

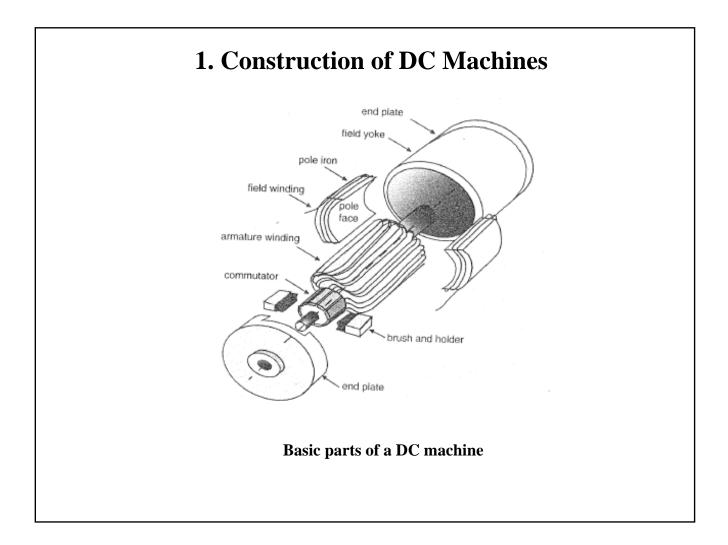
Introduction

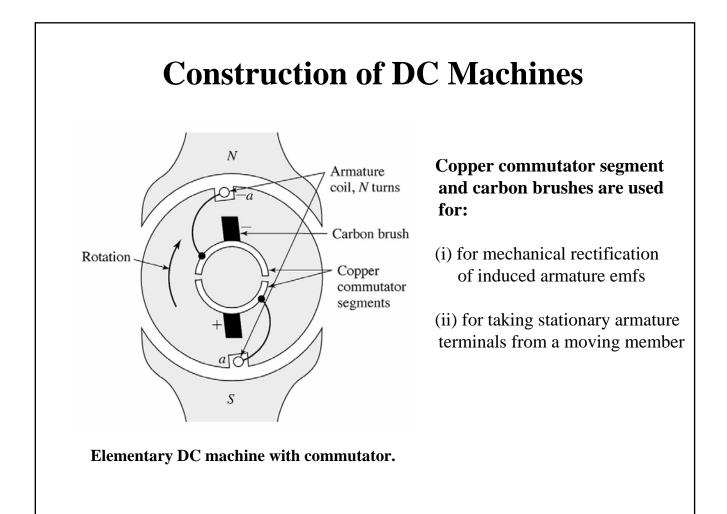
DC machines are used in applications requiring a wide range of speeds by means of various combinations of their field windings

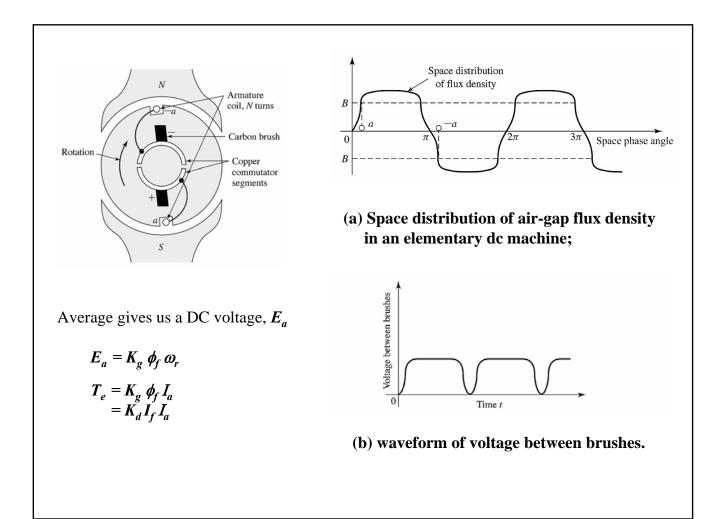
Types of DC machines:

