MSP430 Teaching Materials

Week 5 FUNDAMENTALS OF INTERFACING AND TIMERS for MSP430

Hacettepe University

Elements in Basic MCU Interface

Fig. 6.1 Components in a basic CPU interface: power source, clock generator, power-on-reset, and boot sequence

- Power Source
 - ✤ Feeds CPU and peripherals
- Clock Oscillators
 - System synchronization
- Power-on Reset
 - Physical reset hardware
- Booting Function
 - System configuration and initialization

PROCESSORS' POWER SOURCES

Main Function

- Provide Power to CPU and Surrounding Electronics
- Establish reference levels for internal device operation

Basic Requirements

- Steady voltage source
- Sufficient current capability
- Load regulation
- Power quality
- Implications
 - System functionality and integrity
 - Signal compatibility

Absolute Maximum Ratings

- Levels of stress that if exceeded will cause permanent damage to the device
- If used for extended periods will affect device reliability
- **DO NOT design for operating devices at these levels**

Symbol	Parameter			1	Value				Units
		4001	4002	4003	4004	4005	4006	4007	
VRRM	Peak Repetitive Reverse Voltage	50	100	200	400	600	800	1000	V
I _{F(AV)}	Average Rectified Forward Current, .375 " lead length @ T _A = 75°C	1.0				A			
IFSM	Non-repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave	30		A					
T _{stg}	Storage Temperature Range	-55 to +175			°C				
T,	Operating Junction Temperature	-55 to +175				°C			

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Absolute Maximum Ratings							
5°C	VALUE	UNIT					
Drain-to-Source Voltage	60	v					
Gate-to-Source Voltage	±20	v					
Continuous Drain Current (Package limited)	200						
Continuous Drain Current (Silicon limited), T _C = 25°C	349	А					
Continuous Drain Current (Silicon limited), T _C = 100°C	247						
Pulsed Drain Current (1)	400	Α					
Power Dissipation	375	w					
Operating Junction and Storage Temperature Range	-55 to 175	•c					
Avalanche Energy, single pulse I ₀ = 128 A, L = 0.1 mH, R _G = 25 Ω	819	mJ					
	Absolute Maximum Rate s*C Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current (Package limited) Continuous Drain Current (Silicon limited), $T_c = 25^{\circ}C$ Continuous Drain Current (Silicon limited), $T_c = 100^{\circ}C$ Pulsed Drain Current (¹) Power Dissipation Operating Junction and Storage Temperature Range Avalanche Energy, single pulse $I_b = 128 A, L = 0.1 \text{ mH}, R_G = 25 \Omega$	Absolute Maximum Ratings s*C VALUE Drain-to-Source Voltage 60 Gate-to-Source Voltage ±20 Continuous Drain Current (Package limited) 200 Continuous Drain Current (Silicon limited). T _C = 25*C 349 Continuous Drain Current (Silicon limited). T _C = 100*C 247 Pulsed Drain Current (¹¹) 400 Power Dissipation 375 Operating Junction and Storage Temperature Range –55 to 175 Avalanche Energy, single pulse I ₀ = 128 A, L = 0.1 mH, R _G = 25 Ω 819					

Max R_{BJC} = 0.4°C/W, pulse duration ≤100 µs, duty cycle ≤1%

					Ta=25+/-2°C
Parameter	Symbol	Min.	Max.	Unit	Remarks
Power Supply Voltage	V _{DD}	-0.3	4.0	V	
Logic Supply Voltage	VIN	-0.3	V _{DD} +0.3	V	
Lamp Current	IL.	3.0	7.0	mArms	(1)
Lamp frequency	FL	45	80	kHz	
Operating Temperature	T _{OP}	0	+50	C	(2)
Operating Humidity	RHop	-	80	%	
Storage Temperature	T _{SP}	-20	+60	č	
Storage Humidity	RHsp	-	90	%	

Absolute Maximum Ratings

Note (1) Permanent damage to the device may occur if maximum values are exceeded Functional operation should be restricted to the condition described under normal operating conditions.

Note (2) Temperature and relative humidity range are shown in the figure below. 95 % RH Max. (40 $^{\circ}C \ge Ta)$

Maximum wet - bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation

Copyright 2009 Texas Instruments All Rights Reserved

Recommended Operating Conditions

- Manufacturer's recommended levels for reliable operation
- Conditions the application circuit should provide to device for
 - it to function as intended
- Shall be used for design calculations

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT
SUPPLIES				
RX_ANA_SUP	AFE analog supply	2.0	3.6	v
RX_DIG_SUP	AFE digital supply	2.0	3.6	v
TX_CTRL_SUP	Transmit controller supply	3.0	5.25	v
		201200		

LED_DRV_SUP Transmit LED driver supply 7.3 Recommended Operating Conditions

Difference between LED_DR	over operat	ing free-air temperature range (unles	ss otherwise noted)						
TX_CTRL_SUP				MIN	MAX	UNIT			
TEMPERATURE	VM	Power supply voltage range ⁽¹⁾		4	18	V	_		
Specified temperature range	VREE	Reference rms voltage range ⁽²⁾		1	3.3	V			
Storage temperature range	fpmm	Applied STEP signal		0	250	kH7	\neg		
 V_{LED} refers to the maximum voltage drop ac I be being model and from the TVP and T 	IVINT	VINT external load current	6.3 Recommended Operating	Conditions					
 V_{CABLE} refers to voltage drop across any cal 	Irms	Motor rms current per H-bridge ⁽³⁾	over operating free-air temperature rang	e (unless otherwise	e noted)				
	TA	Operating ambient temperature					MIN	MAX	UN
			Vcc	Supply voltage			2.3	5.5	\ \
	(1) Note that(2) Operation(3) Power d	at $R_{DS(ON)}$ increases and maximum output on al at VREF between 0 to 1 V, but acculissipation and thermal limits must be ob	V _{NC} V _{NO} V _{COM}	Signal path voltage	9		V _{CC} – 5.5	Vcc	V
			VIN	Digital control			GND	Vcc	V

