
Week 5
FUNDAMENTALS OF INTERFACING AND

TIMERS for MSP430

MSP430 Teaching Materials

Hacettepe University

Copyright 2009 Texas Instruments
All Rights Reserved

Elements in Basic MCU Interface

2
Copyright 2009 Texas Instruments

All Rights Reserved

 Power Source

 Feeds CPU and peripherals

 Clock Oscillators

 System synchronization

 Power-on Reset

 Physical reset hardware

 Booting Function

 System configuration and initialization

PROCESSORS’ POWER SOURCES

3
Copyright 2009 Texas Instruments

All Rights Reserved

Main Function
Provide Power to CPU and Surrounding Electronics

Establish reference levels for internal device operation

Basic Requirements
Steady voltage source

Sufficient current capability

Load regulation

Power quality

Implications
System functionality and integrity

Signal compatibility

4
Copyright 2009 Texas Instruments

All Rights Reserved

Absolute Maximum Ratings
Levels of stress that if exceeded will cause permanent

damage to the device

If used for extended periods will affect device

reliability

DO NOT design for operating devices at these levels

Recommended Operating Conditions
Manufacturer’s recommended levels for reliable operation

Conditions the application circuit should provide to device for

it to function as intended

Shall be used for design calculations

5
Copyright 2009 Texas Instruments

All Rights Reserved

Sample Abs. Max. Ratings Specs

 Voltage Levels

Maximum and minimum supply values

 Applied to any pin

 Diode Current

 ESD clamping diode current

 Storage Temperature

6
Copyright 2009 Texas Instruments

All Rights Reserved

7
Copyright 2009 Texas Instruments

All Rights Reserved

• Recommendation
• Stay below absolute maximum ratings

• Ground level specified independent of the Vcc

Power vs frequency

8
Copyright 2009 Texas Instruments

All Rights Reserved

Minimum Power Dissipation
Obtained at minimum VDD

Power varies with VDD2

Maximum fclk Limit
fclk max is usually limited by the

chosen VDD level

Direct relationship

Choose Wisely
Use the minimum frequency and

voltage necessary for proper

functionality

Power Supply Capacity

9
Copyright 2009 Texas Instruments

All Rights Reserved

10
Copyright 2009 Texas Instruments

All Rights Reserved

POWER SUPPLY NOISE CONTROL

 Coping with Power Supply Noise

 Reducing the effect of noise in the power distribution lines

 Common Methods

 Bypassing Techniques

 Source Decoupling

 Wise Power Distribution

 Combine ALL of them

 Plan the power distribution network

 Power lines noise increases with:
• Clock frequency

• Power distribution loop length

• Dirty power supplies

11
Copyright 2009 Texas Instruments

All Rights Reserved

Bypassing Capacitors

12
Copyright 2009 Texas Instruments

All Rights Reserved

Bypassing refers to the act of

reducing a high frequency current

flow in a circuit path by adding a

shunting component that reacts to

the target frequency. The most

commonly used shunting devices in

microprocessor-based designs are

bypassing capacitors.

A bypass capacitor reduces the rate

of change of the current circulating

in the power line by providing a

high-frequency, low impedance path

to the varying load current. Two

factors determine the effectiveness

of a bypassing capacitor: size and

location.

Clock Issues

13
Copyright 2009 Texas Instruments

All Rights Reserved

• Clock Frequency

• Clock Duty Cycle
The clock duty cycle defines the ratio of the high to the period of the clock signal

• Clock Stability
Example 6.2 Consider a 12MHz clock signal that exhibits a ±10% deviation from its nominal value. Two

applications employing such a clock signal are analyzed: a dynamic display that sets a 60Hz refresh ratio

from this clock and a real-time clock slated to run uninterruptedly for weeks. Evaluate the impact of

the clock accuracy on each system.

Solution: The impact of the clock deviation will be analyzed independently for each system.

Impact on the display system: A 10% frequency deviation would translate into an equally proportional

deviation in the refresh rate, implying that the actual rate could be 6Hz off the target value. In the worst

case, assuming a 10% frequency loss, the refresh ratio would be 54Hz. Considering that for persistence of

vision, the human eye only requires 24Hz of refresh ratio to perceive motion, this 10% change

of frequency can be deemed as negligible.