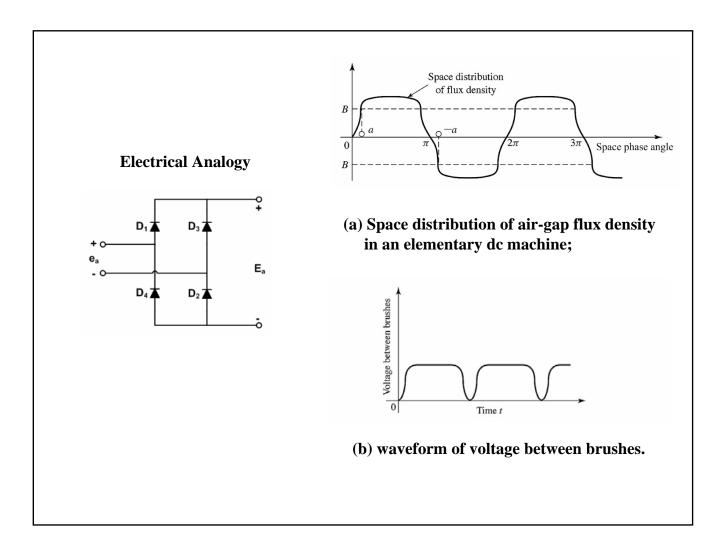
- Separately-excited
- Shunt
- Series
- Compound