Sample Abs. Max. Ratings Specs

□ Voltage Levels

- □ Maximum and minimum supply values
- □ Applied to any pin
- Diode Current
- □ ESD clamping diode current
- □ Storage Temperature

Table 6.1: Absolute maximum ratings for MSP430G2231

Parameter	Condition	Limits
Voltage applied at $\rm V_{cc}$ to $\rm V_{ss}$		-0.3V to 4.1V
Voltage applied to any pin		0.3V to $V_{\rm CC}$ + 0.3V
Diode current at any device pin		±2mA
Storage temperature range, T _{stg}	Unprogrammed device	-55∘Cto 150∘C
	Programmed device	-40 to 85 ∘C

Recommendation

- Stay below absolute maximum ratings
- Ground level specified independent of the Vcc

Table 6.2: Recommended operating conditions for MSP430G2231

Symb.	Parameter	Condition	Min.	Max.	Unit
V _{cc}	Supply voltage	Program execution	1.8	3.6	۷
		Flash programming	2.2	3.6	
V _{ss}	Supply voltage		0	0	۷
TA	Operating temp.	Free air	-40	85	° C
f _{clk} Clock frequency		V _{cc} = 1.8V,	dc	4.15	MHz
		Duty cycle = 50% ± 10%			
		V _{cc} = 2.7V,	dc	12	
		Duty cycle = 50% ± 10%			
		V _{cc} = 3.3V,	dc	16	
		Duty cycle = 50% ± 10%			

Power vs frequency

Minimum Power Dissipation

- Obtained at minimum VDD
- Power varies with VDD2
- ■Maximum *f*clk Limit
- ■*f*clk max is usually limited by the chosen VDD level
- Direct relationship
- Choose Wisely
- •Use the minimum frequency and voltage necessary for proper functionality

Fig. 6.3: Frequency versus supply voltage plot for an MSP430F149

Power Supply Capacity

Regulator Capacity (I_R)

$$\boldsymbol{I}_{R} \geq \boldsymbol{I}_{L} = \sum_{i=1}^{n} \boldsymbol{I}_{Li} \qquad \textbf{(1)}$$

where I_{Li} = current from load i = 1,2,...,n

Input voltage (
$$V_{NR}$$
)
 $V_{NR} \ge (V_R + V_D)$ (2)

where

V_R = regulated voltage and V_D = dropout voltage

Non-regulated capacity $I_{NR} \ge (I_R + I_{gnd})$ (3)

Non-regulated power:

$$P_{NR} = V_R (I_R + I_{gnd}) \quad (4)$$

$$P_R = V_R \cdot I_L \tag{5}$$

Power Efficiency:

$$Eff = (P_R / P_{NR}) \times 100\%$$
 (6)

Example 6.1 : Consider using a standard 9V alkaline battery for feeding a 3.3V, 120mA load via a linear voltage regulator uA78M33C. Estimate the approximated battery life and usage efficiency assuming a constant load current.

Regulator data: $V_o = 3.3V$ $V_D = 2.0V$ $I_{out} = 500mA$ $I_{bias} = I_{gnd} = 6mA$

Solution: Total load seen by battery (I_{NR}) $I_{NR} = I_L + I_{gnd} = 126mA \le I_{out}$

From battery datasheet: $Q_{bat} = 480mAh$ at a 100mA discharge rate. At 300mA, Q_{bat} drops to 380mAh. Interpolating we get $Q_{bat}|_{126mA} \cong 447mAh$

$$t_{bat} = \frac{Q_{bat}}{I_{NR}} = \frac{447 \, mAh}{126 \, mA} = 3.55 \, h$$

$$Eff = \frac{V_R \times I_R}{V_{NR} \times (I_R + I_{gnd})} \times 100 \% = \frac{3.3 \, V \times 120 \, mA}{9 \, V \times (120 + 6) \, mA} = 34.92 \%$$

.5 Power supply integrating a DC-to-DC converter and LDO

POWER SUPPLY NOISE CONTROL

- □ Coping with Power Supply Noise
 - Reducing the effect of noise in the power distribution lines
- Common Methods
 - Bypassing Techniques
 - Source Decoupling
 - Wise Power Distribution
- □ Combine ALL of them
 - Plan the power distribution network
 - Power lines noise increases with:
 - Clock frequency
 - Power distribution loop length
 - Dirty power supplies

Bypassing Capacitors

Bypassing refers to the act of reducing a high frequency current flow in a circuit path by adding a shunting component that reacts to the target frequency. The most commonly used shunting devices in microprocessor-based designs are bypassing capacitors.

A bypass capacitor reduces the rate of change of the current circulating in the power line by providing a high-frequency, low impedance path to the varying load current. Two factors determine the effectiveness of a bypassing capacitor: size and location.

Clock Issues

- Clock Frequency
- Clock Duty Cycle

The clock duty cycle defines the ratio of the high to the period of the clock signal

Clock Stability

Example 6.2 Consider a 12MHz clock signal that exhibits a ±10% deviation from its nominal value. Two applications employing such a clock signal are analyzed: a dynamic display that sets <u>a 60Hz refresh ratio</u> <u>from this clock</u> and a <u>real-time clock slated to run uninterruptedly for weeks</u>. Evaluate the impact of the clock accuracy on each system.

