
Week 4:
Embedded Programming Using C

The C language evolved from BCPL (1967) and B
(1970), both of which were type-less languages.
C was developed as a strongly-typed language by
DennisRitchie in 1972, and first implemented on a
Digital Equipment Corporation PDP-11 [28].

C is the development language of the Unix and
Linux operating systems and provides for dynamic
memory allocation through the use of pointers.

High level languages arose to allow people to program
without having to know all the hardware details of the
computer. In doing so, programming became less
cumbersome and faster to develop, so more people
began to program.

An important feature is that an instruction in a high level
language would typically correspond to several
instructions in machine code.

On the downside, by not being aware of the mapping of
each of the high level language instructions into machine
code and their corresponding use of the functional units,
the programmer has in effect lost the ability to use the
hardware in the most efficient way.

Use C when:
• tight control of each and every resource of the architecture is not
necessary;
• efficiency in the use of resources such as memory and power are not
a concern;
• you need ease of software reuse;
• there is a company policy or user requirement;
• there is a lack of knowledge of assembly language and of the
particular architecture.

On the other hand, use assembly language for embedded systems
when one or more of the following reasons apply:
• it is imperative or highly desirable that resources be efficiently
handled;
• there is an appropriate knowledge of the assembly language and of
the particular architecture;
• company policy or user requirements.

Recall that a compiler is a program developed to
translate a high-level language source code into the
machine code of the system of interest. For a variety
of reasons, compilers are designed in different ways.
Some produce machine code other than for the
machine in which they are running. Others translate
from one high level language into another high level
language or from a high level language into
assembly language. The term cross-compiler is
used to define these type of translators. When the
embedded CPU itself cannot host a compiler, or a
compiler is simply not available to run on a particular
CPU, a cross-compiler is used and run on other
machine.

There are also optimizing compilers, i.e.,
compilers (or cross-compilers) in which code
optimizing techniques are in place. These are
compilers designed to help the code execute
faster, and include techniques such as constant
propagation, interprocedural analysis, variable or
register reduction, inline expansion, unreachable
code elimination, loop permutation, etc.

Basically, a C program source consists of
preprocessor directives, definitions of global variables,
and one or more functions.
A function is a piece of code, a program block, which
is referred to by a name. It is sometimes called
procedure. Inside a function, local variables may be
defined. A compulsory function is the one containing
the principal code of the program, and must be called
main. It may be the only function present.

Two source structures are shown below. They differ in the position of the main
function with respect to the other functions. The left structure declares other
functions before the main code, while in the right structure the main function
goes before any other function definition. In this case, the names of the functions
must be declared prior to the main function. The compiler will dictate which
structure, or if a variation, should be used. There may also be variations on
syntax. The reader must check this and other information directly in the compiler
documentation.

#include <filename>
#include “filename”

#define CONST_NAME constant value or expression
#define MAX2 2*MAX

The storage class of a variable may be auto, extern,
static and register. The storage class also specifies the
storage duration which defines when the variable is created and
when it is destroyed. The storage duration can be either automatic
or static.
An automatic storage duration indicates that a variable is
automatically created (or destroyed) when the program enters (or
exits) the environment of code where it is declared. Unless
specified otherwise, local variables in C have automatic storage
duration.
The static storage duration is the type of storage for global
variables and those declared extern.

void f() {
int i;
i = 1; // OK: in scope

}
void g() {

i = 2; // Error: not in scope
}

int i;
void f() {

i = 1; // OK: in scope
}
void g() {

i = 2; // OK: still in scope
}

Automatic variables are local variables whose lifetime ends when execution leaves their
scope, and are recreated when the scope is reentered.

for (int i = 0; i < 5; ++i) {
int n = 0;
printf("%d ", ++n); // prints 1 1 1 1 1 - the previous value is lost

}

Static variables have a lifetime that lasts until the end of the program.
A static variable inside a function keeps its value between invocations. A static global
variable or a function is "seen" only in the file it's declared in
This is useful for cases where a function needs to keep some state between invocations,
and you don't want to use global variables. Beware, however, this feature should be
used very sparingly - it makes your code not thread-safe and harder to understand.

for (int i = 0; i < 5; ++i) {
static int n = 0;
printf("%d ", ++n); // prints 1 2 3 4 5 - the value persists

}

char myVar = 126

int *ptr

ptr=&myVar

14

• Declarations
• The const and volatile qualifications are often critical,

particularly to define special function registers. Their
addresses must be treated as constant but the contents are
often volatile.

• const: Means that the value should not be modified: it is
constant.

