
HW/SW Codesign of
FPGA-based Neural Networks

Alper Ucar and Ali Ziya Alkar

Hacettepe University,
Department of Electrical & Electronics Engineering,

06800 Ankara, Turkey
{ucar,alkar}@hacettepe.edu.tr

Abstract. In this article, we present a HW/SW codesign approach for the im-
plementation of multilayer perceptrons resulting in an embedded system that
can be used in wide variety of applications. The motivation for the HW/SW
codesign includes declining time-to-market and power constraints as well as in-
creasing gap between silicon area and computational intensity. By utilizing
codesign, hardware tasks −to be implemented either on ASIC or reconfigurable
logic device− can be organized in a way that is compatible with the software
tasks running on a host computer or a DSP. In our model a general-purpose
computing platform acts as the master controller which transmits appropriate
signals to an FPGA-based coprocessor. An array of processing elements (PEs)
is mapped onto a single FPGA for forward propagation to exploit the parallel
nature of the network architecture. Synthesis results indicate high speed opera-
tion with limited number of PEs which may be a significant contribution in de-
signs where high throughputs can be obtained in low cost FPGA’s.

1 Introduction

Artificial neural networks (ANNs) consist of massively parallel interconnected simple
processors (neurons) intended to provide solutions in the area of pattern recognition,
system identification, and time-series forecasting. One of the most widely used net-
work model is the multilayer perceptron (MLP) with error backpropagation learning.
Backpropagation learning algorithm is a computationally intensive task and software
implementations suffer from large execution times which make them inadequate in
meeting the demands of real-time processing applications.

The inherent parallelism of ANNs is well-suited for hardware implementations.
The high-degree of parallelism can be exploited by mapping an array of PEs to the
desired structure. PEs are arithmetic units such as multiply and accumulate circuit
(MAC) for matrix-vector multiplication or nonlinear processing unit for realizing the
activation function. Learning is accomplished by updating the weight matrix in order
to minimize the error function.

The advent of rapid prototyping tools facilitated implementation of neural archi-
tectures. There have been several studies [1-4] implementing the FPGA-based ap-

proaches for the ANNs. A major bottleneck has been the limited logic density of
FPGAs to implement backward propagation phase of the algorithm as well as lack of
coherent techniques to resolve suitable network topology. An overall low-cost FPGA
implementation regarding every single phase of backpropagation learning is not fea-
sible considering the issues stated above.

The HW/SW codesign approach can be considered as an embedded computing
application where the hardware and software must be designed together to make sure
that the implementation not only functions properly but also meets performance, cost,
and reliability goals [5]. This approach is also emerging as an efficient method for the
design of neural and neuro-fuzzy systems. Recent applications include Hopfield type
network [6] to solve the task scheduling problems in embedded and real-time sys-
tems, neural controller design [7], and neuro-fuzzy hardware design [8].

The rest of the paper is organized as follows: Section 2 briefly introduces the
problem formulation of MLPs on FPGAs. Section 3 proposes the embedded design
environment. The synthesis results are presented in Section 4. Finally, Section 5 is the
conclusions.

2 Problem Formulation

2.1 Backpropagation Learning

The steps of the backpropagation learning for MLPs are multiplication-rich and can
be separated into three distinct phases: the recall (forward propagation) phase, where
the outputs of the neurons due to an input pattern [](1), , ()x x nK are calculated; the

learning (backward propagation) phase, where the error terms of the neurons in the
output and hidden layers are determined; and the weight adaptation phase, where the
synaptic weights are updated to minimize the error function. Phases of the algorithm
for a MLP with one hidden layer are presented in Fig1. In Fig.1, σ represents the

nonlinear activation function such as the sigmoid, (1), , ()d d n⎡ ⎤⎣ ⎦K is the desired re-

sponse of the system, and 0 1η< < is the learning rate of the network.

2.2 Target Platform

Target platform Xilinx XCV600e FPGA uses 0.18 µ m CMOS process and contains
two major configurable elements: configurable logic blocks (CLBs) and I/O blocks
(IOBs). CLBs provide the functional elements for constructing logic while IOBs
provide the interface between the package pins and the CLBs. The architecture of a
CLB contains four logic cells and is organized in two similar slices. Each logic cell
(LC) includes a 4-input look-up table (LUT), dedicated fast carry-lookahead logic for
arithmetic functions, and a flip-flop [10].