Solution: The impact of the clock deviation will be analyzed independently for each system.

Impact on the display system: A 10% frequency deviation would translate into an equally proportional deviation in the refresh rate, implying that the actual rate could be 6Hz off the target value. In the worst case, assuming a 10% frequency loss, the refresh ratio would be 54Hz. Considering that for persistence of vision, the human eye only requires 24Hz of refresh ratio to perceive motion, this 10% change of frequency can be deemed as negligible.

Impact on the RTC: A 10% deviation in frequency would cause the RTC to drift from the actual time at a rate of 6s each minute or 2h and 24min per day. At the end of only one week, assuming a negative δ fCLK, the error would accumulate to 16.8h, which would be totally unacceptable.

Clock Issues

• **Clock Jitter** Clock Jitter refers to the uncertainty in the periodicity of a clock signal **Example 6.3** Consider a microprocessor with a total system clock jitter specified at 150ps under the JESD65B standard.

This specification establishes that the total time deviation in the signal period resulting from the sum of all deterministic and random sources in the clock frequency over a minimum of 10⁴ cycles cannot exceed 150ps. For some devices, the number of cycles specified in the JESD65B standard establishes a bare minimum. A commonly used number is 10⁵ cycles, but for some devices it can reach as much as 10¹² cycles.

• **Clock Drift** FrequencyDrift refers to the linear component of a systematic change in the frequency of an oscillator over time. *For example, a 4MHz oscillator with an age induced drift of 20PPM (parts per million) per year will deviate its frequency by 80Hz every year.*

Choosing the Clock

- What is the fastest event the system will need to handle?
- Has the value of VDD been assigned?
- What peripherals will share the same clock frequency?
- How precise does the clock need to be?
- What are the capabilities of the Clock System in my MCU?

Freq. (MHz)	Typical application
0.032768	Real-time clocks. Allows binary division to $1.0000 \text{ Hz} (2^{15} \times 1 \text{ Hz})$
1.843200	UART clock. (16 × 115, 200 baud or 96 × 16 × 1, 200 baud)
2.457600	UART clock. (64 × 38, 400 baud or 2, 048 × 1, 200 baud)
3.276800	Allows binary division to 100 Hz (32, $768 \times 100 \text{ Hz}$, or $2^{15} \times 100 \text{ Hz}$)
3.579545	NTSC M color subcarrier and DTMF generators
3.686400	UART clock $(2 \times 1.8432 \text{ MHz})$
4.096000	Allows binary division to $1 \text{ kHz} (2^{12} \times 1 \text{ kHz})$
4.194304	Real-time clocks, divides to 1 Hz signal $(2^{22} \times 1 \text{ Hz})$
6.144000	UART baud rates up to 38,400.
6.553600	Allows binary division to $100 \text{Hz} (2^{16} \times 100 \text{Hz})$
7.372800	UART clock $(4 \times 1.8432 \text{ MHz})$
9.216000	Allows integer division to 1,024 kHz (2 ¹⁰)
11.059200	UART clock ($6 \times 1.8432 \text{ MHz}$)

Table 6.3 Common frequencies for embedded systems applications

CLOCK ON MSP430

Choosing Clock

The earliest generation of the MSP430 device family, the MSP430x3xx uses a *Frequency-Locked Loop (FLL)* clock module as system clock generator. This clocking system consists of two oscillators:

a crystal oscillator and a frequency stabilized & RCbased, Digitally Controlled Oscillator (DCO). The DCO is locked to a multiple of the crystal frequency, forming a frequency-locked loop (FLL). frequency stability and quick startup.

This clocking system fundamentally provides two clock signals:

- Main Clock (MCLK), taken from the DCO output
- Auxiliary Clock signal (ACLK), taken out from the crystal oscillator.

A buffered, software selectable output XBUF is also available, that provides as output either **MCLK**, **ACLK**, **ACLK/2**, **or ACLK/4**. The XBUF clock can also be turned off via software.

The MCLK signal is used to drive the CPU, while ACLK and XBUF can be software selected to drive peripherals.

Choosing Clock

Fig. 6.17 Simplified block diagram of FLL+ clock module in MSP430x4xx devices

The second generation of MSP430, the MSP430x4xx, features an improved clock generator designated the *FLL*+ *Clock Module*.

LFXT1, DCO and now an XT2!

The FLL+ module can provide four clock signals to the system:

- □ ACLK,
- **ACLK**/n (n = 1, 2, 4, or 8),
- □ MCLK,
- SMCLK.

Choosing Clock

Generations x1xx and x2xx featured a modified clock module with respect to the design included in earlier generations. This new clock generator is designated as **Basic Clock Module**.

DCO is now redesigned to operate in open loop (no FLL), while offering a better frequency stability without the need of an external crystal.

In addition, only three clock signals are made available: ACLK, MCLK, and SMCLK.

Fig. 6.18 Simplified block diagram of basic clock module in MSP430x1xx devices

Basic Clock Module

20

MSP430 Basic Clock Module

- ❑ ACLK: Auxiliary clock. The signal is sourced from LFXT1CLK with a divider of 1, 2, 4, or 8. ACLK can be used as the clock signal for Timer A and Timer B.
- MCLK: Master clock. The signal can be sourced from LFXT1CLK, XT2CLK (if available), or DCOCLK with a divider of 1, 2, 4, or 8. MCLK is used by the CPU and system.
- SMCLK: Sub-main clock. The signal is sourced from either XT2CLK (if available), or DCOCLK with a divider of 1, 2, 4, or 8. SMCLK can be used as the clock signal for Timer A and Timer B.