Impact on the RTC: A 10% deviation in frequency would cause the RTC to drift from the actual time at a

rate of 6s each minute or 2h and 24min per day. At the end of only one week, assuming a negative δ fCLK,

the error would accumulate to 16.8h, which would be totally unacceptable.

Clock Issues

14
Copyright 2009 Texas Instruments

All Rights Reserved

• Clock Jitter Clock Jitter refers to the uncertainty in the periodicity of a clock signal
Example 6.3 Consider a microprocessor with a total system clock jitter specified at 150ps under

the JESD65B standard.

This specification establishes that the total time deviation in the signal period resulting from the sum

of all deterministic and random sources in the clock frequency over a minimum of 10^4 cycles cannot

exceed 150ps. For some devices, the number of cycles specified in the JESD65B standard

establishes a bare minimum. A commonly used number is 10^5 cycles, but for some devices it can

reach as much as 10^12 cycles.

• Clock Drift FrequencyDrift refers to the linear component of a systematic change in the

frequency of an oscillator over time. For example, a 4MHz oscillator with an age induced drift of

20PPM (parts per million) per year will deviate its frequency by 80Hz every year.

Choosing the Clock

15
Copyright 2009 Texas Instruments

All Rights Reserved

• What is the fastest event the system will need to handle?

• Has the value of VDD been assigned?

• What peripherals will share the same clock frequency?

• How precise does the clock need to be?

• What are the capabilities of the Clock System in my MCU?

CLOCK ON MSP430

16
Copyright 2009 Texas Instruments

All Rights Reserved

Choosing Clock

17
Copyright 2009 Texas Instruments

All Rights Reserved

The earliest generation of the MSP430 device

family, the MSP430x3xx uses a Frequency-Locked

Loop (FLL) clock module as system clock

generator. This clocking system consists of two

oscillators:

a crystal oscillator and a frequency stabilized & RC-

based, Digitally Controlled Oscillator (DCO). The

DCO is locked to a multiple of the crystal frequency,

forming a frequency-locked loop (FLL). frequency

stability and quick startup.

This clocking system fundamentally provides two

clock signals:

 Main Clock (MCLK), taken from the DCO

output

 Auxiliary Clock signal (ACLK), taken out from

the crystal oscillator.

A buffered, software selectable output XBUF is also

available, that provides as output either MCLK,

ACLK, ACLK/2, or ACLK/4. The XBUF clock can

also be turned off via software.

The MCLK signal is used to drive the CPU, while

ACLK and XBUF can be software selected to

drive peripherals.

Choosing Clock

18
Copyright 2009 Texas Instruments

All Rights Reserved

The second generation of MSP430, the

MSP430x4xx, features an improved clock

generator designated the FLL+ Clock

Module.

LFXT1, DCO and now an XT2!

The FLL+ module can provide four clock

signals to the system:

 ACLK,

 ACLK/n (n = 1, 2, 4, or 8),

 MCLK,

 SMCLK.

Choosing Clock

19
Copyright 2009 Texas Instruments

All Rights Reserved

Generations x1xx and x2xx featured a

modified clock module with respect to the

design included in earlier generations. This

new clock generator is designated as

Basic Clock Module.

DCO is now redesigned to operate in open

loop (no FLL), while offering a better

frequency stability without the need of an

external crystal.

In addition, only three

clock signals are made available:

 ACLK,

MCLK, and

 SMCLK.

20
Copyright 2009 Texas Instruments

All Rights Reserved

Basic Clock Module

21
Copyright 2009 Texas Instruments

All Rights Reserved

MSP430 Basic Clock Module

 ACLK: Auxiliary clock. The signal is sourced from LFXT1CLK
with a divider of 1, 2, 4, or 8. ACLK can be used as the
clock signal for Timer A and Timer B.

 MCLK: Master clock. The signal can be sourced from
LFXT1CLK, XT2CLK (if available), or DCOCLK with a divider
of 1, 2, 4, or 8. MCLK is used by the CPU and system.

 SMCLK: Sub-main clock. The signal is sourced from either
XT2CLK (if available), or DCOCLK with a divider of 1, 2, 4,
or 8. SMCLK can be used as the clock signal for Timer A
and Timer B.

22
Copyright 2009 Texas Instruments

All Rights Reserved

DCO Control Register

Example: DCOCTL = 0xD3; // C code to set DCOCTL.

