 to the value in Register 5”

Anatomy of Machine Instruction

Computer Instructions

2. 1st object – Source operand

3. 2nd object – Destination operand

1. Verb – Opcode (defines operation & operands)

add r4,r5

How many
instructions are
possible with a
4-bit op-code?

How many
source/destination
registers can
selected with a
4-bit field?

BYU CS 224

0101010000000101

ISA 13

MSP430 Bus Architecture

• Memory Data Bus (bi-directional)
• Addressability = # of bits stored in each

memory location (8-bits).

• Words are always addressed at an even
address (little endian).

 Memory Address Bus (uni-directional)

 Address Space = number of possible
memory locations (memory size)

BYU CS 224

MSP430 ISA

 Sixteen 16-bit registers
 Program Counter (R0), Stack Pointer (R1), Status Register (R2), Constant

Generator (R3), General Purpose Registers (R4-R15).

 16-bit ALU (Arithmetic and Logic Unit)

 Sets condition codes: Z, C, N, V

 The master clock (MCLK) drives the CPU and ALU logic.

 Input / Output
 Get information in and out of the computer.

 External devices attached to a computer are called
peripherals.

 Lower 512 bytes (0x0000 - 0x01FF) of address space
 16-bit peripherals (0x0100 - 0x01FF)

 8-bit peripherals (0x0010 - 0x00FF)

 Special Function Registers – Lower 16 bytes

ISA 14

MSP430 Memory Architecture
 Memory

 64k byte addressable, address space
(0x0000 - 0xFFFF)

 Flash / ROM – Used for both code/data

 Interrupt vectors - Upper 16 words

 RAM (0x0200) – Volatile storage

0x0000

0xFFFF

I/
O

F
la

s
h

 (
R

O
M

)
R

A
M

BYU CS 224

MSP430 ISA

0x0200

ISA 15

MSP430 Ports

 Computer communicates with
external world thru 8 bit memory
locations called Ports.
 Each Port bit is independently

programmable for Input or Output.

 Edge-selectable input interrupt
capability (P1/P2 only) and
programmable pull-up/pull-down
resistors available.

 Port Registers
 PxIN – read from port

 PxOUT – write to port

 PxDir – set port direction (input or
output)

BYU CS 224

MSP430 Ports

ISA 16

MSP430 Instructions
• The first 4-bits (nybble) of an instruction is called the opcode

and specifies the instruction and format.

• The MSP430 ISA defines 27 instructions with three instruction
formats: double operand, single operand, and jumps.

• Single and double operand instructions process word (16-bits)
or byte (8-bit) data operations. (Default is word)

• Orthogonal instruction set – every instruction is usable with
every addressing mode throughout the entire memory map.

• Includes high register count, no paging, stack processing,
memory to memory operations, constant generator.

Instruction Formats

BYU CS 224

ISA 17

MSP430 Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0

Instruction Register

Memory
0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

mov.w r5,r4

rrc.w r5

jc main

mov.w #0x0600,r1

Opcode Instruction Format

0000 Undefined
Single Operand

0001 RCC, SWPB, RRA, SXT, PUSH, CALL, RETI

0010 JNE, JEQ, JNC, JC
Jumps

0011 JN, JGE, JL, JMP

0100 MOV

Double Operand

0101 ADD

0110 ADDC

0111 SUBC

1000 SUB

1001 CMP

1010 DADD

1011 BIT

1100 BIC

1101 BIS

1110 XOR

1111 AND

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

4 to 16

Decoder

Opcode

BYU CS 224

Program Counter

MSP430 Instructions

R0

1 cycle needed to
fetch instruction

ISA 18

MPS430 Instruction Formats
• Format I: Instructions with two operands:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode S-reg Ad b/w As D-reg

MSP430 Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode (4 + 5 bits) b/w As D/S-reg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode (4 + 2 bits) 10-bit, 2’s complement PC offset

 Format II: Instruction with one operand:

 Format III: Jump instructions:

BYU CS 224

Opcodes 4-15

Opcode 1

Opcodes 2-3

Logical and register control instructions

AND(.B or .W) src,dst src.and.dstdst AND source with destination

BIC(.B or .W) src,dst .not.src.and.dstdst Clear bits in destination

BIS(.B or .W) src,dst src.or.dstdst Set bits in destination

BIT(.B or .W) src,dst src.and.dst Test bits in destination

XOR(.B or .W) src,dst src.xor.dstdst XOR source with destination

Data instructions

CMP(.B or .W) src,dst dst-src Compare source to destination

MOV(.B or .W) src,dst srcdst Move source to destination

ISA 19

Format I: Double Operand
Mnemonic Operation Description

Arithmetic instructions

ADD(.B or .W) src,dst src+dstdst Add source to destination

ADDC(.B or .W) src,dst src+dst+Cdst Add source and carry to destination

DADD(.B or .W) src,dst src+dst+Cdst (dec) Decimal add source and carry to destination

SUB(.B or .W) src,dst dst+.not.src+1dst Subtract source from destination

SUBC(.B or .W) src,dst dst+.not.src+Cdst Subtract source and not carry from destination

Double Operand Instructions

BYU CS 224

Program flow control instructions

CALL dst SP-2SP,

PC+2@SP

dstPC

Subroutine call to destination

RETI @SP+SR, @SP+SP Return from interrupt

ISA 20

Format II: Single Operand

Mnemonic Operation Description

Logical and register control instructions

RRA(.B or .W) dst MSBMSB…

LSBC

Roll destination right

RRC(.B or .W) dst CMSB…LSBC Roll destination right through carry

SWPB(.W) dst Swap bytes Swap bytes in destination

SXT(.W) dst bit 7bit 8…bit 15 Sign extend destination

PUSH(.B or .W) src SP-2SP, src@SP Push source on stack

Single Operand Instructions

BYU CS 224

ISA 21

Format III: Jump Instruction

• Jump instructions are used to direct program flow to another
part of the program (by changing the PC).

• The condition on which a jump occurs depends on the
Condition field consisting of 3 bits:

• JNZ/JNE 000: jump if not equal (Z = 0)
• JZ/JEQ 001: jump if equal (Z = 1)
• JNC/JLO 010: jump if no carry (C = 0)
• JC/JHS 011: jump if carry (C = 1)
• JN100: jump if negative (N = 1)
• JGE 101: jump if greater than or equal (N = V)
• JL 110: jump if lower (N V)
• JMP 111: unconditional jump

Jump Instructions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode + Condition 10-bit, 2’s complement PC offset

BYU CS 224

Different Machine Instructions for MSP430

Copyright 2009 Texas Instruments
All Rights Reserved 22

Basic Assembly Process

Copyright 2009 Texas Instruments
All Rights Reserved 23

TOOLS FOR MSP430

Copyright 2009 Texas Instruments
All Rights Reserved 24

ISA 27

Assembler Coding Style

Assembler Primer

; blinky.asm: Software Toggle P1.0

.cdecls C,"msp430.h" ; MSP430 C header

.def RESET

DELAY .equ 0

.bss cnt,2 ; counter variable

.text ; begin code

RESET: mov.w #0x0280,SP ; init stack ptr

mov.w #WDTPW+WDTHOLD,&WDTCTL ; stop WDT

bis.b #0x01,&P1DIR ; set P1.0 output

mainloop: xor.b #0x01,&P1OUT ; toggle P1.0

mov.w #DELAY,cnt ; delay counter

delaylp: sub.w #1,cnt ; delay over?

jnz delaylp ; n

jmp mainloop ; y, repeat

.sect ".reset" ; RESET vector

.word RESET ; start address

.end

BYU CS 224

Put start label here

Start executable code
after .text directive

Put defines & variables
here

C000: 4031 0280

C004: 40B2 5A80 0120

C00a: DED2 0022

C00e: E3D2 0021

C012: 4380 41EC

C016: 8390 41E8

C01a: 23FD

C01c: 3FF8

• Mnemonic src, dst or
• Mnemonic operand
• Mnemonic

• .b suffix represents byte size operand
• .w suffix represents word size operand

33

Directives

• Directives are for the assembler only!