• volatile: Means that a variable may appear to change
“spontaneously,” with no direct action by the user’s program.
The compiler must therefore not keep a copy of the variable
in a register for efficiency (like a cache). Nor can the compiler
assume that the variable remains constant when it optimizes
the structure of the program—rearranging loops, for instance.
If the compiler did either of these, the program might miss
externally induced changes to the contents of the memory
associated with the variable

volatile

15

int foo;
void bar(void)

{
foo = 0;
while (foo != 255) ;

}

void bar(void)
{
foo = 0;
while (TRUE) ;

}

static volatile int foo;
void bar (void)

{
foo = 0;
while (foo != 255) ;

}

16

• The peripheral registers associated with the input ports must
obviously be treated as volatile in an embedded system

• The values in these depend on the settings of the switches or
whatever is connected to the port outside the MCU. Clearly
the compiler must not assume that these never change.

while (P1IN == OldP1IN) {
// wait for change in P1IN

}
• The loop would be pointless, and would be optimized if P1IN

were not declared volatile.

Example 5.3 The following examples show common targets with logic bitwise operations in C:
P1OUT |= BIT4; // Set P1.4
P1OUT ˆ= BIT4; // Toggle P1.4
P1OUT &= B̃IT4; // Clear P1.4

Shifts

18

• It is sometimes necessary to shift bits in a variable, most
commonly when handling communications. For example, serial
data arrives 1 bit at a time and needs to be assembled into
bytes or words for further processing. This would be done in
hardware with a shift register and similarly by a shift operation
in software. Assignment operators can also be used for shifts so
you will see expressions like value <<= 1 to shift value left by
one place.

Low-Level Logic Operations

19

• The Boolean form, such as the AND operation in if (A && B),
treats A and B as single Boolean values. Typically A = 0 means
false and A != 0 means true.

• In contrast, the bitwise operator & acts on each corresponding
pair of bits in A and B individually. This means that eight
operations are carried out in parallel

if A and B are bytes. For example,
if A = 10101010 and B = 11001100,
then A&B= 10001000.
• Similarly, the bitwise ordinary (inclusive) OR operation gives

A|B= 11101110 and
• exclusive-or (XOR) gives AˆB= 01100110.

Masks to Test Individual Bits

20

• Suppose that we want to know the value of bit 3 on the
input of port 1

• This means bit 3 of the byte P1IN, abbreviated to P1IN.3, for
which we can use the standard definition BIT3 = 00001000

• A pattern used for selecting bits is called a mask and has all
zeroes except for a 1 in the position that we want to select

if ((P1IN & BIT3) == 0) { // Test P1.3
// Actions for P1.3 == 0
} else { // Actions for P1.3 != 0 }

• Always test masked expressions against 0. It is tempting to
write if ((P1IN & BIT3) == 1) for the opposite test to that
above. Unfortunately it is never true because the nonzero
result is BIT3, not 1. Use if ((P1IN & BIT3) ! = 0)instead.

Masks to Modify Individual Bits

21

• Masks can also be used to modify the value of individual bits.
Start with the OR operation. Its truth table can be expressed as x |
0 = x and x | 1 = 1. In words, taking the OR of a bit with 0 leaves
its value unchanged, while taking its OR with 1 sets it to 1. Thus
we could set (force to 1) bit 3 of port 1 with P1OUT = P1OUT |
BIT3, which leaves the values of the other bits unchanged. This is
usually abbreviated to P1OUT |= BIT3.

• Clearing a bit (to 0) is done using AND, as in the previous section,
but is slightly more tricky. The truth table can be expressed as x &
0 = 0 and x & 1 = x. Thus we AND a bit with 1 to leave it
unchanged and clear it with 0. In this case, the mask should have
all ones except for the bit that we wish to clear, so we use ˜BIT3
rather than BIT3. Thus we clear P1OUT.3 with P1OUT &= ˜BIT3.

• Finally, bits can be toggled (changed from 0 to 1 or 1 to 0) using
the exclusive-or operaƟon. For example, P1OUT ˆ= BIT3 toggles
P1OUT.3.

Bit Fields

22

• Bit fields resemble structures except that the number of bits occupied by each
member is specified.