1 Calculate the outputs of the neurons in the hidden and output layer.

(1a)

 0

0

() () (), 1 ,

() () (), 1 ,

K

j jk k j
k

J

i ij j i
j

y p w x p net j J

y p w y p net i I

σ σ

σ σ

=

=

⎡ ⎤
= = ≤⎢ ⎥

⎣ ⎦

⎡ ⎤
= = ≤⎢ ⎥

⎣ ⎦

∑

∑

≤

≤

(1b)

2 Calculate the error terms of the neurons starting from the output layer and moving
backwards to the hidden layer.

 (2b)

(2b)

()

()
1

() () () () ,

() () ().

i i i i

I

j j ij i
i

p net p d p y p

p net p w p

δ σ

δ σ δ
=

⎡ ⎤′= −⎣ ⎦

′= ∑

3 Update synaptic weights.
(3a)

(3b)

() (),

() ().

ij i j

jk j k

w p y

w p x

ηδ

ηδ

∆ =

∆ =

p

p

Fig.1. Phases of backpropagation learning

2.3 Arithmetic Representation

Selection of the weight precision is a critical issue when implementing ANNs on
FPGAs. While higher weight precision results in fewer quantization errors, lower
precision has the advantage of greater speed and reduction in area. In order to resolve
the trade-off, Holt and Baker [11] investigated the minimum precision required for a
class of benchmark classification problems and concluded that 16-bit fixed-point
representation is considered to be an optimal precision vs. area trade-off for FPGA
based ANNs. Fixed-point representation has limited range compared to that of float-
ing point, but it has the advantage of being as fast as integer arithmetic. Table 1 illus-
trates the data representations with respect to the components in this study.

Table 1. Data representations used

Length Component Range
S I F

Representation

Inputs [-1.0,1.0] 1 - 15 Signed fixed-point

Outputs [0.0,1.0] - - 16 Unsigned fixed-point

Synaptic weights [-8.0, 7.9998] 1 3 12 Signed fixed-point

Activation function [0.0,1.0] - - 16 Unsigned fixed-point

3 HW/SW Codesign Environment

3.1 Phases of the Design

An embedded system design is formed by applying four major transformations [5]:

− Partitioning the algorithm to be implemented into smaller pieces,
− Allocating those partitions to the microprocessors and hardware units,
− Scheduling the times at which functions are executed,
− Mapping the generic algorithm description into an implementation on a

particular set of components, either as software suitable for a given mi-
croprocessor or a logic device which can be implemented from the given
hardware libraries.

The suggested system is partitioned into individual modules. A task manager is

running on the host computer acts as the master controller. Training executed on the
software unit to determine the synaptic weights that satisfy the convergence criterion
for a specified MLP architecture. UART module, with 115200-baud rate, transmits
the appropriate synaptic weights to the FPGA coprocessor.

SRAM on the coprocessor is employed to store the synaptic weights received form
the host computer. Once the software unit determines the appropriate synaptic
weights, the feed-forward operation is executed on the PEs to carry out the desired
response of the network. A finite state machine (FSM) is implemented on FPGA for
the synchronization of the feed-forward propagation. The architecture proposed,
avoiding on-chip backpropagation learning, allows high throughput with low area
cost. The overall design is shown in Fig. 3a.

3.2 Software Partition

A software device driver, implemented in C, is responsible the following tasks:

− Training. Network is trained for a given MLP architecture. The training
data is presented as ASCII in a text file.

− Initialization of the FPGA coprocessor. Once the training is complete, the
main program transmits the MLP configuration and the synaptic weights
to the coprocessor through the RS232 communications interface.

− Monitor run-time progress. The main program displays the run-time data
generated by the coprocessor to the end-user.

− Obtain the output data. The main program retrieves the coprocessor out-
put and displays it to the end-user.