DCO Control Register

Example: DCOCTL = 0xD3; // C code to set DCOCTL.

After a PUC, RSELx = 7 and DCOx = 3, allowing the DCO to start at a mid-range frequency. MCLK and SMCLK are sourced from DCOCLK. Because the CPU executes code from MCLK, which is sourced from the fast-starting DCO, code execution typically begins from PUC in less than 2 μ s. The typical DCOx and RSELx ranges and steps are shown in Figure 5-6.

The frequency of DCOCLK is set by the following functions:

- The four RSELx bits select one of sixteen nominal frequency ranges for the DCO. These ranges are defined for an individual device in the device-specific data sheet.
- The three DCOx bits divide the DCO range selected by the RSELx bits into 8 frequency steps, separated by approximately 10%.
- The five MODx bits, switch between the frequency selected by the DCOx bits and the next higher frequency set by DCOx+1. When DCOx = 07h, the MODx bits have no effect because the DCO is already at the highest setting for the selected RSELx range.

DCO Registers

Basic Clock Module+ Registers

The basic clock module+ registers are listed in Table 5-1.

Table 5-1. Basic Clock Module+ Registers

.

Register	Short Form	Register Type	Address	Initial State
DCO control register	DCOCTL	Read/write	056h	060h with PUC
Basic clock system control 1	BCSCTL1	Read/write	057h	087h with POR ⁽¹⁾
Basic clock system control 2	BCSCTL2	Read/write	058h	Reset with PUC
Basic clock system control 3	BCSCTL3	Read/write	053h	005h with PUC ⁽²⁾
SFR interrupt enable register 1	IE1	Read/write	000h	Reset with PUC
SFR interrupt flag register 1	IFG1	Read/write	002h	Reset with PUC

BCSTL1 Basic Clock System Control Register 1

BCSTL2 Basic Clock System Control Register 2

Summary of Clocks in MSP

MSP430	Name	Oscillators	Clock signals	Max freq. (MHz)	DCO type
x3xx	FLL	XTAL, DCO	MCLK, ACLK,XBUF	0.032	FLL
x4xx	FLL+	LFXT1, DCO, XT2	MCLK, SMCLK, ACLK, ACLK/n	8.000	FLL
x1xx	BCM	LFXT1, DCO, XT2	MCLK, ACLK, SMCLK	8.000	DCO
x2xx	BCM+	LFXT1, DCO, XT2, VLO	MCLK, ACLK, SMCLK	16.000	DCO
x5xx x6xx	UCS	LFXT1, DCO, XT2, REFO, VLO, MODOSC	MCLK, ACLK SMCLK	32.000	FLL/DCO

Table 6.4 Summary of clock configurations for MSP430 generations x1xx through x6xx

Use Predefined Constants in code

#define SELM0 (0x40) /* MCLK Source Select 0 */
#define SELM1 (0x80) /* MCLK Source Select 1 */
#define DIVS_0 (0x00) /* SMCLK Divider 0: /1 */
#define DIVS_1 (0x02) /* SMCLK Divider 1: /2 */
#define DIVS_2 (0x04) /* SMCLK Divider 2: /4 */
#define DIVS_3 (0x06) /* SMCLK Divider 3: /8 */
#define DIVM_0 (0x00) /* MCLK Divider 0: /1 */
#define DIVM_1 (0x10) /* MCLK Divider 1: /2 */
#define DIVM_2 (0x20) /* MCLK Divider 2: /4 */
#define DIVM_3 (0x30) /* MCLK Divider 3: /8 */
#define SELM_0 (0x00) /* MCLK Source Select 0: DCOCLK */
#define SELM_1 (0x40) /* MCLK Source Select 1: DCOCLK */
#define SELM_2 (0x80) /* MCLK Source Select 2: XT2CLK/LFXTCLK */
#define SELM_3 (0xC0) /* MCLK Source Select 3: LFXTCLK */

/* Basic Clock System Control 2 * SELM_0 -- DCOCLK * DIVM_0 -- Divide by 1 * ~SELS -- DCOCLK * DIVS_0 -- Divide by 1 * ~DCOR -- DCO uses internal resistor */ BCSCTL2 = SELM_0 + DIVM_0 + DIVS_0;

/* Follow recommended flow. First, clear all DCOx and MODx bits. Then
 * apply new RSELx values. Finally, apply new DCOx and MODx bit values. */
DCOCTL = 0x00;
BCSCTL1 = CALBC1_16MHZ; /* Set DCO to 16MHz */
DCOCTL = CALDCO_16MHZ;

/* Basic Clock System Control 1
* XT2OFF -- Disable XT2CLK
* ~XTS -- Low Frequency
* DIVA_0 -- Divide by 1 */
BCSCTL1 |= XT2OFF + DIVA_0;
/* Basic Clock System Control 3
* XT2S_0 -- 0.4 - 1 MHz
* LFXT1S_2 -- If XTS = 0, XT1 = VLOCLK ; If XTS = 1, XT1 = 3 - 16-MHz crystal or resonator
* XCAP_1 -- ~6 pF */
BCSCTL3 = XT2S_0 + LFXT1S_2 + XCAP_1;

Power-On Reset

• Loads the program counter register (PC) with the address of the first instruction to be executed. This causes execution of the first instruction in the booting sequence.

