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I.  Basic concepts of 
Magnetic Circuits (M.C.)
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1. Basic principles
• Electromechanical energy conversion device (E.M.D) 

– links electrical & mechanical systems

• or Electromechanical transducer (E.M.T)
– converts electrical energy to mechanical energy and vice versa

• The energy conversion is reversible

Electrical energy Mechanical energy

Electric Motors

Generators
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• Most energy forms are converted to electrical energy, since 
it can be
– transmitted & distributed easily
– controlled efficiently and reliably in a simple manner

Primary sources
of energy

hydropower, fossile fuel, natural gas
wind, nuclear power etc.

Ultimately desired
Output

mechanical , heat, 
chemical, light etc.

Electrical Energy

Turbine G Mprocess Pumps, 
fans etc

EMTprimary
source

output

mechanical
energy

electrical
energy

electrical
energy

mechanical
energy
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• Coupling between electrical systems and mechanical 
systems is through the medium of fields of electric 
currents or charges.

– MAGNETIC FIELDS
• Electromagnetic machine

– ELECTROSTATIC FIELDS
• Electrostatic machine (not used in practice due to low power 

densities, resulting in large m/c sizes)
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Principle phenomena in 
Electromechanical Energy Conversion (E.M.C) 

1. Force on a conductor

2. Force on ferromagnetic materials                
(e.g. iron)

3. Generation of voltage
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Force on a conductor

• A mechanical force is exerted on
current carrying conductor in a 
magnetic field (MF) and also between 
current carrying conductors by means 
of their MF

– Reversibly  voltage is induced in a circuit 
undergoing motion in a MF

Right-hand ruleNB. In left-hand rule, B and i exchange fingers
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Ex1.

Ex2.

Ex3.

Ex4.

Induced voltage
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Force on a ferromagnetic materials 
• A mechanical force is exerted on a ferromagnetic 

material tending to align it with the position of the 
densest part of MF.
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Generation of voltage
• A voltage is induced in a coil when there is a change 

in the flux linking the coil
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• The change in flux linkage is either due to changing 
flux linking the coil (i.e. transformer voltage) or by 
relative motion of coil and MF with respect each other

Single-coil rotor Flux linkage of the coil
(i.e. flux captured by the coil)
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Classification of E.M.D.

E.M.D.

Continuous energy 
conversion devices

electric motors,   
generators

Devices used for 
measurement and

control

Electromechanical 
transducers

Force producing 
devices

Relays, solenoids, 
electromagnets
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• Motoring action

An E.M.D involves energy in 4 forms:

Energy input from 
electrical sources

= Mechanical 
energy output

+ Energy converted 
into heat due to losses

+ Increase in energy 
stored in magnetic field

• Generating action

Electrical energy 
output

= Mechanical 
energy input

– Energy converted 
into heat due to losses

– Increase in energy 
stored in magnetic field

Irreversible conversion to heat 
occurs due to

– heat in i2R losses (copper losses)
– magnetic losses  (core losses)
– mechanical losses  (friction & windage losses)
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Rewriting the energy balance equation (motoring convention):

Electrical energy input
–

Copper losses
=

Mechanical energy output
+

Friction & windage losses
+

Increasing energy stored in M.F.
+

Core losses

Net electrical energy input Gross mechanical energy output



17

2. Analysis of Magnetic Circuits (M.C.)

Magnetomotive force (F):

Core flux density (Bc):

Airgap flux density (Bg):

[ Ampere-turns (At) ]

[ Wb/m2  or Tesla (T) ]

[ Wb/m2 or Tesla (T) ]

where  represents the magnetic flux
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Fringing effects:

Due to fringing effects

Ag > Ac

Normally, we ignore fringing effects, so

Ag Ac

Since Ag Ac  Bg  Bc
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Magnetomotive Force

For the M.C. on the right

where H represents the magnetic field intensity
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Relationship between Bc and Hc

In the linear region

linear  region

linear  region
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Assuming operating in the linear region, we can rewrite the above equation as :
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Magnetomotive Force - 2

Noting that  B = /A, we can rewrite the above equation as 

We can further simplify the notation

where R represents the magnetic resistance 
of the medium against flux, called reluctance
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Reluctance

where:

and

Magnetic resistance of a medium against magnetic flux is called  RELUCTANCE

Note the analogy between the electrical circuits

[ At/Wb ]
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Analogy between electric and magnetic circuits

Correspondence of conductance in magnetic circuits is called permeance:
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Simplifications:

Noting that    mc = mr m0 and   2000 < mr < 80000

Rc << Rg in the linear region of Bc-Hc curve, i.e. in linear M.C.s

so

Nearly all magnetomotive force (F ) is used to overcome the airgap portion of the MC 
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3. Flux Linkage and Inductance

Flux linkage and induced voltage e is given by

For linear magnetic circuits 

where L indicates the self-inductance of coil
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Self inductance of the N-turn coil:

or

For non-linear magnetic circuits 

This image cannot currently be displayed.
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Ex1.
Find:

a) the inductance of the winding
b) flux density in gap g1 (B1)

Equivalent magnetic circuit: 
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Ex2.