3.3 Hardware for MLP

The stages of the backpropagation algorithm can be expressed as basic matrix opera-
tions which enable mapping the structure onto parallel architectures such as systolic
arrays [12]. To imitate recall phase of the backpropagation, a ring systolic array is
constructed where each PE comprises a pipelined fixed-point multiply and accumu-
late circuit (MAC) accompanied by a sigmoid approximator as illustrated in Fig.2b
and Fig.2c.

Host
Computer

UARTTX_FIFO RX_FIFO

FSMDatapath
SRAM

JKW

SRAM
IJW

XCV600e

PE PE PE�

1P 2P KP

11w
1kw

12w

22w
21w

2, 1kw −

jkw
, 1j kw −

1jw
� � �

�

[16]jkw

[16]kx

Pipeline

Register

+

×
Range
Limiter

Sigmoid
Approximator

[16]jnet

[16]jy

kP

 (a) (b) (c)

Fig. 2. (a) Architecture of the system (b) Ring array representation for MLP (c) Internal
datapath of the PE

Input vector ()x p and synaptic weights are shifted at each clock cycle by horizon-
tal and vertical shifters and a partial sum is calculated in every PE. Assuming an input
vector of length K is connected to J neurons in the hidden layer and network has I
neurons in the output layer, the weighted sum −referred as the net− is calculated in
J+I cycles with a K-processor array for the hidden layer and a J-processor array for
the output layer. When accumulation stage is pipelined, two more clock cycles are
required to obtain the net.

Activation functions are needed to introduce nonlinearity into the network. High-
speed computation of sigmoid activation function can be performed by piecewise
linear approximation [13] which only requires shift and add operations. An additional
clock cycle is needed for activation function; therefore results for the recall phase can
be obtained in J+I+4 cycles.

Since target platform lacks dedicated multiplier blocks, a high-speed parallel mul-
tiplication scheme is required for the MAC. To minimize the propagation delay, mul-
tiplication module is implemented using Booth-Wallace Tree multiplier (Fig.3),
where partial products generated with Booth radix-4 recorder are added with 4:2
compressors [14]. A 4:2 compressor adds four partial products (PPs) (p1,…,p4) to
generate two updated PPs (sum, c) concurrently. For N N× bit multiplication, propa-
gation delay using 4:2 compressors is estimated to be ()4 / 23log / 4 .N Final stage addi-

tion for the multiplication scheme is performed by carry-lookahead adder to take
advantage of the Virtex-E CLB’s dedicated fast lookahead logic.

(a) (b)

A B Cin
FA

FA
A B Cin

SCo

SCo

4 3 2 1p p p p

Cin
Cout

SumC

4 : 2

Booth Radix-4 Recoder

4:2

CLA Adder

4:2 4:2 4:2

4:2 4:2

product

4:2

Fig. 3. (a) Booth-Wallace tree multiplier scheme with 4:2 compressors (b) The structure of 4:2
compressor

4 Synthesis Results

A VHDL model for the digital hardware part has been developed. Several recognition
tasks have been tested on the design to verify the operation. Table 2 gives device
utilizations for XCV600E illustrating the low area consumption of our design.

Table 2. Device Utilization for xcv600e-bg432

Function
Generators CLB Slices DFFs or Latches

HW Blocks Used % Used % Used %

Pipelined MAC 4168 30.15 1941 28.08 1751 11.39

Activation Function 1235 8.93 711 10.28 54 0.35

SRAM 82 0.59 49 0.70 0 -

Total 5485 39.67 2701 39.06 1805 11.75

Performance evaluation for neurocomputers can be performed with two metrics;

number of connections per second (CPS)1 intended for recall phase, and number of
connection updated per second (CUPS) intended for learning phase. For the 9:9:1
MLP architecture, the peak performance of our design for a single training pattern has
been calculated and compared with other proposed implementations on Table 3 [15].