• Disables the reception of maskable interrupts by the CPU.

• Clears the status register (SR). The specific value loaded into the SR changes from one processor or MCU to another.

• Initializes some or all system peripherals (list changes for specific devices). For example many MCUs set all their I/O pins to input mode, timers are initialized to zero, and the default CPU operating mode is selected.

• Cancels any bus transaction in progress and returning control to the default bus master

The RESET signal in an embedded system is generated through a specialized circuit called a *power-on reset circuit* or POR for short.

Power-On Reset

After a POR

After a POR, the initial conditions in an MSP430 device are the following:

- The functionality of the *RST/NMI* pin is set to *RST*.
- GPIO pins in all ports are configured as inputs.
- The processor status register (SR) is loaded with the reset value, which clears the V, N, Z, and C flags, disables all maskable interrupts (GIE = 0), and the CPU is set to active mode, cancelling any low-power mode previously set.
- The watchdog timer is activated in watchdog mode.
- The program counter (PC) is loaded with the address pointed by the reset vector (0FFFEh). Setting the reset vector contents to 0FFFFh, disables the device, entering a low power mode.
- Particular peripheral modules and registers are also affected, depending on the specific device being used.

The MSP430 System Clock

- Loops are OK up to a point but timers are more precise and leave the CPU free for more productive activities. Alternatively, the device can be put into a lowpower mode if there is nothing else to be done
 - Watchdog timer: Included in all devices (newer ones have the enhanced watchdog timer+). Its main function is to protect the system against malfunctions but it can instead be used as an interval timer if this protection is not needed.
 - Basic timer1: Present in the MSP430x4xx family only. It provides the clock for the LCD and acts as an interval timer. Newer devices have the LCD_A controller, which contains its own clock generator and frees the basic timer from this task.
 - Timer_A: Provided in all devices. It typically has three channels and is much more versatile than the simpler timers just listed. Timer_A can handle external inputs and outputs directly to measure frequency, timestamp inputs, and drive outputs at precisely specified times, either once or periodically. There are internal connections to other modules so that it can measure the duration of a signal from the comparator, for instance. It can also generate interrupts.
 - **Timer_B:** Included in larger devices of all families. It is similar to Timer_A with some extensions that make it more suitable for driving outputs such as **pulse-width modulation**. Against this, it lacks a feature of sampling inputs in Timer_A that is useful in communication.
 - Real-time clock: In which the basic timer has been extended to provide a real-time clock in the most recent MSP430x4xx devices.

Watchdog Timer

- □ The main purpose of the watchdog timer is to protect the system against failure of the software, such as the program becoming trapped in an unintended, infinite loop.
- □ Left to itself, the watchdog counts up and resets the MSP430 when it reaches its limit. The code must therefore keep clearing the counter before the limit is reached to prevent a reset.

Watchdog Timer

- □ The operation of the watchdog is controlled by the 16-bit register WDTCTL. It is guarded against accidental writes by requiring the password WDTPW = 0x5A in the upper byte.
- □ A reset will occur if a value with an incorrect password is written to WDTCTL. This can be done deliberately if you need to reset the chip from software.
- Reading WDTCTL returns 0x69 in the upper byte, so reading WDTCTL and writing the value back violates the password and causes a reset.

WDTCNT and WDTCTL Registers

- □ The watchdog counter is a 16-bit register WDTCNT, which is not visible to the user.
- □ It is clocked from either SMCLK (default) or ACLK, according to the *WDTSSEL* bit in the WDTCTL.
- The period is 64, 512, 8192, or 32,768 (default) times the period of the clock. This is controlled by the WDTISx bits in WDTCTL. The intervals are roughly 2ms, 16ms, 250ms, and 1000 ms if the watchdog runs from ACLK at 32 KHz.
- □ WDTHOLD = 1 when the WDT+ is not in use conserves power.

WDTCTL

□ The lower byte of WDTCTL contains the bits that control the operation of the watchdog timer,

7	6	5	4	3	2	1	0
WDT-	WDT-	WDTNMI	WDT-	WDT-	WDTSSEL	WD	TISY
HOLD	NMIES	WDTINWI	TMSEL	CNTCL	WD133EL	VV D T I SX	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	r0(w)	rw-(0)	rw-(0)	rw-(0)

The watchdog is always active after the MSP430 has been reset. By default the clock is SMCLK, which is in turn derived from the DCO at about 1 MHz. The default period of the watchdog is the maximum value of 32,768 counts, which is therefore around 32 ms. You must clear, stop, or reconfigure the watchdog before this time has elapsed. Stopping the watchdog, means setting the WDTHOLD bit.

WDTCTL

WDTISx (Bits 1-0) Watchdog timer interval select. These bits select the watchdog

timer interval to set the WDTIFG flag and/or generate a PUC. The alternatives are

- WDTIS0 for 00: Watchdog clock source / 32768 (Default)
- WDTIS1 for 01: Watchdog clock source / 8192
- WDTIS2 for 10: Watchdog clock source / 512
- WDTIS3 for 11: Watchdog clock source / 64

Some useful examples of instructions associated to the WDT configuration are the following.

mov #WDTPW+WDTHOLD,&WDTCTL ; To stop WDT mov #WDTPW+WDTCNTCL,&WDTCTL ;Reset WDT mov #WDTPW+WDTCNTCL+WDTSSEL,&WDTCTL ; select ACLK clock ;WDT interval timer mode with ACLK, and interval clock/512 mov #WDTPW+WDTCNTCL+WDTMSEL+WDTIS2,&WDTCTL