• They do not translate into machine code or data to be loaded into
microcontroller memory

• They serve to organize the program,

• Depends on the assembler

• Some examples:
• EQU and #define

• LABEL EQU <Value or Expression>

• #define <Symbolic Name> Value or expression or register

• #include
• #include “filename”

• ORG

34

Directives

Information for watchdog timer control
register

Mov #0x05A80, &0x0120

Information for watchdog timer control
register

mov #WDTPW+WDTTMSL+WDTCNTCL+WDTSSEL+WDTIS0,&WDTCTL

Labels

• Entry statement of main code or ISR (Interrupt Service Routine).
• Entry statement of subroutine
• Instruction to which a reference is made

MOV.W #Mainloop, R6 ; R6=F80EH
MOV.W Mainloop, R6 ; R6=E3D2H
CALL #Mainloop ; CALL A SUB WITH 0XF80EH

Reset vector Allocation

ADDRESSING MODES

39

 Addressing modes tell the CPU how to obtain the data

needed to execute an instruction

 The data may be
 Explicitly supplied with the instruction

 Stored in a CPU register

 Stored at a memory location

 Stored in an I/O device register

 Implicit Addressing Mode
 Operand is implicit to the instruction

ADDRESSING MODES

Copyright 2009 Texas Instruments
All Rights Reserved 40

 Immediate Addressing Mode
 Syntax: #Number

 Register Addressing Mode
 Syntax: Rn

 Indexed Addressing Mode
 Syntax: X(Rn)

 Absolute or Direct Mode
 Syntax: &X address is X

 Indirect Register Mode
 Syntax: @Rn

 Direct Mode X -> address is X

ISA 41

Addressing Modes

Addressing Modes

Address Mode As/*Ad Registers Syntax
Register *00 R0-R2, R4-R15 Rn

*00 R3 #0
Symbolic *01 R0 address
Indexed Register *01 R1, R4-R15 index(Rn)
Absolute *01 R2 &address

01 R3 #1
Register Indirect 10 R0-R1,R4-R15 @Rn

10 R2 #4
10 R3 #2

Immediate 11 R0 #number
Indirect auto-inc 11 R1,R4-R15 @Rn+

11 R2 #8
11 R3 #-1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode S-reg Ad b/w As D-reg

42

Copyright 2009 Texas Instruments
All Rights Reserved

Addressing Modes

• The locations are specified using various addressing modes. There are seven of these
in all but we look at only some of them.

• A single character denotes the mode in the operand.
• immediate, #: The value itself (word or byte) is given and stored in the word following the

instruction. This is also known as a literal value.

• absolute, &: The address of a label in memory space is given and stored in the word following the
instruction.

• @ The address of a register in memory space is given and stored in the word following the
instruction.

• register, R: This specifies one of the 16 registers in the CPU.

43

Immediate
mov.b #00001000b,&0x0029 ; LED2 (P2.4) on ,

; LED1 (P2.3) off

• A byte with immediate value (#) 00001000b is copied to the register at address (&)
0x0029.

• check the memory map you can confirm that this is the port P2 output register
P2OUT.

• Fortunately the assembler allows us to use symbolic constants as in C, which are
much clearer to understand. It substitutes their values from the header file:

mov.b #00001000b,& P2OUT ; LED2 (P2.4) on , LED1 (P2.3) off

• The header file includes a set of constants such as BIT3, which could be used
instead of 00001000b.

Memory

0x0000

0xFFFF
ISA 44

Addressing Modes

Registers

CPU

ADDER

11 w/R0 = Immediate Mode

add.w #100,r10 ;r10 = 100 + r10

PC
PC
PC

R10

IR0x503a

PC
0x503a

0x0064

ALU

+2+2

BYU CS 224

opcode S-reg Ad b/w As D-reg

0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

2 Cycle Instruction

Register Addressing Mode

• mov.w R5 ,R6 ; move (copy) word from R5 to R6

• The PC is incremented by 2 while the instruction is being fetched,
before it is used as a source.