• Bit fields allow the programmer to access memory in unaligned sections, or
even in sections smaller than a byte. example:

struct _bitfield
{ flagA : 1;
flagB : 1;
nybbA : 4;
byteA : 8;

}
The colon separates the name of the field from its size in bits, not bytes.
Suddenly it becomes very important to know what numbers can fit inside
fields of what length. For instance, the flagA and flagB fields are both 1 bit, so
they can only hold boolean values (1 or 0). the nybbA field can hold 4 bits

Bit Fields

23

• Bit fields resemble structures except that the number of bits occupied by each
member is specified. From io430x11x1.h header file an example:

struct {
unsigned short TAIFG : 1; // Timer_A counter int flag
unsigned short TAIE : 1; // Timer_A counter int enable
unsigned short TACLR : 1; // Timer_A counter clear
unsigned short : 1;
unsigned short TAMC : 2; // Timer_A mode control
unsigned short TAID : 2; // Timer_A clock input divider
unsigned short TASSEL : 2; // Timer_A clock source select
unsigned short : 6;
} TACTL_bit;
• use a field instead of a mask

• Set with TACTL_bit.TAIFG = 1.
• Cleared with TACTL_bit.TAIFG = 0.
• Toggled with TACTL_bit.TAIFG ˆ= 1.

Unions

24

• Fields are convenient for manipulating a single bit or group of bits but
not for writing to the whole register

• It is easier to do this by composing a complete value using masks, like
this:
TACTL = MC_2 | ID_3 | TASSEL_2 | TACLR;
Remember | is bitwise OR operation in C

• The section of the header file for TACTL includes a set of masks that
correspond to the bit fields. We can therefore choose whether to treat
the register as a single object (byte or word) or as a set of bit fields.

Sizes and Types of Variables

25

Copyright 2009 Texas Instruments
All Rights Reserved

• It is often important to know the precise size of a variable—how many
bytes it occupies and what range of values it can hold.

• The MSP430 is a 16-bit processor so it is likely that a char will be 1 byte
and an int will be 2 bytes.

• Always qualify a definition with signed or unsigned to be certain

BASIC IF:
if (condition)
{
statements;
}
IF-ELSE:
if (condition)
{
statements;
} else
{
statements;
}

SWITCH:
switch (condition)
{
case 1:
statements;
break;
case 2:
statements;
break;
default:
statements;

}

Example 5.4 The following are to codes that increment odd integers by 1
and even integers by 2. First code is an if-else structure:
if (a%2==1)
{

a=a+1;
}
else
{

a=a+2;
}
The next code is a switch structure:
switch (a%2)
{

case 1:
a=a+1;
break;

case 0:
a=a+2;
break;

default: /* not needed for this example */

}

for(cv=initial;final expression on cv;cv=cv + 1)
{

statements;
}

Example 5.5 for (i=1;i<=N;i++)
{

cin = cin>>array[i];
array[i]=array[i]*array[i-1]+4;

}
Next, an example with nested loops, multiplying matrices:
Example 5.6 In this example an N-by-N matrix or array is updated with new values
following the matrix multiplication rules.
for (i=0;i<N;i++)
{

for (j=0;j<N;j++)
{

for (k=0;k<N;k++)
{
c[i][j]=c[i][j]+a[i][k]*b[k][j];
}

}
}
An infinite loop, so common in embedded applications, can be obtained with a
for structure with the declaration
for(;;)

int main()
{

int j = 3476, m, n;
printf("The decimal %d is equal to binary - ", j);
/* assume we have a function that prints a binary string when given

a decimal integer
*/
show(j);

/* the loop for right shift operation */
for (m = 0; m <= 5; m++) {

n = j >> m;
printf("%d right shift %d gives ", j, m);
show(n);

}
return 0;

}

The decimal 3476 is equal to binary - 00000000000000000000110110010100
3476 right shift 0 gives 00000000000000000000110110010100
3476 right shift 1 gives 00000000000000000000011011001010
3476 right shift 2 gives 00000000000000000000001101100101
3476 right shift 3 gives 00000000000000000000000110110010
3476 right shift 4 gives 00000000000000000000000011011001
3476 right shift 5 gives 00000000000000000000000001101100

Implement function show(int j)

#include <stdio.h>

int main()
{

unsigned int x = 3, y = 1, val1, val2 ;
val1= x ^ y; // x XOR y
val2 = x & y; // x AND y

while (carry != 0) {
val2 = val2 << 1; // left shift the val2
x = val1; // initialize x as val1
y = val2 ; // initialize y as val2
val1 = x ^ y; // val1is calculated
val2 = x & y; /* val2 is calculated, the loop condition is

evaluated and the process is repeated until
val2 is equal to 0.

*/
}
printf("%d\n", val1); return 0;

}

What is the output?

WHILE and DO-WHILE Loops. The structure for the while-
structure is

cv = initial value;
while (condition)
{

statements;
}

and for the do-while structure is

cv = initial value;
do {

statements;
} while (condition);

Functions
The structure for a function definition in the C language is
return_type function_name(typed parameter list)
{

local variable declarations;
function block;
return expression;

}
The parameters listed in the parenthesis are called formal parameters of the function.