WDTCTL

- □ If the watchdog is left running, the counter must be repeatedly cleared to prevent it counting up as far as its limit. This is done by setting the *WDTCNTCL (count clear)* bit in WDTCTL.
- □ As a result of reaching the limit, the watchdog timer sets the *WDTIFG* flag in the special function register IFG1

Example watchdog application

- □ The clock is selected from ACLK (WDTSSEL = 1) and the longest period (WDTISx = 00), which gives 1s with a 32 KHz crystal for ACLK.
- □ It is wise to restart any timer whenever its configuration is changed so the counter is cleared by setting the WDTCNTCL bit. LED1 shows the state of button B1 and LED2 shows WDTIFG.
- □ The watchdog is serviced by rewriting the configuration value in a loop while button B1 is held down. If the button is left up for more than 1s the watchdog times out, raises the flag WDTIFG, and resets the device with a PUC.
- □ This is shown by LED2 lighting.

Watchdog as an Interval Timer

- □ The watchdog can be used as an interval timer if its protective function is not desired.
- Set the WDTTMSEL bit in WDTCTL for interval timer mode. The periods are the same as before and again WDTIFG is set when the timer reaches its limit, but <u>no reset occurs</u>!
- □ The counter rolls over and restarts from 0. An interrupt is requested if the WDTIE bit in the special function register IE1 is set. This interrupt is maskable and as usual takes effect only if GIE is also set.
- The watchdog timer has its own interrupt vector, which is fairly high in priority but not at the top. It is not the same as the reset vector, which is taken if the counter times out in watchdog mode.
- □ The WDTIFG flag is automatically cleared when the interrupt is serviced.

TIMERS

The MSP430 family supports three timers.

- □ Timer_A, present in all models;
- □ Timer_B included in all but the legacy 3xx series; and
- □ Timer_D, appearing in the 5xx/6xx series.

Any timer can be used for applications such as real-time clock, pulse width modulation, or baud rate generation, among others

Timer_A

- □ This is the most versatile, general-purpose timer in the MSP430 and is included in all devices.
- ☐ There are two main parts to the hardware:
 - **Timer block:** The core, based on the 16-bit register TAR. There is a choice of sources for the clock, whose frequency can be divided down (prescaled). The timer block has no output but a flag TAIFG is raised when the counter returns to 0.
 - Capture/compare channels: In which most events occur, each of which is based on a register TACCRn. They all work in the same way with the important exception of TACCR0. Each channel can
 - **Record the "time"** (the value in TAR) at which the input changes in TACCRn; the input can be either external or internal from another peripheral or software.
 - **Compare** the current value of TAR with the value stored in TACCRn and update an output when they match; the output can again be either external or internal.
 - **Request an interrupt** by setting its flag TACCRn CCIFG on either of these events; this can be done even if no output signal is produced.
 - **Sample** an input at a compare event; this special feature is particularly useful if Timer_A is used for serial communication in a device that lacks a dedicated interface.

- **TACTL Timer A Control Register**
- This register used to configure how the timer runs
- TACCTLO Capture/Compare Control Register
- For enabling and disabling TimerA0 interrupt
- **TACCR0 Capture/Compare Register**
- This register holds the value YOU define to configure the timing

Timer A Block Diagram

Table 7.4 Timer A implementation features

Fig. new outputted mor 400 finet_A block diagram	Fig. 7.22	Simplified MSP430	Timer_A	block diagram
--	-----------	-------------------	---------	---------------

TIMER_A	x3xx	x4xx	xlxx	x2xx	x5xx/x6xx
16-bit timer/counter					
w/4 operating modes	Yes	Yes	Yes	Yes	Yes
Asynchronous	No	Yes	Yes	Yes	Yes
Selectable and configurable clock					
source	Yes	Yes	Yes	Yes	Yes
Independently					
configurable CCRs	5	3 or 5	3	2 or 3	up to 7
PWM output capability	No	Yes	Yes	Yes	Yes
Asynchronous					
I/O latching	No	Yes	Yes	Yes	Yes
Interrupt vector register	No	Yes	Yes	Yes	Yes
Second Timer_A	No	Yes	No	No	No

Timer_A Registers

• TACTL, Timer_A Control Register (PART 1)

15	14	13	12	11	10	9	8
		Unu	ised			TAS	SELx
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
Unused	Bits 15-10	Unused					
TASSELx	Bits 9-8	Timer_A cl 00 TACL 01 ACLF 10 SMC 11 INCL	ock source _K K LK K	select			

TACTL, Timer_A Control Register (PART 2)

7	6	5	4	3	2	1	0
IDx		MCx		Unused	TACLR	TAIE	TAIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	w-(0)	rw-(0)	rw-(0)
IDx	Bits 7-6	Input divider. 00 /1 01 /2 10 /4 11 /8	These bits se	elect the divide	er for the input	clock.	
MCx	Bits 5-4	 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power. 00 Stop mode: the timer is halted 01 Up mode: the timer counts up to TACCR0 10 Continuous mode: the timer counts up to 0FFFFh 11 Up/down mode: the timer counts up to TACCR0 then down to 0000h 					serves 1000h
Unused	Bit 3	Unused					
TACLR	Bit 2	Timer_A clear direction. The	ar. Setting this e TACLR bit is	bit resets TAF s automatically	R, the TACLK of reset and is a	livider, and the Iways read as	e count zero.
TAIE	Bit 1	Timer_A inte 0 Interru 1 Interru	rrupt enable. ot disabled ot enabled	This bit enable	es the TAIFG ir	nterrupt reque	st.
TAIFG	Bit 0	Timer_A inte 0 No inte 1 Interru	rrupt flag rrupt pending ot pending				

□ Three items are given for each bit:

- Its position in the word, which should not be needed (use symbolic names instead).
- Its name, which is defined in the header file and should be known to the debugger; some bits are not used, which we show by a gray fill.
- The accessibility and initial condition of the bit; here they can all be read and written with the exception of TACLR, where the missing r indicates that there is no meaningful value to read. The (0) shows that each bit is cleared after a power-on reset (POR).