• As = 00

Memory

0x0000

0xFFFF
ISA 46

00 = Register Mode

Addressing Modes

Registers

CPU

ADDER

add.w r4,r10 ;r10 = r4 + r10

PC
PC

R10

R4

IR0x540a
0x540a

PC

ALU

+2

BYU CS 224

opcode S-reg Ad b/w As D-reg

0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0

1 Cycle Instruction

Indexed Mode

• mov.b 3(R5),R6 ; load byte from address 3+(R5) into R6

• Indexed addressing can be used for the source, destination, or
both

• R5 is used for the index here

• As = 01

Memory

0x0000

0xFFFF
ISA 48

01 = Indexed Mode

Addressing Modes

Registers

CPU

ADDER

add.w 6(r4),r10 ;r10 = M(r4+6) + r10

0x0006
PC
PC
PC

R10

R4

IR0x541a
0x541a

PC

ALU

+2+2

BYU CS 224

opcode S-reg Ad b/w As D-reg

0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

3 Cycle Instruction

Memory

0x0000

0xFFFF
ISA 50

Addressing Modes

Registers

CPU

ADDER

cnt

01 w/R2 = Absolute Mode

0000

add.w &cnt,r10 ;r10 = M(cnt) + r10

0xc018
PC
PC
PC

R10

IR0x521a
0x521a

PC

ALU

+2+2

BYU CS 224

opcode S-reg Ad b/w As D-reg

0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0

1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

3 Cycle Instruction

Indirect Register Mode

• mov.w @R5 ,R6 ; load word from address (R5)=4 into R6
• The address of the source is 4, the value in R5. Thus a word is loaded from

address 4 into R6. The value in R5 is unchanged.

• Indirect addressing cannot be used for the destination so indexed addressing
must be used

• mov.w R6 ,0(R5) ; store word from R6 into address 0+(R5)=4

Memory

0x0000

0xFFFF
ISA 52

10 = Indirect Register Mode

Addressing Modes

Registers

CPU

ADDER

add.w @r4,r10 ;r10 = M(r4) + r10

PC
PC

R10

R4

IR0x542a
0x542a

PC

ALU

+2

BYU CS 224

opcode S-reg Ad b/w As D-reg

0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0

2 Cycle Instruction

Indirect Autoincrement

• mov.w @PC+,R6 ; load immediate word into R6

• PC is automatically incremented after the instruction is fetched and
therefore points to the following word.

• The instruction loads this word into R6 and increments PC to point to the
next word, which in this case is the next instruction. The overall effect is
that the word that followed the original instruction has been loaded into
R6.

Indirect Autoincrement Register Mode

• available only for the source

• mov.w @R5+,R6

• A word is loaded from address 4 into R6 and the value in R5 is
incremented to 6 because a word (2 bytes) was fetched.

• Useful when stepping through an array or table, where expressions of
the form *c++ are often used in C. Instead use:

• mov.w R6 ,0(R5) ; store word from R6 into address 0+(R5)=4

• incd.w R5 ; R5 += 2

• For indirect register mode W(S) = 10.

• For indirect autoincrement mode, W(S) = 11.

Memory

0x0000

0xFFFF
ISA 55

Addressing Modes

Registers

CPU

ADDER

11 = Indirect Auto-increment Mode

add.w @r4+,r10 ;r10 = M(r4+) + r10

PC
PC

R10

R4

IR0x543a

PC
0x543a

0002

ALU

+2

BYU CS 224

opcode S-reg Ad b/w As D-reg

0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0

2 Cycle Instruction

Constant Generator

• To improve code efficiency, the MSP430 "hardwires" six
register/addressing mode combinations to commonly used source
values, eliminating the need to use a memory location for the
immediate value:

• #0 - R3 in register mode

• #1 - R3 in indexed mode

• #4 - R2 in indirect mode

• #2 - R3 in indirect mode

• #8 - R2 in indirect auto-increment mode

• #-1 - R3 in indirect auto-increment mode

Memory

0x0000

0xFFFF
ISA 57

Addressing Modes

Registers

CPU

ADDER

Constant Generator

add.w #1,r10 ;r10 = #1 + r10

PC
PC

R10

0000

0001

0002

0004

0008

ffff

IR0x531a

PC
0x531a

ALU

+2

BYU CS 224

opcode S-reg Ad b/w As D-reg

0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0

1 Cycle Instruction

Addressing Modes (C, C++)

C, C++ Addressing Mode Assembly

int a, b, tab[100];

a = tab[b];

Indexed Register mov.w tab(r4),r5

int* cow = &tab[0];

int cat = *cow;

Indirect Register mov.w @r6,r5

int* cow = &tab[0];

int cat = *cow++;

Indirect Auto-increment mov.w @r6+,r5

int cat = 100; Immediate mov.w #100,r5

int cat = *(int*)100; Absolute mov.w &100,r5

extern int dog;

int cat = dog;

Symbolic mov.w dog,r5

register int x, y;

y = x;

Register mov.w r4,r5

BYU CS 224 ISA 58

ADDRESSING MODE EXAMPLES

Copyright 2009 Texas Instruments
All Rights Reserved 59

ADDRESSING MODE EXAMPLES

Copyright 2009 Texas Instruments
All Rights Reserved 60

Addressing Modes (C, C++)

C, C++ Addressing Mode Assembly

int a, b, tab[100];

a = tab[b];

Indexed Register mov.w tab(r4),r5

int* cow = &tab[0];

int cat = *cow;

Indirect Register mov.w @r6,r5

int* cow = &tab[0];

int cat = *cow++;

Indirect Auto-increment mov.w @r6+,r5

int cat = 100; Immediate mov.w #100,r5

int cat = *(int*)100; Absolute mov.w &100,r5

extern int dog;

int cat = dog;

Symbolic mov.w dog,r5

register int x, y;

y = x;

Register mov.w r4,r5

BYU CS 224 ISA 61

Exercise 3.2

ISA 62BYU CS 224

register int x, y;
extern int pig;
int cat, dog, table[100];
int* cow = &table[0];

y = x;
cat = table[dog];
cat = *cow;
dog = *cow++;
cat = 100;
cat = *(int*)100;
cat = pig;

mov.w @r8,r6
mov.w r4,r5
mov.w #100,r6
mov.w table(r7),r6
mov.w @r8+,r7
mov.w pig,r6
mov.w &100,r6

Match the C code on the left with the possible assembly code in
the middle and the addressing mode on the right.

1.

2.

3.

4.

5.

6.

7.

a.

b.

c.

d.

e.

f.

g.

Absolute

Indexed register

Indirect auto-inc

Indirect register

Immediate

Register

Symbolic

i.

ii.

iii.

iv.

v.

vi.

vii.

Core instructions

63

Core instructions

64

65

Emulation

• The clear instruction clr.w or clr.b puts the value of the destination to 0. In
many processors this is a distinct instruction but not in the MSP430: The
assembler translates clr.b P2OUT to mov.b #0,P2OUT. You can see this in the
Disassembly window of the debugger. This is an example of an emulated
instruction.

• The program in assembly language writes to P2OUT before P2DIR, the
opposite order from the program in C. This ensures that the correct values
appear on the pins as soon as they are made into outputs.

• If the pins are switched to output first, the outputs initially are driven to the
values that happen to be sitting in P2OUT

• It is perfectly legal to write to P2OUT while the pin is configured as an input:
The value waits in a buffer until the pins are enabled for output.