Consider the plastic ring above and assuming rectangular cross section area

a) Find B at the mean diameter of coil
b) Find inductance of coil, assuming flux density inside ring is uniform 

mplastic = m0

N = 200 turns

i = 50A
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Self and Mutual Inductances

L11 L12

Self-inductance of coil Mutual-inductance between
coils 1 & 2

Assumption:
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Self and Mutual Inductances - 2

where
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leakage
flux

core
flux

Leakage Flux

Leakage flux:             l
Magnetizing flux:     m

(core flux)

Not all the flux closes its path from the magnetic core, but 
some portion closes its path through air. 

This is called the leakage flux, l .
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4. Magnetic Stored Energy
• Stored energy in a magnetic circuit  in a time 

interval between t1 and t2 : 

This image cannot currently be displayed.
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For a linear magnetic circuit:
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Similarly



or

With  i1= 0, i2= i or   l1= 0, l2= l
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


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• Magnetic
– Ferrimagnetic (2000 < mr < 10000)

• e.g. Mn-Zn alloy

– Ferromagnetic (mr around 80000)
• Hard (permanent magnet)

– e.g. Alnico, Neodimium-Iron-Boron, etc.
(rare-earth magnets)

• Soft (electrical steel)
– e.g. FeSi, FeNi and FeCo alloys

• Non-magnetic
– Paramagnetic (mr slightly > 1)

• e.g. aluminum, platinum and magnesium

– Diamagnetic (mr slightly < 1)
• e.g. copper and zinc

4. Magnetic Materials
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Properties of Magnetic Materials:

• Become magnetized in the same 
direction of the applied magnetic field

• B varies nonlinearly with H (double-
valued relationship between B and H )

• Exhibit saturation and hysteresis
• Dissipate power under time-varying 

magnetic fields
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Terminology:

• Magnetization curve
• Magnetic hysteresis
• Residual flux density, Br and coercive 

field intensity, Hc

• Cyclic state
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Magnetic Hysteresis 
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Normal (DC) magnetization curve (n.m.c) 
for a ferromagnetic core:

The curve used to describe a magnetic material is called 
the B-H curve, or the hysteresis loop: 
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Hysteresis Loop:

Br :  residual flux density

Hc :  coercive field intensity
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Hysteresis Loop

1. From a demagnetized state (B = 0) while mmf F or field intensity H is 
gradually increased, B moves on n.m.c. from a  b :

[ H = 0  Hm  B = 0  Bm]
2. B moves from b  c :  [ H =  Hm  0  B = Bm  Br ]
3. B moves from c  d :  [ H =  0  –Hc  B = Br  0 ]
4. B moves from d  e :  [ H = –Hc  –Hm  B = 0  –Bm ]
5. B moves from e  f :   [ H = –Hm  0  B = –Bm  –Br ]
6. B moves from f  g :   [ H =  0  Hc  B = –Br  0]
7. B moves from g  b :  [ H = Hc  Hm  B = 0  Bm]

Magnetic performance of magnetic 
material depends on their previous 
history 

During measurements, the material should be 
put to a definite magnetic cycle:

H is varied in a cyclic manner  
{ +Hm  0  –Hm  0  +Hm}
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Ex:

a. The exciting current ie for Bc = 1.0 T.
b. The flux f and flux linkage l (ignore leakage fluxes).
c. The reluctance of the airgap Rg and magnetic core Rc.
d. The induced emf e for a 60 Hz core flux of Bc = 1.0 sin 377 t, Tesla
e. The inductance L of the winding (neglect fringing fluxes)
f. The magnetic stored energy W at Bc = 1.0T
g. Assuming that core material has a DC magnetization curve, find the 

exciting current i for Bc = 1.0 T

Find:
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Ex:

Magnetization curve of the core
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a) Relation between periodic exciting current ie and 
flux f in a magnetic circuit

6. AC Excitation and Losses
This image cannot currently be displayed.This image cannot currently be displayed.
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Due to non-linear B-H characteristic (or f - F ch.) of a magnetic 
material, the exciting current ie (or if ) is a distorted sine wave 
although flux f is sinusoidal.
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Due to non-linear B-H characteristic (or f - F ch.) of a magnetic 
material, the exciting current ie (or if ) is a distorted sine wave 
although flux f is sinusoidal.
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Distorted sine wave exciting current waveform 
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Expanding ie using Fourier series

Steady-state equivalent circuit model of the 
exciting branch

Neglecting high order harmonics:

rc: core loss resistance

xm: magnetizing reactance 
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b) Energy (power) losses in magnetic circuits

• Hysteresis loss
• Eddy current losses 

Power loss in M.C. is due to: 
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Hysteresis Loss

Vc: Volume of the magnetic core
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Empirical eqn:
h: constant depending on material type

For one cycle of ac excitation: 

Hysteresis loss per cycle of ac excitation:
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Eddy Current Loss
In general, M.C. have 

- very high magnetic permeability,

- high electrical conductivity 
(low resistivity), which causes 
extra I2R losses (Pe) within the 
magnetic materials when they are
subject to time-varying MF. 

Eddy current loss: 
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Eddy Current Loss

Stacking factor Fs in a laminated material

d: thickness of lamination
Ke: constant depending on material 

resistivity r

Core loss:

0.95 < Fs < 1



57

Core Loss

Core Loss is given in manufacturer’s data sheets for each specific core material as 
Pcore vs Bm curves in log. scale, with operating frequency as a parameter: 

Core loss increases with increasing frequency