The user's guide goes on to describe the function of each bit or group of bits:

- □ **Timer_A clock source select, TASSELx:** There are four options for the clock: the internal SMCLK or ACLK or two external sources. TACLK (00), ACLK (01), SMCLK (10), or INCLK (11)
- Input divider, IDx: The frequency of the clock can be divided before it is applied to the timer, which extends the period of the counter. IDx bits determine the frequency division factor in the prescaler: 1 (00), 2 (01), 4 (10), and 8 (11)
- □ **Mode control, MCx:** The timer has four modes. By default it is off to save power. MCx bits set the operation mode: Halt (00), up mode (01), continuous mode (10), and up/down mode (11).
- Timer_A clear, TACLR: Setting this bit clears the counter, the divider, and the direction of the count (it can go both up and down in up/down mode). The bit is automatically cleared by the timer after use. It is usually a good idea to clear the counter whenever the timer is reconfigured to ensure that the first period has the expected duration.
- □ **Timer_A interrupt enable, TAIE:** Setting this bit enables interrupts when TAIFG becomes set.We do not use this here.
- Timer_A interrupt flag, TAIFG: This bit can be modified by the timer itself or by a program. It is raised (set) by the timer when the counter becomes 0. In continuous mode this happens when the value in TAR rolls over from 0xFFFF to 0x0000. An interrupt is also requested if TAIE has been set. The program must clear TAIFG so that the next overflow can be distinguished.

□ Timer counts from 0 to 0xFFFF

Fewer timing errors because timer never stops – keeps counting up until it reaches 0xFFFF and rolls over to 0 and keeps going.

Modes of Operation: Continuous Mode

Continuous Mode

□ If we have a period value in TACCR0

- The ACTUAL VALUE of the timer does not matter – only the RELOAD VALUE matters – this controls the period of the interrupt.
- Interrupt DOES NOT OCCUR AT 0 OR 0xFFFF!
- Occurs when timer reaches current TACCR0 value!

Continuous Mode

Cont. Mode example

- The sub-main clock SMCLK runs at the same speed as MCLK by default, which is 800 KHz for example.
- □ If this were used to clock the timer directly, the period would be= $2^{16}/800$ KHz ≈ 0.08 s.
- We want about 0.5 s and therefore divide the frequency of the clock by 8 using IDx. IDx = 8 (11) This gives a delay of about 0.64 s, close enough.
- We use the simplest Continuous mode, in which TAR simply counts up through its full range of 0x0000-0xFFFF and repeats. This needs MCx = 10.

Cont. Mode example


```
// timrled1.c - toggles LEDs with period of about 1.3s
// Poll free -running timer A with period of about 0.65s
// Timer clock is SMCLK divided by 8, continuous mode
// Olimex 1121STK , LED1 ,2 active low on P2.3,4
#include <io430x11x1.h> // Specific device
// Pins for LEDs
#define | FD1 BIT3
#define LED2 BIT4
void main (void)
{
   WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer
   P2OUT = ~LED1; // Preload LED1 on , LED2 off
   P2DIR = LED1|LED2; // Set pins for LED1, 2 to output
   TACTL = MC_2|ID_3|TASSEL_2|TACLR; // Set up and start Timer A
   // Continuous up mode , divide clock by 8, clock from SMCLK , clear timer
   for (;;) { // Loop forever
        while (TACTL bit.TAIFG == 0) { // Wait for overflow
        } // doing nothing
        TACTL bit.TAIFG = 0; // Clear overflow flag
        P2OUT ^ = LED1 | LED2; // Toggle LEDs
   } // Back around infinite loop
```

Cont. Mode example

- More tasks could be added here, provided that they do not take longer than the period of the timer. The result is a paced loop, a straightforward structure for a program that carries out a sequence of tasks at regular intervals.
- Nowadays it would be unusual to pace the loop by polling the timer; instead the MCU would save energy by entering a low-power mode after it had completed the tasks and wait for the timer to wake it again.

Modes of Operation: Up Mode

- Timer counts UP from zero to TACCRO
- Interrupt occurs when timer goes back to zero
- □ Useful for periods other than OxFFFF

Modes of Operation: Up Mode

Timer_A in Up Mode

- Finer control over the delay is obtained by using the timer in Up mode rather than continuous mode. The maximum desired value of the count is programmed into another register, TACCR0. In this mode TAR starts from 0 and counts up to the value in TACCR0, after which it returns to 0 and sets TAIFG.
- $\hfill\square$ Thus the period is TACCR0+1 counts
- □ Here the clock has been divided down to 100 KHz so we need 50,000 counts for a delay of 0.5 s and should therefore store 49,999 in TACCR0.

TACCR0 = 49999; // Upper limit of count for TAR TACTL = MC_1|ID_3|TASSEL_2|TACLR;

// Set up and start Timer A

// "Up to CCR0" mode , divide clock by 8, clock from SMCLK , clear timer

Random Light Display

A pretty application of the delay is a random light show on the LEDs. Of course this is rather limited with only two LEDs but the principle can be applied to bigger displays. This again uses a delay set by the timer but requires a calculation for the next pattern to display

Figure 4.10: A shift register with feedback through an exclusive-OR gate from the last two stages. used to generate a pseudorandom stream of bits.