23
Copyright 2009 Texas Instruments

All Rights Reserved

DCO Registers

24
Copyright 2009 Texas Instruments

All Rights Reserved

25
Copyright 2009 Texas Instruments

All Rights Reserved

BCSTL1 Basic Clock System Control
Register 1

26
Copyright 2009 Texas Instruments

All Rights Reserved

BCSTL2 Basic Clock System Control
Register 2

Summary of Clocks in MSP

27
Copyright 2009 Texas Instruments

All Rights Reserved

Use Predefined Constants in code

#define SELM0 (0x40) /* MCLK Source Select 0 */

#define SELM1 (0x80) /* MCLK Source Select 1 */

#define DIVS_0 (0x00) /* SMCLK Divider 0: /1 */

#define DIVS_1 (0x02) /* SMCLK Divider 1: /2 */

#define DIVS_2 (0x04) /* SMCLK Divider 2: /4 */

#define DIVS_3 (0x06) /* SMCLK Divider 3: /8 */

#define DIVM_0 (0x00) /* MCLK Divider 0: /1 */

#define DIVM_1 (0x10) /* MCLK Divider 1: /2 */

#define DIVM_2 (0x20) /* MCLK Divider 2: /4 */

#define DIVM_3 (0x30) /* MCLK Divider 3: /8 */

#define SELM_0 (0x00) /* MCLK Source Select 0: DCOCLK */

#define SELM_1 (0x40) /* MCLK Source Select 1: DCOCLK */

#define SELM_2 (0x80) /* MCLK Source Select 2: XT2CLK/LFXTCLK */

#define SELM_3 (0xC0) /* MCLK Source Select 3: LFXTCLK */

28
Copyright 2009 Texas Instruments

All Rights Reserved

/* Basic Clock System Control 2

* SELM_0 -- DCOCLK

* DIVM_0 -- Divide by 1

* ~SELS -- DCOCLK

* DIVS_0 -- Divide by 1

* ~DCOR -- DCO uses internal resistor */

BCSCTL2 = SELM_0 + DIVM_0 + DIVS_0;

/* Follow recommended flow. First, clear all DCOx and MODx bits. Then

* apply new RSELx values. Finally, apply new DCOx and MODx bit values. */

DCOCTL = 0x00;

BCSCTL1 = CALBC1_16MHZ; /* Set DCO to 16MHz */

DCOCTL = CALDCO_16MHZ;

/* Basic Clock System Control 1

* XT2OFF -- Disable XT2CLK

* ~XTS -- Low Frequency

* DIVA_0 -- Divide by 1 */

BCSCTL1 |= XT2OFF + DIVA_0;

/* Basic Clock System Control 3

* XT2S_0 -- 0.4 - 1 MHz

* LFXT1S_2 -- If XTS = 0, XT1 = VLOCLK ; If XTS = 1, XT1 = 3 - 16-MHz crystal or resonator

* XCAP_1 -- ~6 pF */

BCSCTL3 = XT2S_0 + LFXT1S_2 + XCAP_1;

29
Copyright 2009 Texas Instruments

All Rights Reserved

Power-On Reset

30
Copyright 2009 Texas Instruments

All Rights Reserved

• Loads the program counter register (PC) with the address of the first instruction to
be executed. This causes execution of the first instruction in the booting sequence.
• Disables the reception of maskable interrupts by the CPU.
• Clears the status register (SR). The specific value loaded into the SR changes from
one processor or MCU to another.
• Initializes some or all system peripherals (list changes for specific devices). For
example many MCUs set all their I/O pins to input mode, timers are initialized to
zero, and the default CPU operating mode is selected.
• Cancels any bus transaction in progress and returning control to the default bus
master

The RESET signal in an embedded system is generated through a specialized circuit
called a power-on reset circuit or POR for short.

Power-On Reset

31
Copyright 2009 Texas Instruments

All Rights Reserved

After a POR

32
Copyright 2009 Texas Instruments

All Rights Reserved

After a POR, the initial conditions in an MSP430 device are the following:

• The functionality of the RST/NMI pin is set to RST.

• GPIO pins in all ports are configured as inputs.

• The processor status register (SR) is loaded with the reset value, which

clears the V, N, Z, and C flags, disables all maskable interrupts (GIE = 0),

and the CPU is set to active mode, cancelling any low-power mode

previously set.

• The watchdog timer is activated in watchdog mode.

• The program counter (PC) is loaded with the address pointed by the

reset vector (0FFFEh). Setting the reset vector contents to 0FFFFh,

disables the device, entering a low power mode.