Functions are basically subroutines. Data passing toward the function is done through
parameters, and from the function with the return keyword in the expression.
Let us look at at following example. For all practical purposes, the parameters become local
variables within the function, with the exception of pointers, as explained later.
Example 5.7 The following function returns the maximum of two real values.
float maximize(float x, float y)
{

/* no local variables except for x and y */
if (x > y)

return x;
else

return y;
}
The values used in the actual call or instantiation of a function are called the actual
parameters of the function. These values must be of the same type specified for the formal
parameters, like for example in the statement
z = maximize(3.28, myData).

Example 5.8 An example of a record called date_of_year and its use is shown
below. This record has an array member named month whose nine (12) elements
are of type char, a member named day_of_week that points to a location in
memory of type char, i.e. it is a pointer to an array or string of characters of
arbitrary nlength, and another member named day_of_month of type int. After
the record is declared, it is followed by the declaration of the variable birthday of
the same type, as well as assignment statements needed to initialize the variable
struct date_of_year
{

char month[9];
char *day_of_week;
int day_of_month;

};
struct date_of_year birthdate;
strcpy(birthdate.month, December);
birthdate.day_of_week = Wednesday;

birthdate.day_of_month = 15;

Light LEDs in C

36

Example: Initializating Port 2.0 as output

#include <msp430.h>

void main()
{

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P2SEL &= (~BIT0); // Set P2.0 SEL for GPIO
P2DIR |= BIT0; // Set P2.0 as Output
P2OUT |= BIT0; // Set P2.0 HIGH

}

38

• The complete program needs to carry out the following tasks:
• 1. Configure the microcontroller.
• 2. Set the relevant pins to be outputs by setting the appropriate bits of

P2DIR.
• 3. Illuminate the LEDs by writing to P2OUT.
• 4. Keep the microcontroller busy in an infinite, empty loop

// ledson.c - simple program to light LEDs
// Sets pins to output , lights pattern of LEDs , then loops forever
// Olimex 1121 STK board with LEDs active low on P2.3 and high on 2.4
// J H Davies , 2006 -05 -17; IAR Kickstart version 3.41A
// --
#include <msp430x11x1.h> // Specific device
void main (void)
{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
P2DIR = 0x18; // Set pins with LEDs to output , 0b00011000
P2OUT = 0x08; // LED2 (P2.4) off , LED1 (P2.3) on (active low!)
for (;;) { // Loop forever ...
} // ... doing nothing

}

39

• As usual, there is an #include directive for a header file.
However it is not the familiar stdio.h, because there is no
standard input and output. Instead it is a file that defines the
addresses of the special function and peripheral registers and
other features specific to the device being used.

• The first line of C stops the watchdog timer, which would
otherwise reset the chip after about 32 ms.

• The two pins of port P2 that drive the LEDs are set to be
outputs by writing to P2DIR. For safety the ports are always
inputs by default when the chip starts up (power-up reset).

• The LEDs are illuminated in the desired pattern by writing to
P2OUT. Remember that a 0 lights an LED and 1 turns if off
because they are active low.

• The final construction is an empty, infinite for loop to keep the
processor busy. It could instead be written as while (1) {} but
some compilers complain that the condition in the while()
statement is always true.

40

• The infinite loop is needed because the processor does not
stop of its own accord: It goes on to execute the next
instruction and so on, until it tries to read an instruction from
an illegal location and cause a reset. This is different from
introductory programming courses, where you learn to write
programs that perform a definite task, such as displaying hello,
world, and stop.

• In these cases, an infinite loop is disastrous. In contrast, there
is an infinite loop in every interactive program, such as a word
processor, or one that runs continuously, such as an operating
system. For example, the computer as a word processor
spends most of its time in an infinite loop waiting us to hit the
next key.

• The empty loop is a waste of the MCU but keeps it under
control. A better approach is to put the processor to sleep—
into a low-power mode, which we will deal later.

Light LEDs in Assembly Language

41

; ledsasm.s43 - simple program to light LEDs , absolute assembly
; Lights pattern of LEDs , sets pins to output , then loops forever
; Olimex 1121 STK board with LEDs active low on P2.3,4
;---
#include <msp430x11x1.h> ; Header file for this device
ORG 0xF000 ; Start of 4KB flash memory
Reset: ; Execution starts here
mov.w #WDTPW|WDTHOLD ,& WDTCTL ; Stop watchdog timer
mov.b #00001000b,& P2OUT
; LED2 (P2.4) on , LED1 (P2.3) off (active low!)
mov.b #00011000b,& P2DIR ; Set pins with LEDs to output
InfLoop: ; Loop forever ...
jmp InfLoop ; ... doing nothing
;---
ORG 0xFFFE ; Address of MSP430 RESET Vector IVT
DW Reset ; Address to start execution
END

Move instruction a=b?
42

• It does not depend on the type of data, whether a and b are
char, int, or other types.