Table 3. Neural network implementations

Name ANN TYPE Neuron Speed

1 ()CPS=Connections Calculated/ Number of clock cycles required Cycle Time×

RRANN MLP N/A 722 KCUPS

ECX MLP/RBF N/A 3.5 MCUPS

GRD (DSP) Programmable 15 7 MCUPS

HNC 100-NAP Programmable 100 PU 64 MCUPS

Hitachi WSI Hopfield 576 138 MCPS

Our Design MLP 9 PU 335 MCPS

Siemens MA-16 N/A 16 PU 400 MCPS

Innova Programmable 64 PU 870 MCPS

AT&T Anna MLP 16-256 PU 2.1 GCPS

5 Conclusions

This paper presents HW/SW codesign solution to eliminate the FPGA design bottle-
neck for feed-forward network architectures. The motivation for this study stems
form the fact that an FPGA coprocessor with limited logic density and capabilities,
Xilinx XCV600E, is able to act as a standalone device for pattern recognition tasks
once the software partition handles the learning stage properly. Synthesis results
indicate high speed operation with limited number of PUs which may be a significant
contribution in designs where high throughputs can be obtained in low cost FPGAs.

References

1. Eldredge, J.G., Hutchings, B.L.: RRANN: The run-time reconfiguration artificial neural
network. IEEE Custom Integrated Circuits Conference. (1994) 77-80

2. Ferrucci, A., Martin, M., Geocaris, T., Schlag M., Chan, P.K.: A Field-Programmable Gate
Array Implementation of a Self-Adapting and Scalable Connectionist Network. FPGA'94:
International ACM/SIGDA Workshop on Field-Programmable Gate Arrays. (1994)

3. Haenni, J.O., Beuchat, J.L., Sanchez, E.: Hardware reconfigurable neural networks, 5th
Reconfigurable Architectures Workshop (1998)

4. Hikawa, H.: Implementation of simplified multilayer neural network with on-chip learning.
Proceedings of the IEEE International Conference on Neural Networks. (1999) 1633-1637

5. Wolf, W.H.: Hardware-software co-design of embedded systems, Proceedings of the IEEE,
Volume 82, Issue 7. (1994) 967-989

6. Seljak, B.K.: Hardware-software co-design for a real-time executive. Proceedings of the
IEEE International Symposium on Industrial Electronics. (1999) 55-58

7. Pasero, E., Perri, M.: HW-SW codesign of a flexible neural controller through a FPGA-
based neural network programmed in VHDL. IEEE International Joint Conference on
Neural Networks, Volume 4. (2004)

8. Chiaberge, M., Miranda, E., Reyneri, L.M.: An HW/SW co-design approach for neuro-
fuzzy hardware design. Proceedings of the Seventh International Conference on
Microelectronics for Neural, Fuzzy and Bio-Inspired Systems. (1999)

9. Reyneri, L. M., Chiaberge, M., Lavagno, L., Pino, B., Miranda, E.: Simulink-based HW/SW
codesign of embedded neuro-fuzzy systems. Int. J. Neural Syst., vol. 10, no. 3. (2000) 211-
226

10. Xilinx Inc., Virtex-E 1.8 V Field Programmable Gate Arrays DS022-2 (v2.6.1) Production
Product Specification. (2004)

11. Holt, J.L., Baker, T.E.: Backpropagation simulations using limited precision calculations.
International Joint Conference on Neural Networks (IJCNN-91), vol. 2. (1991) 121-126

12. Kung, S.Y., Hwang, J.N.: Parallel Architectures for Artificial neural Nets. Proc. IEEE lnt.
Conf. on Neural Networks, San Diego, California, (1988) pp. II-165 - H-172

13. Amin, H., Curtis, K.M., and Hayes-Gill, B.R.: Piecewise linear approximation applied to
nonlinear function of a neural network. IEE Proceedings, Circuits Devices & Systems, 144
No. 6, December. (1997) pp. 313-317

14. Mori, J., Nagamatsu, M., Hirano, M., Tanaka, S., Noda, M., Toyoshima, Y., Hashimoto,
K.: A 10 ns 54×54 b parallel structured full array multiplier with 0.5 �m CMOS technology.
IEEE Journal of Solid-State Circuits, Volume 26, Issue 4. (1991) 600-606

15. Lindsey, C., Lindblad, T.: Review of Hardware Neural Networks: A User’s Perspective.
Proceedings of 3rd Workshop on Neural Networks: From Biology to High Energy Physics.
(1994)

Acknowledgement

The authors would like to thank the British Council for their support in this project.
This study is a part of a British Council Partnership Programme funded project “The
Implementation of Fuzzy Neural Networks for Phoneme Classification on Recon-
figurable Gate Arrays”.