• Particular peripheral modules and registers are also affected, depending

on the specific device being used.

33
Copyright 2009 Texas Instruments

All Rights Reserved

The MSP430 System Clock

 Loops are OK up to a point but timers are more precise and leave the CPU free
for more productive activities. Alternatively, the device can be put into a low-
power mode if there is nothing else to be done
 Watchdog timer: Included in all devices (newer ones have the enhanced

watchdog timer+). Its main function is to protect the system against
malfunctions but it can instead be used as an interval timer if this
protection is not needed.

 Basic timer1: Present in the MSP430x4xx family only. It provides the
clock for the LCD and acts as an interval timer. Newer devices have the
LCD_A controller, which contains its own clock generator and frees the
basic timer from this task.

 Timer_A: Provided in all devices. It typically has three channels and is
much more versatile than the simpler timers just listed. Timer_A can
handle external inputs and outputs directly to measure frequency, time-
stamp inputs, and drive outputs at precisely specified times, either once or
periodically. There are internal connections to other modules so that it can
measure the duration of a signal from the comparator, for instance. It can
also generate interrupts.

 Timer_B: Included in larger devices of all families. It is similar to Timer_A
with some extensions that make it more suitable for driving outputs such
as pulse-width modulation. Against this, it lacks a feature of sampling
inputs in Timer_A that is useful in communication.

 Real-time clock: In which the basic timer has been extended to provide a
real-time clock in the most recent MSP430x4xx devices.

34
Copyright 2009 Texas Instruments

All Rights Reserved

Watchdog Timer

 The main purpose of the watchdog timer is to protect the
system against failure of the software, such as the
program becoming trapped in an unintended, infinite loop.

 Left to itself, the watchdog counts up and resets the
MSP430 when it reaches its limit. The code must therefore
keep clearing the counter before the limit is reached to
prevent a reset.

35
Copyright 2009 Texas Instruments

All Rights Reserved

 The operation of the watchdog is controlled by the 16-bit
register WDTCTL. It is guarded against accidental writes by
requiring the password WDTPW = 0x5A in the upper byte.

 A reset will occur if a value with an incorrect password is
written to WDTCTL. This can be done deliberately if you
need to reset the chip from software.

 Reading WDTCTL returns 0x69 in the upper byte, so reading
WDTCTL and writing the value back violates the password
and causes a reset.

Watchdog Timer

36
Copyright 2009 Texas Instruments

All Rights Reserved

WDTCNT and WDTCTL Registers

 The watchdog counter is a 16-bit register WDTCNT, which is
not visible to the user.

 It is clocked from either SMCLK (default) or ACLK,
according to the WDTSSEL bit in the WDTCTL.

 The period is 64, 512, 8192, or 32,768 (default) times the
period of the clock. This is controlled by the WDTISx bits in
WDTCTL. The intervals are roughly 2ms, 16ms, 250ms, and
1000 ms if the watchdog runs from ACLK at 32 KHz.

 WDTHOLD = 1 when the WDT+ is not in use conserves
power.

37
Copyright 2009 Texas Instruments

All Rights Reserved

WDTCTL

 The lower byte of WDTCTL contains the bits that
control the operation of the watchdog timer,

The watchdog is always active after the MSP430 has been reset. By default

the clock is SMCLK, which is in turn derived from the DCO at about 1 MHz.

The default period of the watchdog is the maximum value of 32,768 counts,

which is therefore around 32 ms. You must clear, stop, or reconfigure the

watchdog before this time has elapsed. Stopping the watchdog, means

setting the WDTHOLD bit.

38
Copyright 2009 Texas Instruments

All Rights Reserved

WDTCTL

WDTISx (Bits 1-0) Watchdog timer interval select. These bits select the
watchdog

timer interval to set the WDTIFG flag and/or generate a PUC. The alternatives
are

• WDTIS0 for 00: Watchdog clock source / 32768 (Default)

• WDTIS1 for 01: Watchdog clock source / 8192

• WDTIS2 for 10: Watchdog clock source / 512

• WDTIS3 for 11: Watchdog clock source / 64

Some useful examples of instructions associated to the WDT configuration are

the following.

mov #WDTPW+WDTHOLD,&WDTCTL ; To stop WDT

mov #WDTPW+WDTCNTCL,&WDTCTL ;Reset WDT

mov #WDTPW+WDTCNTCL+WDTSSEL,&WDTCTL ; select ACLK clock

;WDT interval timer mode with ACLK, and interval clock/512

mov #WDTPW+WDTCNTCL+WDTMSEL+WDTIS2,&WDTCTL

39
Copyright 2009 Texas Instruments

All Rights Reserved

WDTCTL

 If the watchdog is left running, the counter must be
repeatedly cleared to prevent it counting up as far as its
limit. This is done by setting the WDTCNTCL (count clear)
bit in WDTCTL.

