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Abstract. In this article, we present a HW/SW codesign approach for the im-
plementation of multilayer perceptrons resulting in an embedded system that 
can be used in wide variety of applications. The motivation for the HW/SW 
codesign includes declining time-to-market and power constraints as well as in-
creasing gap between silicon area and computational intensity. By utilizing 
codesign, hardware tasks −to be implemented either on ASIC or reconfigurable 
logic device− can be organized in a way that is compatible with the software 
tasks running on a host computer or a DSP.  In our model a general-purpose 
computing platform acts as the master controller which transmits appropriate 
signals to an FPGA-based coprocessor. An array of processing elements (PEs) 
is mapped onto a single FPGA for forward propagation to exploit the parallel 
nature of the network architecture. Synthesis results indicate high speed opera-
tion with limited number of PEs which may be a significant contribution in de-
signs where high throughputs can be obtained in low cost FPGA’s. 

1   Introduction 

Artificial neural networks (ANNs) consist of massively parallel interconnected simple 
processors (neurons) intended to provide solutions in the area of pattern recognition, 
system identification, and time-series forecasting. One of the most widely used net-
work model is the multilayer perceptron (MLP) with error backpropagation learning. 
Backpropagation learning algorithm is a computationally intensive task and software 
implementations suffer from large execution times which make them inadequate in 
meeting the demands of real-time processing applications. 

The inherent parallelism of ANNs is well-suited for hardware implementations. 
The high-degree of parallelism can be exploited by mapping an array of PEs to the 
desired structure. PEs are arithmetic units such as multiply and accumulate circuit 
(MAC) for matrix-vector multiplication or nonlinear processing unit for realizing the 
activation function. Learning is accomplished by updating the weight matrix in order 
to minimize the error function. 

The advent of rapid prototyping tools facilitated implementation of neural archi-
tectures. There have been several studies [1-4] implementing the FPGA-based ap-



proaches for the ANNs. A major bottleneck has been the limited logic density of 
FPGAs to implement backward propagation phase of the algorithm as well as lack of 
coherent techniques to resolve suitable network topology. An overall low-cost FPGA 
implementation regarding every single phase of backpropagation learning is not fea-
sible considering the issues stated above. 

The HW/SW codesign approach can be considered as an embedded computing 
application where the hardware and software must be designed together to make sure 
that the implementation not only functions properly but also meets performance, cost, 
and reliability goals [5]. This approach is also emerging as an efficient method for the 
design of neural and neuro-fuzzy systems. Recent applications include Hopfield type 
network [6] to solve the task scheduling problems in embedded and real-time sys-
tems, neural controller design [7], and neuro-fuzzy hardware design [8]. 

The rest of the paper is organized as follows: Section 2 briefly introduces the 
problem formulation of MLPs on FPGAs. Section 3 proposes the embedded design 
environment. The synthesis results are presented in Section 4. Finally, Section 5 is the 
conclusions. 

2   Problem Formulation 

2.1   Backpropagation Learning  

The steps of the backpropagation learning for MLPs are multiplication-rich and can 
be separated into three distinct phases: the recall (forward propagation) phase, where 
the outputs of the neurons due to an input pattern [ ](1), , ( )x x nK  are calculated; the 

learning (backward propagation) phase, where the error terms of the neurons in the 
output and hidden layers are determined; and the weight adaptation phase, where the 
synaptic weights are updated to minimize the error function. Phases of the algorithm 
for a MLP with one hidden layer are presented in Fig1.  In Fig.1, σ  represents the 

nonlinear activation function such as the sigmoid, (1), , ( )d d n⎡ ⎤⎣ ⎦K  is the desired re-

sponse of the system, and 0 1η< <   is the learning rate of the network. 

