

HACETTEPE UNIVERSITY Department of Electrical and Electronics Engineering

ELE 361 ELECTRICAL MACHINES I

Fall 2014

HOMEWORK 4 (Section21) HOMEWORK 5 (Section22)

Due Date: 02.01.2015, Friday. Turn it in to teaching assistant Serkan Özturk.

1. A 10-hp, 120-V, 1000 rpm, shunt dc motor has a rated armature current of 70 A. The armature resistance of the motor is R_A = 0.12 Ω , and the field resistance is R_F = 40 Ω . The adjustable resistance in series with the field circuit (R_{adj}) may be varied over a range from 0 Ω to 200 Ω , and it is currently set to 100 Ω . Armature reaction is ignored in this problem. The magnetization curve for his motor, <u>taken at a speed of 1000 rpm</u>, is presented in the below table and figure:

E _A , V	5	78	95	112	118	126
I _F , A	0.00	0.80	1.00	1.28	1.44	2.88

Fig. 1. Magnetization characteristic of the dc machine at 1000 rpm

- a) What is the speed of this motor when it is running at the rated conditions specified above?
- b) The output power from the motor is 10-hp at the rated conditions. What is net the output (load) torque of this motor?
- c) What are the copper losses (P_{Cu}) and rotational losses (P_{rot}) in the motor at full-load?

HACETTEPE UNIVERSITY

Department of Electrical and Electronics Engineering

- d) What is the efficiency of the motor at full-load?
- e) If the motor looses its load, i.e. becomes unloaded, what is the no-load speed of the motor (Terminal voltage and total field resistance do not change)?
- f) Suppose that the motor is running at the no-load conditions described in part (e). What would happen to the motor if its field circuit were to open? Ignoring armature reaction, what would the final steady-state speed of the motor be under those conditions?
- 2. A DC machine with a shunt field winding is operated as a self-excited dc generator at a constant shaft speed of 1200 rpm. The magnetization characteristic of the machine, obtained by exciting the shunt field winding separately by a dc source and keeping the shaft speed constant at 1200 rpm, is approximated by two straight lines as given below:

$E_a \cong 10 V$	for $I_f = 0$
$E_a \cong 250I_f$	for 0 <i_f <math="" display="inline">\leq 0.8 A</i_f>
$E_a \cong 125I_f + 100$	for $I_{f} > 0.8 A$

Armature winding resistance R_a and total field winding resistance R_f are measured as 1 Ω and 165.3 Ω , respectively.

- a) Calculate the no-load terminal voltage of the generator.
- b) The self-excited dc generator above is now loaded, and supplies a constant load current of $I_L = 50$ A. Calculate the induced armature emf E_a , field current I_f , armature current I_a and terminal voltage V_t .