 As a result of reaching the limit, the watchdog timer sets
the WDTIFG flag in the special function register IFG1

40
Copyright 2009 Texas Instruments

All Rights Reserved

Example watchdog application

 The clock is selected from ACLK (WDTSSEL = 1) and the
longest period (WDTISx = 00), which gives 1s with a 32
KHz crystal for ACLK.

 It is wise to restart any timer whenever its configuration is
changed so the counter is cleared by setting the WDTCNTCL
bit. LED1 shows the state of button B1 and LED2 shows
WDTIFG.

 The watchdog is serviced by rewriting the configuration
value in a loop while button B1 is held down. If the button
is left up for more than 1s the watchdog times out, raises
the flag WDTIFG, and resets the device with a PUC.

 This is shown by LED2 lighting.

41
Copyright 2009 Texas Instruments

All Rights Reserved

Listing 8.1: Program wdtest1.c to demonstrate the watchdog timer.
// wdtest1.c - trival program to demonstrate watchdog timer
// Olimex 1121 STK board , 32KHz ACLK
// --
#include <io430x11x1.h> // Specific device
// --
// Pins for LEDs and button
#define LED1 P2OUT_bit.P2OUT_3
#define LED2 P2OUT_bit.P2OUT_4
#define B1 P2IN_bit.P2IN_1
// Watchdog config: active , ACLK /32768 -> 1s interval; clear counter
#define WDTCONFIG (WDTCNTCL|WDTSSEL) // Include settings for _RST/NMI pin here as well
// Setting WDTCNTCL = 1 clears the count value to 0000h.

void main (void)
{ //WDTPW = 0x5A00 or 01011010 00000000
//WDTSSEL Bit 2 Watchdog timer+ clock source select

WDTCTL = WDTPW | WDTCONFIG; // Configure and clear watchdog
P2DIR = BIT3 | BIT4; // Set pins with LEDs to output
P2OUT = BIT3 | BIT4; // LEDs off (active low)
for (;;) { // Loop forever

LED2 = ˜IFG1_bit.WDTIFG; // LED2 shows state of WDTIFG
if (B1 == 1) { // Button up

LED1 = 1; // LED1 off
} else { // Button down

WDTCTL = WDTPW | WDTCONFIG; // Feed/pet/kick/clear watchdog
LED1 = 0; // LED1 on

}
}

}

42
Copyright 2009 Texas Instruments

All Rights Reserved

Watchdog as an Interval Timer

 The watchdog can be used as an interval timer if its
protective function is not desired.

 Set the WDTTMSEL bit in WDTCTL for interval timer mode.
The periods are the same as before and again WDTIFG is
set when the timer reaches its limit, but no reset occurs!

 The counter rolls over and restarts from 0. An interrupt is
requested if the WDTIE bit in the special function register
IE1 is set. This interrupt is maskable and as usual takes
effect only if GIE is also set.

 The watchdog timer has its own interrupt vector, which is
fairly high in priority but not at the top. It is not the same
as the reset vector, which is taken if the counter times out
in watchdog mode.

 The WDTIFG flag is automatically cleared when the
interrupt is serviced.

43
Copyright 2009 Texas Instruments

All Rights Reserved

TIMERS

The MSP430 family supports three timers.

 Timer_A, present in all models;

 Timer_B included in all but the legacy 3xx series; and

 Timer_D, appearing in the 5xx/6xx series.

Any timer can be used for applications such as real-time clock, pulse width

modulation, or baud rate generation, among others

44
Copyright 2009 Texas Instruments

All Rights Reserved

Timer_A

 This is the most versatile, general-purpose timer in the MSP430 and
is included in all devices.

 There are two main parts to the hardware:
 Timer block: The core, based on the 16-bit register TAR. There

is a choice of sources for the clock, whose frequency can be
divided down (prescaled). The timer block has no output but a
flag TAIFG is raised when the counter returns to 0.