- The circuit without the exclusive-OR gate and its connections is a plain *shift register*. A D flip-flop simply reads the value on its D input at a clock transition and transfers it to its Q output. Thus the value in flip-flop 0 is transferred to flip-flop 1 after a clock transition.
- At the same time the value in flip-flop 1 is transferred to flip-flop 2 and so on. The pattern of bits simply shifts one place to the left in each clock cycle. An input is applied to the first flip-flop, 0.
- A pseudorandom sequence requires more complicated feedback. The simplest method, shown in the figure, is to take the feedback from an exclusive-OR gate connected to the outputs of the last two stages.
- The counter must therefore be "seeded" with a nonzero value. The counter in
- Figure with N = 4 gives the sequence 0001, 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000 and repeat

Program to produce a pseudorandom bit sequence by simulating a shift register with feedback.

// random1.c - pseudorandom sequence on LEDs Poll timer A in Up mode with period of about 0.5s
// Timer clock is SMCLK divided by 8, up mode , p eriod 50000 Olimex 1121STK , LED1 ,2 active low on P2.3,4

```
// ------
#include <io430x11x1.h> // Specific device
#include <stdint.h> // For uint16_t
#define LED1 BIT3// Pins for LEDs
#define LED2 BIT4
// Parameters for shift register; length <= 15 (4 is good for testing)
#define REGLENGTH 15
#define LASTMASK (( uint16_t) (BIT0 << REGLENGTH ))
#define NEXTMASK (( uint16_t) (BIT0 << (REGLENGTH -1)))
void main (void)
{</pre>
```

```
WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer
P2OUT = LED1|LED2; // Preload LEDs off
P2DIR = LED1|LED2; // Set pins with LEDs to output
TACCR0 = 49999; // Upper limit of count for TAR
TACTL = MC_1|ID_3|TASSEL_2|TACLR; // Set up and start Timer A
// "Up to CCR0" mode , divide clock by 8, clock from SMCLK , clear timer
pattern = 1;
for (;;) { // Loop forever
             while (TACTL_bit.TAIFG == 0) { // Wait for timer to overflow
             } // doing nothing
             TACTL_bit.TAIFG = 0; // Clear overflow flag
             P2OUT = pattern; // Update pattern (lower byte)
             pattern <<= 1; // Shift for next pattern
             // Mask two most significant bits , simulate XOR using switch , feed back
             switch (pattern & (LASTMASK|NEXTMASK )) {
                           case LASTMASK:
                           case NEXTMASK:
                           pattern |= BIT0; // XOR gives 1
                           break;
                           default:
                           pattern &= ~BIT0; // XOR gives 0
                           break;
```

} // Back around infinite loop

}

Modes of operation: Up Down mode

- □ Timer counts from 0 to TACCRO, then back down to 0
- Used when timer period must be different from
 0xFFFF and when pulse needs to be symmetric
- □ Good for driving motors (ON pulse to control speed)

Modes of operation: Up Down mode

Timer_A Interrupt Vectors

TACCTLx, Capture/Compare Control Register

15	14	13	12	11	10	9	8
с	Мх	сс	ISx	scs	scci	Unused	CAP
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r-(0)	r-(0)	rw-(0)
7	6	5	4	3	2	1	0
	OUTMODx		CCIE	ссі	оит	cov	CCIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)

САР	Bit 8	Capture mode 0 Compare mode 1 Capture mode
CCIE	Bit 4	Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag. 0 Interrupt disabled 1 Interrupt enabled
CCIFG	Bit 0	Capture/compare interrupt flag 0 No interrupt pending 1 Interrupt pending

Example 1


```
Continuous Mode
Output pin P6.0 with toggle rate = 32768/(2*50) = 328Hz
```

```
#include "include/include.h"
#include "include/hardware.h"
void main ( void )
```

```
{
    WDTCTL = WDTPW + WDTHOLD; // Stop WDT
    P6DIR |= 0x01; // P6.0 output
    CCTL0 = CCIE; // CCR0 interrupt enabled
    CCR0 = 50;
    TACTL = TASSEL_1 + MC_2; // ACLK, contmode
    eint(); // Enable the global interrupt
    //or _BIS_SR(LPM0_bits + GIE);
    LPM0; // Enter low power mode or wait in a loop
}
// Timer_A TACCR0 interrupt vector handler
interrupt (TIMERA0_VECTOR) TimerA_procedure(void){
        P6OUT ^= 0x01; // Toggle P6.0
        CCR0 += 50; // Add offset to CCR0
```

```
}
```

Example 2

Up Mode

□ Output pin P6.0 with toggle rate = 32768/(2*50) = 328Hz

```
#include "include/include.h"
#include "include/hardware.h"
void main (void)
ł
    WDTCTL = WDTPW + WDTHOLD; // Stop WDT
    P6DIR |= 0x01; // P6.0 output
    CCTL0 = CCIE; // CCR0 interrupt enabled
    CCR0 = 50-1;
    TACTL = TASSEL_1 + MC_1; // ACLK, upmode
    BIS SR(LPM0 bits + GIE); // Enable the global interrupt and enter LPM0
// Timer_A TACCR0 interrupt vector handler
interrupt (TIMERA0_VECTOR) TimerA_procedure (void){
        P6OUT ^= 0x01; // Toggle P6.0
```