2.2   Target Platform 

Target platform Xilinx XCV600e FPGA uses 0.18 µ m CMOS process and contains 
two major configurable elements: configurable logic blocks (CLBs) and I/O blocks 
(IOBs). CLBs provide the functional elements for constructing logic while IOBs 
provide the interface between the package pins and the CLBs. The architecture of a 
CLB contains four logic cells and is organized in two similar slices. Each logic cell 
(LC) includes a 4-input look-up table (LUT), dedicated fast carry-lookahead logic for 
arithmetic functions, and a flip-flop [10].  

 



 
1 Calculate the outputs of the neurons in the hidden and output layer. 
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2 Calculate the error terms of the neurons starting from the output layer and moving 
backwards to the hidden layer. 
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3 Update synaptic weights. 
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Fig.1. Phases of backpropagation learning 

2.3   Arithmetic Representation 

Selection of the weight precision is a critical issue when implementing ANNs on 
FPGAs. While higher weight precision results in fewer quantization errors, lower 
precision has the advantage of greater speed and reduction in area. In order to resolve 
the trade-off, Holt and Baker [11] investigated the minimum precision required for a 
class of benchmark classification problems and concluded that 16-bit fixed-point 
representation is considered to be an optimal precision vs. area trade-off for FPGA 
based ANNs. Fixed-point representation has limited range compared to that of float-
ing point, but it has the advantage of being as fast as integer arithmetic. Table 1 illus-
trates the data representations with respect to the components in this study. 

Table 1. Data representations used 

Length Component Range 
S I F 

Representation 

Inputs [-1.0,1.0] 1 - 15 Signed fixed-point 

Outputs [0.0,1.0] - - 16 Unsigned fixed-point 

Synaptic weights [-8.0, 7.9998] 1 3 12 Signed fixed-point 

Activation function [0.0,1.0] - - 16 Unsigned fixed-point 



3   HW/SW Codesign Environment 

3.1   Phases of the Design 

An embedded system design is formed by applying four major transformations [5]: 
 

− Partitioning the algorithm to be implemented into smaller pieces, 
− Allocating those partitions to the microprocessors and hardware units,  
− Scheduling the times at which functions are executed,  
− Mapping the generic algorithm description into an implementation on a 

particular set of components, either as software suitable for a given mi-
croprocessor or a logic device which can be implemented from the given 
hardware libraries. 

 
The suggested system is partitioned into individual modules.  A task manager is 

running on the host computer acts as the master controller. Training executed on the 
software unit to determine the synaptic weights that satisfy the convergence criterion 
for a specified MLP architecture. UART module, with 115200-baud rate, transmits 
the appropriate synaptic weights to the FPGA coprocessor. 

SRAM on the coprocessor is employed to store the synaptic weights received form 
the host computer. Once the software unit determines the appropriate synaptic 
weights, the feed-forward operation is executed on the PEs to carry out the desired 
response of the network. A finite state machine (FSM) is implemented on FPGA for 
the synchronization of the feed-forward propagation. The architecture proposed, 
avoiding on-chip backpropagation learning, allows high throughput with low area 
cost. The overall design is shown in Fig. 3a.  

3.2   Software Partition 

A software device driver, implemented in C, is responsible the following tasks:  
 

− Training. Network is trained for a given MLP architecture. The training 
data is presented as ASCII in a text file. 

− Initialization of the FPGA coprocessor. Once the training is complete, the 
main program transmits the MLP configuration and the synaptic weights 
to the coprocessor through the RS232 communications interface.  

− Monitor run-time progress. The main program displays the run-time data 
generated by the coprocessor to the end-user. 

− Obtain the output data. The main program retrieves the coprocessor out-
put and displays it to the end-user. 