 Capture/compare channels: In which most events occur,
each of which is based on a register TACCRn. They all work in
the same way with the important exception of TACCR0. Each
channel can

• Record the “time” (the value in TAR) at which the input changes in
TACCRn; the input can be either external or internal from another
peripheral or software.

• Compare the current value of TAR with the value stored in TACCRn
and update an output when they match; the output can again be
either external or internal.

• Request an interrupt by setting its flag TACCRn CCIFG on either of
these events; this can be done even if no output signal is produced.

• Sample an input at a compare event; this special feature is
particularly useful if Timer_A is used for serial communication in a
device that lacks a dedicated interface.

45
Copyright 2009 Texas Instruments

All Rights Reserved

Configuring the Timer

 TACTL – Timer A Control Register

This register used to configure how the timer
runs

 TACCTL0 – Capture/Compare Control
Register

For enabling and disabling TimerA0 interrupt

 TACCR0 – Capture/Compare Register

This register holds the value YOU define to
configure the timing

Timer A Block Diagram

46
Copyright 2009 Texas Instruments

All Rights Reserved

47
Copyright 2009 Texas Instruments

All Rights Reserved

48
Copyright 2009 Texas Instruments

All Rights Reserved

Timer_A Registers

49
Copyright 2009 Texas Instruments

All Rights Reserved

TACTL, Timer_A Control Register
(PART 2)

50
Copyright 2009 Texas Instruments

All Rights Reserved

 Three items are given for each bit:

 Its position in the word, which should not be needed (use
symbolic names instead).

 Its name, which is defined in the header file and should
be known to the debugger; some bits are not used, which
we show by a gray fill.

 The accessibility and initial condition of the bit; here they
can all be read and written with the exception of TACLR,
where the missing r indicates that there is no meaningful
value to read. The (0) shows that each bit is cleared after
a power-on reset (POR).

51
Copyright 2009 Texas Instruments

All Rights Reserved

The user’s guide goes on to describe the
function of each bit or group of bits:

 Timer_A clock source select, TASSELx: There are four options for the
clock: the internal SMCLK or ACLK or two external sources. TACLK (00),
ACLK (01), SMCLK (10), or INCLK (11)

 Input divider, IDx: The frequency of the clock can be divided before it is
applied to the timer, which extends the period of the counter. IDx bits
determine the frequency division factor in the prescaler: 1 (00), 2 (01), 4
(10), and 8 (11)

 Mode control, MCx: The timer has four modes. By default it is off to save
power. MCx bits set the operation mode: Halt (00), up mode (01),
continuous mode (10), and up/down mode (11).

 Timer_A clear, TACLR: Setting this bit clears the counter, the divider, and
the direction of the count (it can go both up and down in up/down mode).
The bit is automatically cleared by the timer after use. It is usually a good
idea to clear the counter whenever the timer is reconfigured to ensure that
the first period has the expected duration.

 Timer_A interrupt enable, TAIE: Setting this bit enables interrupts when
TAIFG becomes set.We do not use this here.

 Timer_A interrupt flag, TAIFG: This bit can be modified by the timer
itself or by a program. It is raised (set) by the timer when the counter
becomes 0. In continuous mode this happens when the value in TAR rolls
over from 0xFFFF to 0x0000. An interrupt is also requested if TAIE has been
set. The program must clear TAIFG so that the next overflow can be
distinguished.

52
Copyright 2009 Texas Instruments

All Rights Reserved

Continuous Mode

 Timer counts from 0 to 0xFFFF

 Fewer timing errors because timer never
stops – keeps counting up until it reaches
0xFFFF and rolls over to 0 and keeps going.

53
Copyright 2009 Texas Instruments

All Rights Reserved

Modes of Operation:
Continuous Mode

Continuous Mode

 If we have a period value in TACCR0

 The ACTUAL VALUE of the timer does not
matter – only the RELOAD VALUE matters –
this controls the period of the interrupt.

 Interrupt DOES NOT OCCUR AT 0 OR 0xFFFF!

 Occurs when timer reaches current TACCR0
value!

54
Copyright 2009 Texas Instruments

All Rights Reserved

55
Copyright 2009 Texas Instruments

All Rights Reserved

Continuous Mode

56
Copyright 2009 Texas Instruments

All Rights Reserved

Cont. Mode example

 The sub-main clock SMCLK runs at the same
speed as MCLK by default, which is 800 KHz for
example.