• We do not have to worry how a and b are stored and whether
b is a constant, variable, or expression.

• The compiler converts the data if a and b are of different
types (within the rules, of course).

-------------------c versus assembly---------
• The CPU can transfer only a byte or a word and must be told

which.
• We must specify the location and nature of the source and

destination explicitly.
• There is no conversion of the data
• The basic instruction in assembly language is mov.w

source,destination to move a word or mov.b for a byte. If you
omit the suffix and just use mov the assembler assumes that
you mean mov.w.

Where Should the Program Be Stored in Memory?

43

• We must tell the assembler where it should store the
program in memory. Generally the code should go into the
flash ROM and variables should be allocated in RAM.

• We put the code in the most obvious location, which is at the
start of the flash memory (low addresses). The Memory
Organization section of the data sheet shows that the main
flash memory has addresses 0xF000–FFFF. We therefore
instruct the assembler to start storing the code at 0xF000
with the organization directive ORG 0xF000.

Where Should Execution of the Program Start?

44

• Which instruction should the processor execute first after it
has been reset (or turned on)?

• In the MSP430, the address of the first instruction to be
executed is stored at a specific location in flash memory, rather
than the instruction itself.

• This address, called the reset vector, occupies the highest 2
bytes of the vector table at 0xFFFE:FFFF.

Read Input from a Switch

45

• Now that we can write output to LEDs, the next step is to read input from a switch.

• The pull-up resistor Rpull holds the input at logic 1 (voltage VCC) while the button is up; closing the
switch shorts the input to ground, logic 0 or VSS. The input is therefore active low, meaning that it
goes low when the button is pressed. You might like to think “button down→ input down.”

• A wasted current flows through the pull-up resistors to ground when the button is pressed. This is
reduced by making Rpull large, but the system becomes sensitive to noise if this is carried too far and
the Olimex 1121STK has Rpull = 33 k, which is typical

Read Input from a Switch

46

• Pull-up or pull-down resistors can be activated by setting bits in the PxREN
registers, provided that the pin is configured as an input.

• The MCU behaves randomly if you forget this step because the inputs floats;
• The next program lights an LED when a button is pressed—the MCU acts as

an expensive piece of wire. I assume that we use LED1 (P2.3) and button B1
(P2.1) on the Olimex 1121STK.

PxREN --> Each bit in PxREN register enables or disables the
pullup/pulldown resistor of the corresponding I/O pin. The corresponding
bit in the PxOUT register selects if the pin is pulled up or pulled down.
Bit = 0: Pullup/pulldown resistor disabled
Bit = 1: Pullup/pulldown resistor enabled

PxOUT --> If the pin’s pull−up/down resistor is enabled, the
corresponding bit in the PxOUT register selects pull-up or pull-down.
Bit = 0: The pin is pulled down
Bit = 1: The pin is pulled up

Single Loop with a Decision
• The first approach has an infinite loop that tests the state

of the button on each iteration.
• It turns the LED on if the button is down and turns it off if

the button is up.

This version has a single loop containing a decision
statement.

// butled1.c - press button to light LED

// Single loop with "if"

// Olimex 1121 STK board , LED1 active low on P2.3,

// button B1 active low on P2.1

// --

#include <msp430x11x1.h> // Specific device

// Pins for LED and button on port 2

#define LED1 BIT3

#define B1 BIT1

void main (void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

P2OUT |= LED1; // Preload LED1 off (active low!)

P2DIR = LED1; // Set pin with LED1 to output

for (;;) { // Loop forever

if ((P2IN & B1) == 0) {

// Is button down? (active low)

P2OUT &= ˜LED1;

// Yes: Turn LED1 on (active low!)

}

else {

P2OUT |= LED1;

// No: Turn LED1 off (active high!)

}

}

}

Program with single loop in
assembly language to light
LED1 when button B1 is
pressed.