66

Emulation

Word and Byte Instructions

67

Constant Generators

68

Operands in register mode requires less memory and faster processing times

• R3 for immediate values 0,1,2 and -1 (0xFFFF)
• R2 for immediate values 4 and 8 and absolute value 0

Types of Instructions

Copyright 2009 Texas Instruments
All Rights Reserved 69

Data Transfer Instructions
Copy data from a source to a destination

Arithmetic-logic Instructions
Perform arithmetic and/or logic operations on operands

Program Control Instructions
Modify the default flow of execution in a program

Data Transfer Instructions

Copyright 2009 Texas Instruments
All Rights Reserved 71

 Copy data from a source to a destination destination ← source

 Do not affect flags

 Included Instructions:
 Data transfer: MOVE

 Data exchange: SWAP

 Stack manipulation: PUSH & POP

 Treat I/O locations like memory
 Memory-mapped I/O

 Examples:

MOV R8,R3 ; Copies the contents of R8 into R3

MOV (0xF348),R5 ; Copies into R5 the word at address F348h

PUSH R7 ; Copies onto the top of the stack the contents of R7

Arithmetic Logic Ops

Copyright 2009 Texas Instruments
All Rights Reserved 72

 Perform arithmetic and/or logic operations on data
 destination ← (DestinationOperand SourceOperand)

 Flags affected according to operation result

 Included Instructions:
 Arithmetic: ADD, SUB

 Compare and test: CMP, TEST

 Bitwise logic: AND, OR, XOR, NOT

 Bit Displacement: SHIFT, ROTATE

 Examples:

ADD R7,R5 ; Places on R5 the sum of the contents of R5 and R7

AND #05AD,R6 ; Places on R6 the bitwise result of anding the contents of R6 and the value 05ADh

ROTL R3 ; Rotates the contents of register R3 one position to the left

Arithmetic Logic Ops

Arithmetic Logic Ops

Working with Bits

Copyright 2009 Texas Instruments
All Rights Reserved 75

Bitwise operations work directly on bits

Logic and register control core instructions

Copyright 2009 Texas Instruments
All Rights Reserved 76

Logic and register control core instructions

Copyright 2009 Texas Instruments
All Rights Reserved 77

Logic and register control core instructions

78

Logic and register control core instructions

79

PROGRAM CONTROL INSTR.

Copyright 2009 Texas Instruments
All Rights Reserved 80

Modify the default flow of execution in a program
 PC ← NewAddress

 Do not affect flags

 Included Instructions:
 Unconditional Jump: Always change the PC

 Conditional Jump: Change the PC if condition is true

 Subroutine Calls and Returns: Transfer control from main to subroutines,

returning to the calling point

 Examples:

JMP #F345h ; Loads PC with the address 0xF345 so program execution continues there

JZ #F345 ; Loads PC with the address 0xF345 if the Zero Flag is set

CALL Sub1 ; Saves PC onto the stack and loads PC with address Sub1. When special instruction

RET

CONDITIONAL

Copyright 2009 Texas Instruments
All Rights Reserved 81

Conditional Jump Instructions enable decision making in programs

CONDITIONAL

Copyright 2009 Texas Instruments
All Rights Reserved 82

CONDITIONAL

83

LOOP

84

Correspondence between some flowcharts constructs and register transfer notation (RTN)

LOOP

Copyright 2009 Texas Instruments
All Rights Reserved 85

LOOP

86

STACK

Copyright 2009 Texas Instruments
All Rights Reserved 87

• A portion of memory used to temporarily store data

• Access through special register Stack Pointer (SP)

• Last-in-First-out (LIFO) operation

• Stack contents is volatile

• Stack Operations

• PUSH: Places data on top of the stack

• POP (or pull) : Retrieves data from the top of the stack

• Other instructions and events modifying the stack

• Invoking and returning from a subroutine call

• Responding and returning from an interrupt event

STACK

Copyright 2009 Texas Instruments
All Rights Reserved 88

STACK

89

STACK

Copyright 2009 Texas Instruments
All Rights Reserved 90

• Push
• Update the stack pointer to point to the new TOS
• Copy the operand to the new TOS

• Pop or Pull
• Copy the contents in the actual TOS to the destination
• Update the stack pointer to point to the new TOS
• Example: PUSH R9 and POP R9 (assume SP = 027Eh)

SUBROUTINE

Copyright 2009 Texas Instruments
All Rights Reserved 92

1.Function Call

Saves PC onto stack

2.Function Execution

PC loaded with function address

3.Executing the Return

Restore the PC from the stack

4.Back at Main Program

Continue at instruction after “CALL”