 If this were used to clock the timer directly, the
period would be=2^16/800KHz ≈ 0.08 s.

We want about 0.5 s and therefore divide the
frequency of the clock by 8 using IDx. IDx = 8
(11) This gives a delay of about 0.64 s, close
enough.

We use the simplest Continuous mode, in which
TAR simply counts up through its full range of
0x0000–0xFFFF and repeats. This needs MCx =
10.

57
Copyright 2009 Texas Instruments

All Rights Reserved

Cont. Mode example

// timrled1.c - toggles LEDs with period of about 1.3s
// Poll free -running timer A with period of about 0.65s
// Timer clock is SMCLK divided by 8, continuous mode
// Olimex 1121STK , LED1 ,2 active low on P2.3,4
#include <io430x11x1.h> // Specific device
// Pins for LEDs
#define LED1 BIT3
#define LED2 BIT4
void main (void)
{

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer
P2OUT = ˜LED1; // Preload LED1 on , LED2 off
P2DIR = LED1|LED2; // Set pins for LED1 ,2 to output
TACTL = MC_2|ID_3|TASSEL_2|TACLR; // Set up and start Timer A
// Continuous up mode , divide clock by 8, clock from SMCLK , clear timer
for (;;) { // Loop forever

while (TACTL_bit.TAIFG == 0) { // Wait for overflow
} // doing nothing
TACTL_bit.TAIFG = 0; // Clear overflow flag
P2OUT ˆ= LED1|LED2; // Toggle LEDs

} // Back around infinite loop
}

58
Copyright 2009 Texas Instruments

All Rights Reserved

Cont. Mode example

More tasks could be added here, provided that
they do not take longer than the period of the
timer. The result is a paced loop, a
straightforward structure for a program that
carries out a sequence of tasks at regular
intervals.

 Nowadays it would be unusual to pace the loop
by polling the timer; instead the MCU would save
energy by entering a low-power mode after it had
completed the tasks and wait for the timer to
wake it again.

59
Copyright 2009 Texas Instruments

All Rights Reserved

Modes of Operation: Up Mode

 Timer counts UP from zero to TACCRO

 Interrupt occurs when timer goes back to
zero

Useful for periods other than 0xFFFF

60
Copyright 2009 Texas Instruments

All Rights Reserved

Modes of Operation: Up Mode

61
Copyright 2009 Texas Instruments

All Rights Reserved

Timer_A in Up Mode

 Finer control over the delay is obtained by using the timer
in Up mode rather than continuous mode. The maximum
desired value of the count is programmed into another
register, TACCR0. In this mode TAR starts from 0 and
counts up to the value in TACCR0, after which it returns to
0 and sets TAIFG.

 Thus the period is TACCR0+1 counts

 Here the clock has been divided down to 100 KHz so we
need 50,000 counts for a delay of 0.5 s and should
therefore store 49,999 in TACCR0.

TACCR0 = 49999; // Upper limit of count for TAR

TACTL = MC_1|ID_3|TASSEL_2|TACLR;

// Set up and start Timer A

// "Up to CCR0" mode , divide clock by 8, clock from SMCLK ,
clear timer

62
Copyright 2009 Texas Instruments

All Rights Reserved

Random Light Display

 A pretty application of the delay is a random light
show on the LEDs. Of course this is rather limited
with only two LEDs but the principle can be
applied to bigger displays. This again uses a
delay set by the timer but requires a calculation
for the next pattern to display

63
Copyright 2009 Texas Instruments

All Rights Reserved

 The circuit without the exclusive-OR gate and its
connections is a plain shift register. A D flip-flop simply
reads the value on its D input at a clock transition and
transfers it to its Q output. Thus the value in flip-flop 0 is
transferred to flip-flop 1 after a clock transition.

 At the same time the value in flip-flop 1 is transferred to
flip-flop 2 and so on. The pattern of bits simply shifts one
place to the left in each clock cycle. An input is applied to
the first flip-flop, 0.

 A pseudorandom sequence requires more complicated
feedback. The simplest method, shown in the figure, is to
take the feedback from an exclusive-OR gate connected to
the outputs of the last two stages.