48

#include <msp430x11x1.h> ; Header file for this device
; Pins for LED and button on port 2
LED1 EQU BIT3
B1 EQU BIT1
RSEG CODE ; Program goes in code memory
Reset: ; Execution starts here
mov.w #WDTPW|WDTHOLD ,& WDTCTL ; Stop watchdog timer
bis.b #LED1 ,& P2OUT ; Preload LED1 off (active low!)
bis.b #LED1 ,& P2DIR ; Set pin with LED1 to output
InfLoop: ; Loop forever
bit.b #B1 ,&P2IN ; Test bit B1 of P2IN
jnz ButtonDown ; Jump if not zero , button down
ButtonUp: ; Button is up
bic.b #LED1 ,& P2OUT ; Turn LED1 on (active low!)
jmp InfLoop ; Back around infinite loop
ButtonUp: ; Button is up
bis.b #LED1 ,& P2OUT ; Turn LED1 off (active low!)
jmp InfLoop ; Back around infinite loop
;---
RSEG RESET ; Segment for reset vector
DW Reset ; Address to start execution
END

49

• The two directives with EQU are equivalent to #define in C and provide
the same symbols.

• The instruction bis stands for “bit set” and is equivalent to |= in C. The
first operand is the mask that selects the bits and the second is the
register whose bits should be set, P2OUT in the first case. The
characters # and & are necessary to show that the values are
immediate data and an address, as in the mov instruction. Similarly, .b
is again needed because P2OUT is a byte rather than a word.

• The complementary instruction bic stands for “bit clear.” It clears bits in
the destination if the corresponding bit in the mask is set. For example,
bic.b #0b00011000,&P2OUT clears bits 3 and 4 of P2OUT. There is no
need to take the complement of the mask as in the C program, where
&=˜ mask is used to clear bits.

• bit.b #B1,&P2IN. This instruction stands for “bit test” and is the same as
the and instruction except that it affects only the status register; it does
not store the result. In this case it calculates B1 & P2IN and either sets
the Z bit in the status register if the result is zero or clears Z if the result
is nonzero. It does not affect P2IN.

Two Loops, One for Each State of the Button

50

Program butled2.c in C to light LED1 when button B1 is pressed. This version has a loop
for each state of the button.

// butled2.c - press button to light LED Two loops , one for each state of the button
// Olimex 1121 STK board , LED1 active low on P2.3, // button B1 active low on P2.1
#include <msp430x11x1.h> // Specific device
// Pins for LED and button on port 2
#define LED1 BIT3
#define B1 BIT1
void main (void)
{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
P2OUT = LED1; // Preload LED1 off (active low!)
P2DIR = LED1; // LED1 pin output , others input
for (;;) { // Loop forever

while ((P2IN & B1) != 0) { // Loop while button up
} // (active low) doing nothing
// Actions to be taken when button is pressed
P2OUT &= ˜LED1; // Turn LED1 on (active low!)
while ((P2IN & B1) == 0) { // Loop while button down
} // (active low) doing nothing
// Actions to be taken when button is released
P2OUT |= LED1; // Turn LED1 off (active low!)

}
}

In this case two while
loops are inside an

infinite loop. The
program is trapped
inside the first loop

while the button is up
and in the second while
it is down. The actions

to be taken when the
button is pressed or

released—turning the
LED on and off—are
put in the transitions

between the loops, not
within the loops

themselves.

51

What is the difference between
these two approaches?
• The LED is continually being switched on or off in the first

version. Of course this has no visible effect but the
important point is that the action is repeated continually.

• The LED is turned on or off only when necessary in the
second version, just at the points when the button is
pressed or released.

• There is no practical difference between these for the
simple task of lighting the LED while the button is down,
but it makes a big difference for the following examples.

52

• Write a program to toggle the LED each time the button is
pressed: Turn it on the first time, off the second, on the
third, and so on.

• Write a program to count the number of times the button
is pressed and show the current value on the LEDs.

• Suppose that you have a complete set of LEDs on port
P1.Write a program to measure the time for which a
button on P2.7 is pressed and display it as a binary value
on the LEDs (arbitrary units).

• // need to wait till it turns off!!!

What kind of a loop should you use?

Addressing Bits
Individually in C

54

Program butled3.c in C to light LED1 when button B1 is pressed. This version uses bit fields rather
than masks.

// butled3.c - press button to light LED

// Two loops , one for each state of the button

// Header file with bit fields

// Olimex 1121 STK board , LED1 active low on P2.3,

// button B1 active low on P2.1

// --

#include <io430x11x1.h> // Specific device , new format header

// Pins for LED and button

#define LED1 P2OUT_bit.P2OUT_3

#define B1 P2IN_bit.P2IN_1

void main (void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

LED1 = 1; // Preload LED1 off (active low!)

P2DIR_bit.P2DIR_3 = 1; // Set pin with LED1 to output

for (;;) { // Loop forever

while (B1 != 0) { // Loop while button up

} // (active low) doing nothing

// actions to be taken when button is pressed

LED1 = 0; // Turn LED1 on (active low!)

while (B1 == 0) { // Loop while button down

} // (active low) doing nothing

// actions to be taken when button is released

LED1 = 1; // Turn LED1 off (active low!)