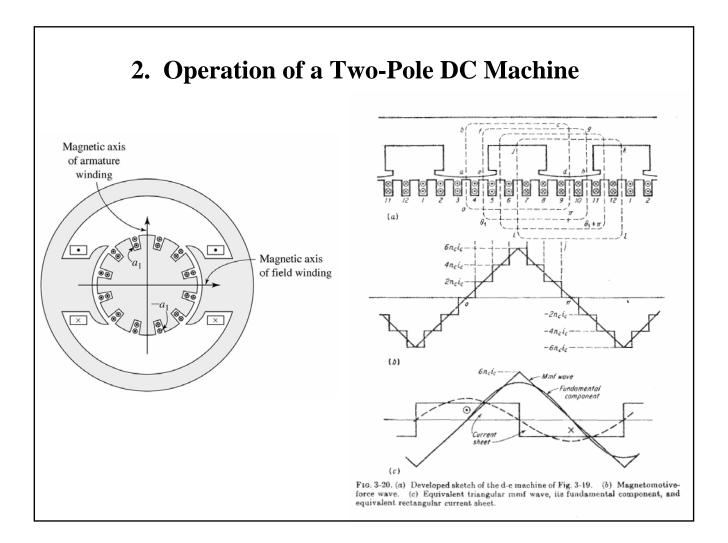


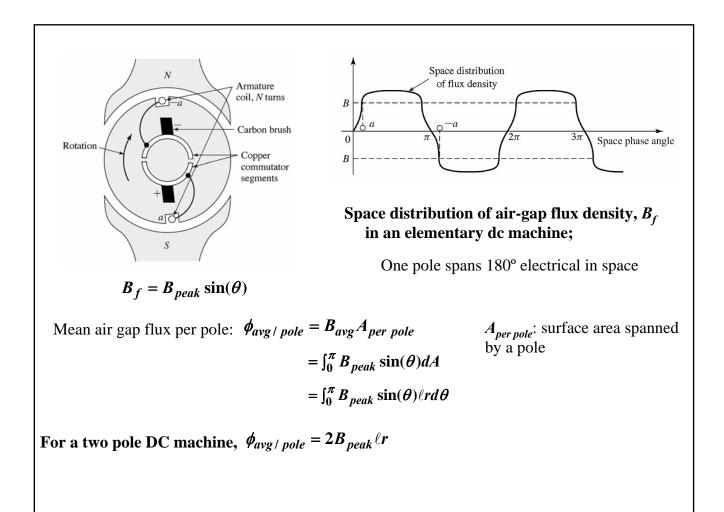


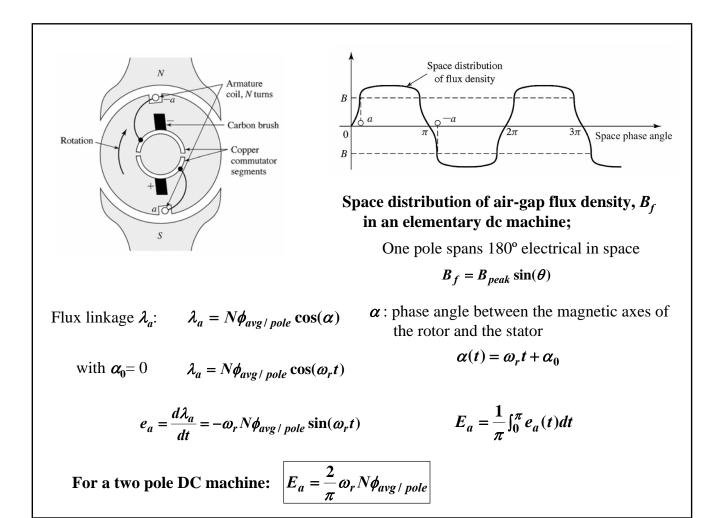


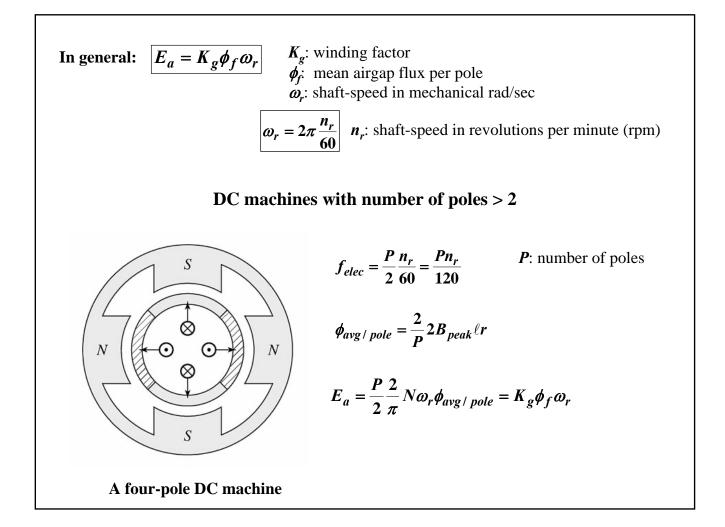


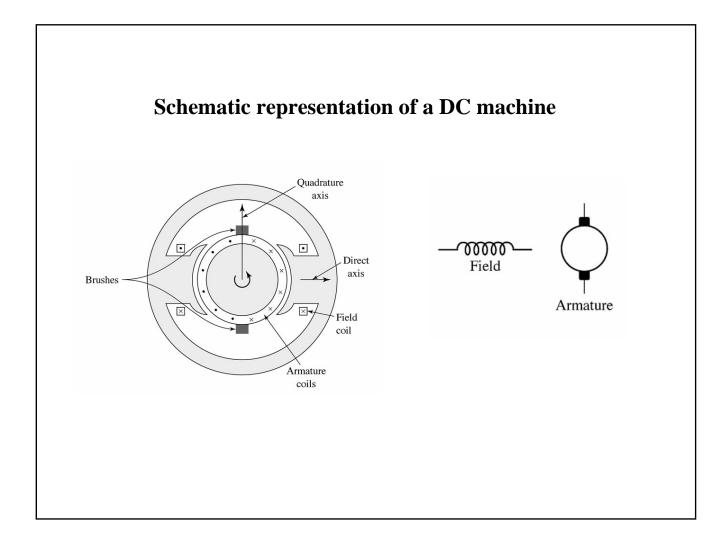


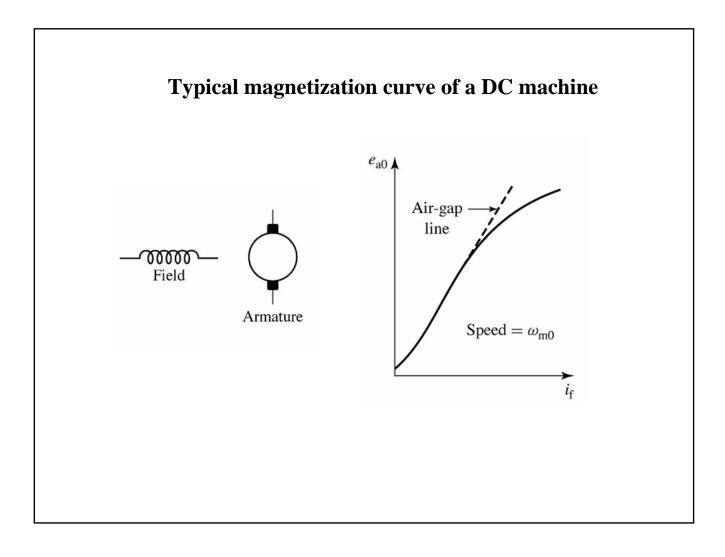


