VHDL Cheat-Sheet ©Copyright: 2007 Bryan J. Mealy

Concurrent Statements		Sequential Statements
Concurrent Signal Assignment (dataflow model)	⇔	Signal Assignment
target <= expression;		<pre>target <= expression;</pre>
A <= B AND C; DAT <= (D AND E) OR (F AND G);		A <= B AND C; DAT <= (D AND E) OR (F AND G);
Conditional Signal Assignment (dataflow model)	⇔	<i>if</i> statements
<pre>target <= expressn when condition else expressn when condition else expressn;</pre>		<pre>if (condition) then { sequence of statements } elsif (condition) then { sequence of statements } else(the else is optional) { sequence of statements } end if;</pre>
<pre>F3 <= `1' when (L=`0' AND M=`0') else `1' when (L=`1' AND M=`1') else `0';</pre>		<pre>if (SEL = "111") then F_CTRL <= D(7); elsif (SEL = "110") then F_CTRL <= D(6); elsif (SEL = "101") then F_CTRL <= D(1); elsif (SEL = "000") then F_CTRL <= D(0); else F_CTRL <= '0'; end if;</pre>
Selective Signal Assignment (dataflow model)	⇔	case statements
<pre>with chooser_expression select target <= expression when choices,</pre>		<pre>case (expression) is when choices => {sequential statements} when choices => {sequential statements} when others => (optional) {sequential statements} end case;</pre>
<pre>with SEL select MX_OUT <= D3 when "11", D2 when "10", D1 when "01", D0 when "00", '0' when others;</pre>		<pre>case ABC is when "100" => F_OUT <= '1'; when "011" => F_OUT <= '1'; when "111" => F_OUT <= '1'; when others => F_OUT <= '0'; end case;</pre>
Process (behavioral model)		
<pre>opt_label: process(sensitivity_list) begin {sequential_statements} end process opt_label;</pre>		
<pre>proc1: process(A, B, C) begin if (A = `1' and B = `0') then F_OUT <= `1'; elsif (B = `1' and C = `1') then F_OUT <= `1'; else F_OUT <= `0'; end if; end process proc1;</pre>		