3.3   Hardware for MLP 

The stages of the backpropagation algorithm can be expressed as basic matrix opera-
tions which enable mapping the structure onto parallel architectures such as systolic 
arrays [12]. To imitate recall phase of the backpropagation, a ring systolic array is 
constructed where each PE comprises a pipelined fixed-point multiply and accumu-
late circuit (MAC) accompanied by a sigmoid approximator as illustrated in Fig.2b 
and Fig.2c. 
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Fig. 2.  (a) Architecture of the system (b) Ring array representation for MLP (c) Internal 
datapath of the PE 

Input vector ( )x p  and synaptic weights are shifted at each clock cycle by horizon-
tal and vertical shifters and a partial sum is calculated in every PE. Assuming an input 
vector of length K is connected to J neurons in the hidden layer and network has I 
neurons in the output layer, the weighted sum −referred as the net− is calculated in 
J+I cycles with a K-processor array for the hidden layer and a J-processor array for 
the output layer. When accumulation stage is pipelined, two more clock cycles are 
required to obtain the net. 

Activation functions are needed to introduce nonlinearity into the network. High-
speed computation of sigmoid activation function can be performed by piecewise 
linear approximation [13] which only requires shift and add operations. An additional 
clock cycle is needed for activation function; therefore results for the recall phase can 
be obtained in J+I+4 cycles. 

Since target platform lacks dedicated multiplier blocks, a high-speed parallel mul-
tiplication scheme is required for the MAC. To minimize the propagation delay, mul-
tiplication module is implemented using Booth-Wallace Tree multiplier (Fig.3), 
where partial products generated with Booth radix-4 recorder are added with 4:2 
compressors [14]. A 4:2 compressor adds four partial products (PPs) (p1,…,p4) to 
generate two updated PPs (sum, c) concurrently. For N N×  bit multiplication, propa-
gation delay using 4:2 compressors is estimated to be ( )4 / 23log / 4 .N  Final stage addi-

tion for the multiplication scheme is performed by carry-lookahead adder to take 
advantage of the Virtex-E CLB’s dedicated fast lookahead logic. 
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compressor 

4   Synthesis Results  

A VHDL model for the digital hardware part has been developed. Several recognition 
tasks have been tested on the design to verify the operation. Table 2 gives device 
utilizations for XCV600E illustrating the low area consumption of our design.  
 

Table 2.  Device Utilization for xcv600e-bg432 

 
Function 
Generators CLB Slices DFFs or Latches 

HW Blocks Used % Used % Used % 

Pipelined MAC 4168 30.15 1941 28.08 1751 11.39 

Activation Function 1235 8.93 711 10.28 54 0.35 

SRAM 82 0.59 49 0.70 0 - 

Total 5485 39.67 2701 39.06 1805 11.75 

 
Performance evaluation for neurocomputers can be performed with two metrics; 

number of connections per second (CPS)1 intended for recall phase, and number of 
connection updated per second (CUPS) intended for learning phase. For the 9:9:1 
MLP architecture, the peak performance of our design for a single training pattern has 
been calculated and compared with other proposed implementations on Table 3 [15]. 

 

Table 3.  Neural network implementations 

 
Name ANN TYPE Neuron Speed 

                                                           
1  ( )CPS=Connections Calculated/ Number of clock cycles required  Cycle Time×



RRANN MLP N/A 722 KCUPS 

ECX MLP/RBF N/A 3.5 MCUPS 

GRD (DSP) Programmable 15 7 MCUPS 

HNC 100-NAP Programmable 100 PU 64 MCUPS 

Hitachi WSI Hopfield 576 138 MCPS 

Our Design MLP 9 PU 335 MCPS 

Siemens MA-16 N/A 16 PU 400 MCPS 

Innova Programmable 64 PU 870 MCPS 

AT&T Anna MLP 16-256 PU 2.1 GCPS 

5   Conclusions 

This paper presents HW/SW codesign solution to eliminate the FPGA design bottle-
neck for feed-forward network architectures. The motivation for this study stems 
form the fact that an FPGA coprocessor with limited logic density and capabilities, 
Xilinx XCV600E, is able to act as a standalone device for pattern recognition tasks 
once the software partition handles the learning stage properly. Synthesis results 
indicate high speed operation with limited number of PUs which may be a significant 
contribution in designs where high throughputs can be obtained in low cost FPGAs. 
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