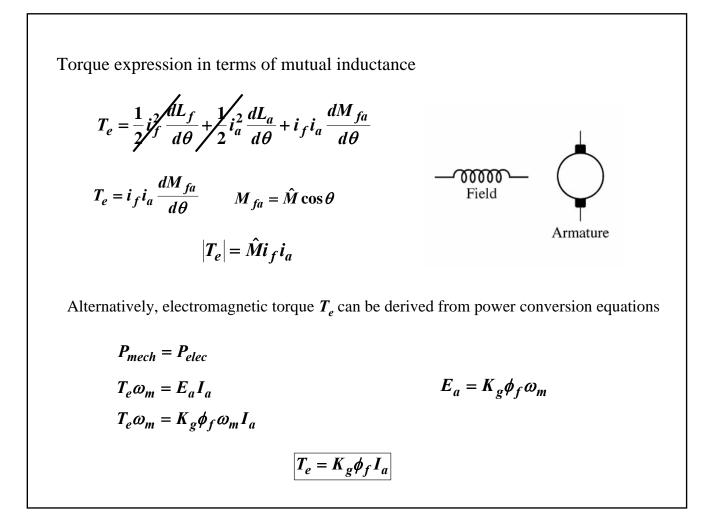




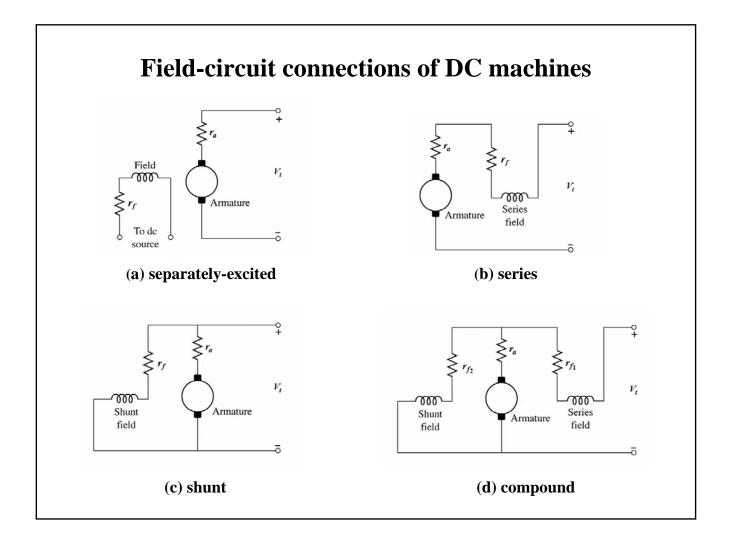


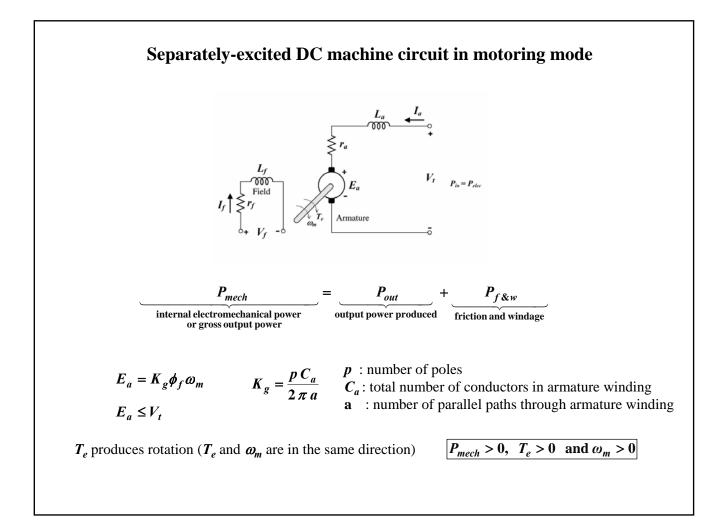


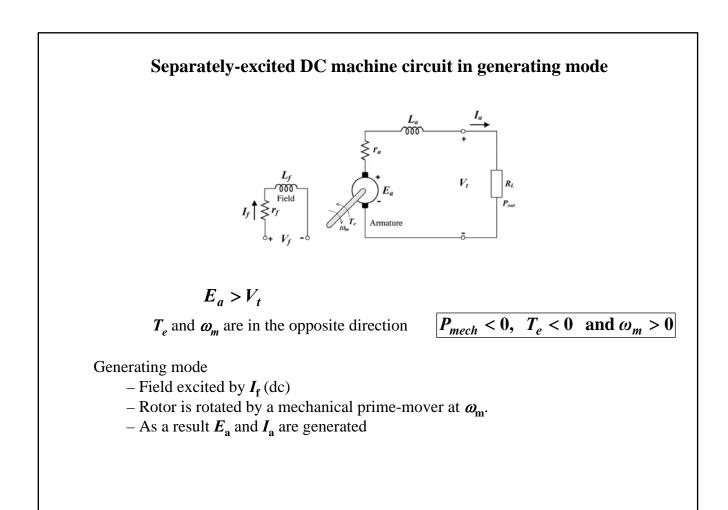


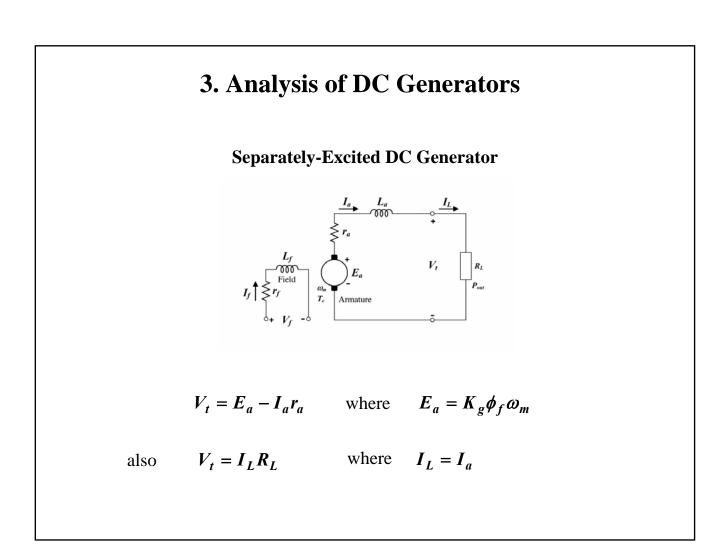