}

}

Two Loops in Assembly Language

55

Program butasm2.s43 in assembly language to light LED1 when button B1 is pressed. There is a loop for each state of the button.
; butasm1.s43 - press button to light LED
; Two loops , one for each state of the button
; Olimex 1121STK , LED1 active low on P2.3, B1 active low on P2.1
;---
#include <msp430x11x1.h> ; Header file for this device
; Pins for LED and button on port 2
LED1 EQU BIT3
B1 EQU BIT1
RSEG CODE ; Program goes in code memory
Reset: ; Execution starts here
mov.w #WDTPW|WDTHOLD ,& WDTCTL ; Stop watchdog timer
bis.b #LED1 ,& P2OUT ; Preload LED1 off (active low!)
bis.b #LED1 ,& P2DIR ; Set pins with LED1 to output
InfLoop: ; Loop forever
ButtonUpLoop: ; Loop while button up
bit.b #B1 ,&P2IN ; Test bit B1 of P2IN
jnz ButtonUpLoop ; Jump if not zero , button up
; Actions to be taken when button is pressed
bic.b #LED1 ,& P2OUT ; Turn LED1 on (active low!)
ButtonDownLoop: ; Loop while button down
bit.b #B1 ,&P2IN ; Test bit B1 of P2IN
jz ButtonDownLoop ; Jump if zero , button down
; Actions to be taken when button is released
bis.b #LED1 ,& P2OUT ; Turn LED1 off (active low!)
jmp InfLoop ; Back around infinite loop
;---
RSEG RESET ; Segment for reset vector
DW Reset ; Address to start execution
END

Flashing LED
with delay

56

// flashled.c - toggles LEDs with period of about 1s
// Software delay for() loop
// Olimex 1121STK , LED1 ,2 active low on P2.3,4
// J H Davies , 2006 -06 -03; IAR Kickstart version 3.41A
// --
#include <msp430x11x1.h> // Specific device
// Pins for LEDs
#define LED1 BIT3
#define LED2 BIT4
// Iterations of delay loop; reduce for simulation
#define DELAYLOOPS 50000
void main (void)
{

volatile unsigned int LoopCtr; // Loop counter: volatile!
WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
P2OUT = ˜LED1; // Preload LED1 on , LED2 off
P2DIR = LED1|LED2; // Set pins with LED1 ,2 to output
for (;;) { // Loop forever

for (LoopCtr = 0; LoopCtr < DELAYLOOPS; ++ LoopCtr) {
} // Empty delay loop

P2OUT ˆ= LED1|LED2; // Toggle LEDs
}

}

57

• The critical feature is the volatile key word. This
essentially tells the compiler not to perform any
optimization on this variable. If it were omitted and
optimization were turned on, the compiler would notice
that the loop is pointless and remove it, together with our
delay.

• It is unsigned to give a range of 0–65,535, which is needed
for 50,000 iterations.

Delay Loop in Assembly Language

58

#include <msp430x11x1.h> ; Header file for this device
; Pins for LED on port 2
LED1 EQU BIT3
LED2 EQU BIT4
; Iterations of delay loop; reduce for simulation
DELAYLOOPS EQU 50000
RSEG CODE ; Program goes in code memory
Reset: ; Execution starts here
mov.w #WDTPW|WDTHOLD ,& WDTCTL ; Stop watchdog timer
mov.b #LED2 ,& P2OUT ; Preload LED1 on , LED2 off
bis.b #LED1|LED2 ,& P2DIR ; Set pins with LED1 ,2 to output
InfLoop: ; Loop forever
clr.w R4 ; Initialize loop counter
DelayLoop: ; [clock cycles in brackets]
inc.w R4 ; Increment loop counter [1]
cmp.w #DELAYLOOPS ,R4 ; Compare with maximum value [2]
jne DelayLoop ; Repeat loop if not equal [2]
xor.b #LED1|LED2 ,& P2OUT ; Toggle LEDs
jmp InfLoop ; Back around infinite loop
;---
RSEG RESET ; Segment for reset vector
DW

Example 5.10 An external parallel ADC is connected to port P1, and handshaking
is done with port P2, bits P2.0 and P2.1. The ADC starts data conversion when P2.0
makes a low-to-high transition. New datum is ready when P2.1 is high. The objective
of the code is to read and store 10 data in memory. Normal programs would do something
else after data is collected. For illustration purposes, let the “something else” be sending a
pulse to P2.3. After set up, the main will call in an infinite loop the two functions for
reading and for sending the pulse. The flowcharts for the main and Read-and-Store
function are shown in Fig.
A more itemized pseudo code for our objectives is as follows:
1. Declare variables and functions
2. In main function:
(a) Setup:

• Stop watchdogtimer
• P2.0 and P2.3 as output – P2.1 is input

(b) Mainloop (forever):
• Clear outputs.
• Call function for storing data.
• Call function for something else

3. Function to Read and Store Data.
• Request conversion
• Wait for data
• Store the data
• Prepare for new

4. Something Else
• Send pulse to P2.3

#include <msp430x22x4.h> //For device used
unsigned int dataRead[10]; // Data in memory
void StoreData(), SomethingElse(); // functions
void main(void)
{

WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer
P2DIR = BIT0 | BIT3; // Set output directions for pins
for (;;) //infinite loop
{

P2OUT = 0; // Initialize with no outputs
StoreData(); // Call for data storage
SomethingElse(); // Call for other processing

}
}
void StoreData (void)
{

volatile unsigned int i; // not affected by optimization
for(i=0; i<10; i++)
{

P2OUT |= BIT0; // Request conversion
while (P2IN & 0x08!=0x08){ } // wait for conversion
a[i] = P1IN;
p2OUT &= ˜BIT0; // prepare for new conversion.

}
void SomethingElse (void)
{

volatile unsigned int i; // not affected by optimization
P2OUT |= BIT3; // Set voltage at P2.3
for(i=65000; i>0; i--); // pulse width
P2OUT &= ˜BIT3; // Complete pulse

}

Assembly Language with Variables in RAM

62

• A register in the CPU is a good place to store a variable that is needed
rapidly for a short time but RAM is used for variables with a longer life.
We might as well use the first address available and there are several ways
in which this can be allocated.

• The data sheet shows that RAM lies at addresses from 0x0200–02FF so we
should use 0x0200 and 0x0201 for LoopCtr, which needs 2 bytes.

LoopCtr EQU 0x0200 ; 2 bytes for loop counter
ORG 0x0200 ; Start of RAM
LoopCtr EQU 2 ; 2 bytes for loop counter
Another EQU 1 ; 1 byte for another variable

• The two bytes we have reserved could hold a signed integer, an
unsigned integer, a unicode character, and so on. It is up to the
programmer to keep track of the meaning of the data and the
assembler provides no checks.

Flash Led with Call

63

;;---
#include <msp430x11x1.h> ; Header file for this device
; Pins for LED on port 2
LED1 EQU BIT3
; Iterations of delay loop for about 0.1s (3 cycles/iteration)
DELAYLOOPS EQU 27000
;---
RSEG CSTACK ; Create stack (in RAM)
;---
RSEG CODE ; Program goes in code memory
Reset: ; Execution starts here
mov.w #SFE(CSTACK),SP ; Initialize stack pointer
main: ; Equivalent to start of main() in C
mov.w #WDTPW|WDTHOLD ,& WDTCTL
; Stop watchdog timer
bis.b #LED1 ,& P2OUT ; Preload LED1 off
bis.b #LED1 ,& P2DIR ; Set pin with LED1 to output
InfLoop: ; Loop forever
mov.w #5,R12 ; Parameter for delay , units of 0.1s
call #DelayTenths ; Call subroutine: don't forget #
xor.b #LED1 ,& P2OUT ; Toggle LED
jmp InfLoop ; Back around infinite loop

; Subroutine to give delay of R12 *0.1s
; Parameter is passed in R12 and destroyed
; R4 is used for loop counter but is not saved and restored
; Works correctly if R12 = 0: the test is executed first as in
while (){}
;--
DelayTenths:
jmp LoopTest ; Start with test in case R12 = 0
OuterLoop:

mov.w #DELAYLOOPS ,R4
; Initialize loop counter
DelayLoop: ; [clock cycles in brackets]
dec.w R4 ; Decrement loop counter [1]
jnz DelayLoop ; Repeat loop if not zero [2]
dec.w R12 ; Decrement 0.1s delays
LoopTest: cmp.w #0,R12
; Finished number of 0.1s delays?

jnz OuterLoop ; No: go around delay loop again
ret ; Yes: return to caller
;--
RSEG RESET ; Segment for reset vector
DW Reset ; Address to start execution
END

asm("assembly_instruction");
For example, asm("bis.b #002h,R4"); inserts the instruction in the program
and directly works with the CPU register, something extremely difficult to do
with C.

OR use intrinsic functions

__delay_cycles(1000);

USING ASSEMBLY INSTRUCTIONS FROM C