 The counter must therefore be “seeded” with a nonzero
value. The counter in

 Figure with N = 4 gives the sequence 0001, 0010, 0100,
1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111,
1110, 1100, 1000 and repeat

64
Copyright 2009 Texas Instruments

All Rights Reserved

Program to produce a pseudorandom bit
sequence by simulating a shift

register with feedback.
// random1.c - pseudorandom sequence on LEDs Poll timer A in Up mode with period of about 0.5s
// Timer clock is SMCLK divided by 8, up mode , p eriod 50000 Olimex 1121STK , LED1 ,2 active low on P2.3,4
// --
#include <io430x11x1.h> // Specific device
#include <stdint.h> // For uint16_t
#define LED1 BIT3// Pins for LEDs
#define LED2 BIT4
// Parameters for shift register; length <= 15 (4 is good for testing)
#define REGLENGTH 15
#define LASTMASK ((uint16_t) (BIT0 << REGLENGTH))
#define NEXTMASK ((uint16_t) (BIT0 << (REGLENGTH -1)))
void main (void)
{

WDTCTL = WDTPW|WDTHOLD; // Stop watchdog timer
P2OUT = LED1|LED2; // Preload LEDs off
P2DIR = LED1|LED2; // Set pins with LEDs to output
TACCR0 = 49999; // Upper limit of count for TAR
TACTL = MC_1|ID_3|TASSEL_2|TACLR; // Set up and start Timer A
// "Up to CCR0" mode , divide clock by 8, clock from SMCLK , clear timer
pattern = 1;
for (;;) { // Loop forever

while (TACTL_bit.TAIFG == 0) { // Wait for timer to overflow
} // doing nothing
TACTL_bit.TAIFG = 0; // Clear overflow flag
P2OUT = pattern; // Update pattern (lower byte)
pattern <<= 1; // Shift for next pattern
// Mask two most significant bits , simulate XOR using switch , feed back
switch (pattern & (LASTMASK|NEXTMASK)) {

case LASTMASK:
case NEXTMASK:
pattern |= BIT0; // XOR gives 1
break;
default:
pattern &= ˜BIT0; // XOR gives 0
break;

}
} // Back around infinite loop

}

65
Copyright 2009 Texas Instruments

All Rights Reserved

Modes of operation: Up Down mode

 Timer counts from 0 to TACCRO, then back down to 0

 Used when timer period must be different from
0xFFFF and when pulse needs to be symmetric

 Good for driving motors (ON pulse to control speed)

66
Copyright 2009 Texas Instruments

All Rights Reserved

Modes of operation: Up Down mode

67
Copyright 2009 Texas Instruments

All Rights Reserved

Timer_A Interrupt Vectors

68
Copyright 2009 Texas Instruments

All Rights Reserved

69
Copyright 2009 Texas Instruments

All Rights Reserved

TACCTLx, Capture/Compare Control
Register

70
Copyright 2009 Texas Instruments

All Rights Reserved

Example 1

#include "include/include.h"
#include "include/hardware.h"
void main (void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P6DIR |= 0x01; // P6.0 output
CCTL0 = CCIE; // CCR0 interrupt enabled
CCR0 = 50;
TACTL = TASSEL_1 + MC_2; // ACLK, contmode
eint(); // Enable the global interrupt
//or _BIS_SR(LPM0_bits + GIE);
LPM0; // Enter low power mode or wait in a loop

}
// Timer_A TACCR0 interrupt vector handler
interrupt (TIMERA0_VECTOR) TimerA_procedure(void){

P6OUT ^= 0x01; // Toggle P6.0
CCR0 += 50; // Add offset to CCR0

}

Continuous Mode

Output pin P6.0 with toggle rate = 32768/(2*50) = 328Hz

71
Copyright 2009 Texas Instruments

All Rights Reserved

Example 2

 Up Mode

 Output pin P6.0 with toggle rate = 32768/(2*50) = 328Hz

#include "include/include.h"

#include "include/hardware.h"

void main (void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

P6DIR |= 0x01; // P6.0 output

CCTL0 = CCIE; // CCR0 interrupt enabled

CCR0 = 50-1;

TACTL = TASSEL_1 + MC_1; // ACLK, upmode

_BIS_SR(LPM0_bits + GIE); // Enable the global interrupt and enter LPM0

}

// Timer_A TACCR0 interrupt vector handler

interrupt (TIMERA0_VECTOR) TimerA_procedure (void){

P6OUT ^= 0x01; // Toggle P6.0

}