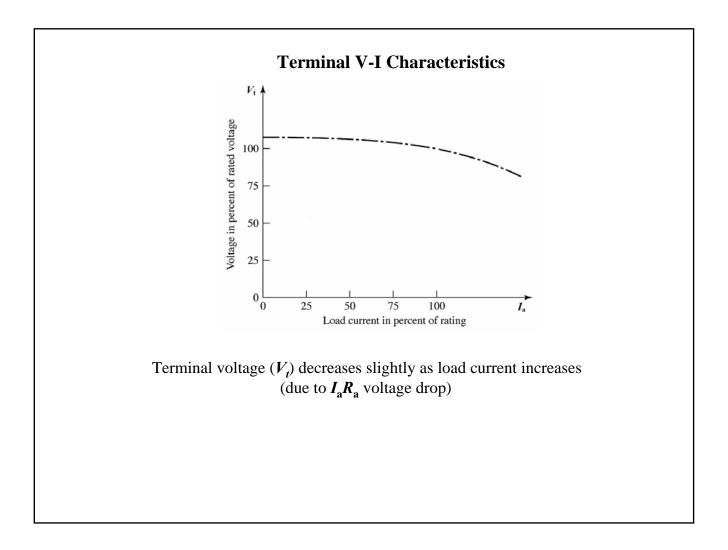


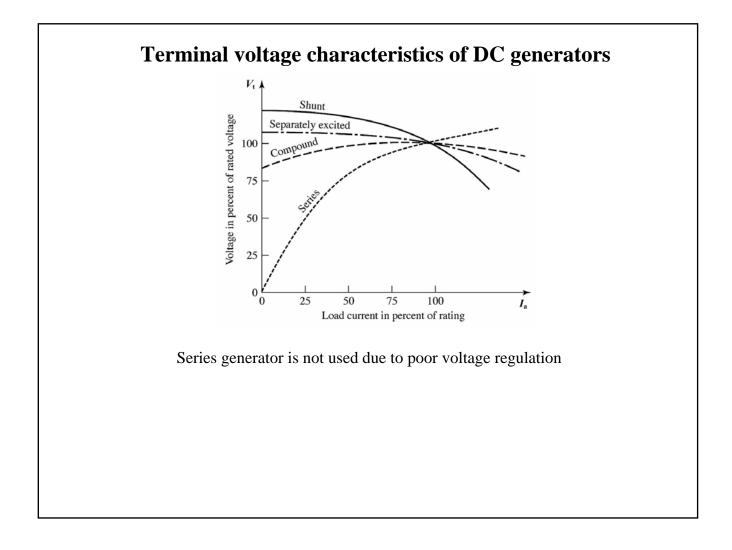


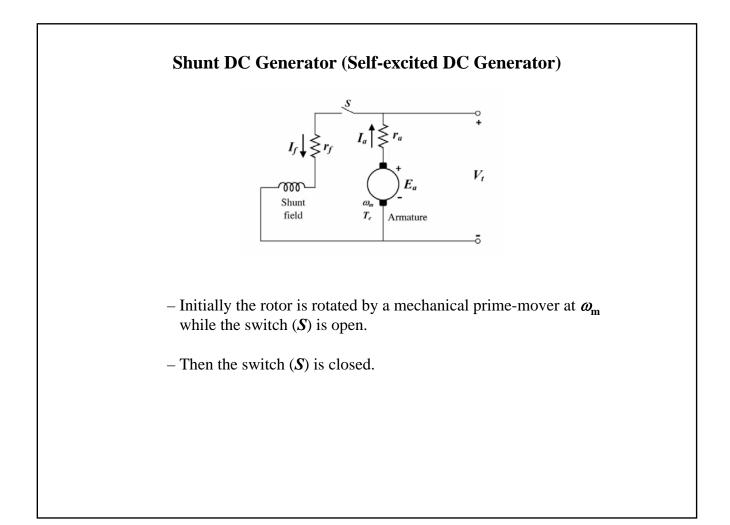


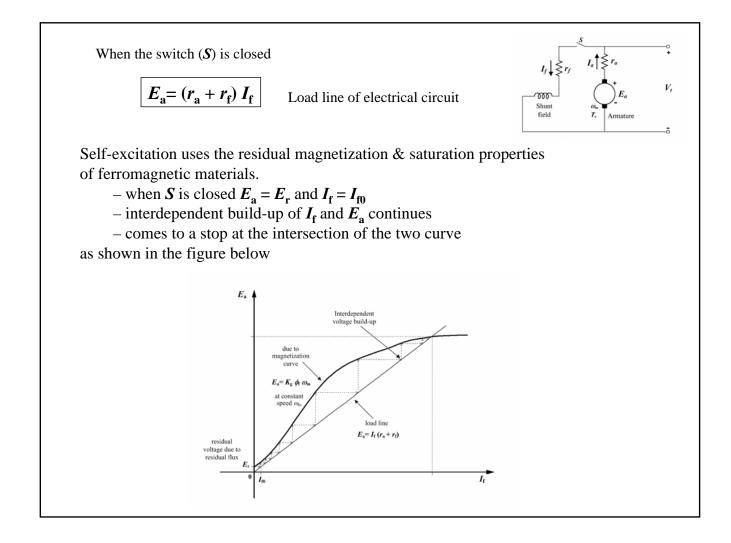












Solving for the exciting current, $I_{\rm f}$

$$E_a = K_g \phi_f \omega_m$$
 where $\phi_f = K_f I_f$
 $E_a = K_d I_f \omega_m$ where $K_d = K_g K_f$

Integrating with the electrical circuit equations

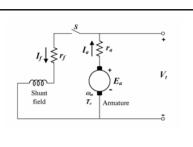
$$K_d i_f \omega_m = (L_a + L_f) \frac{di_f}{dt} + (r_a + r_f) i_f$$

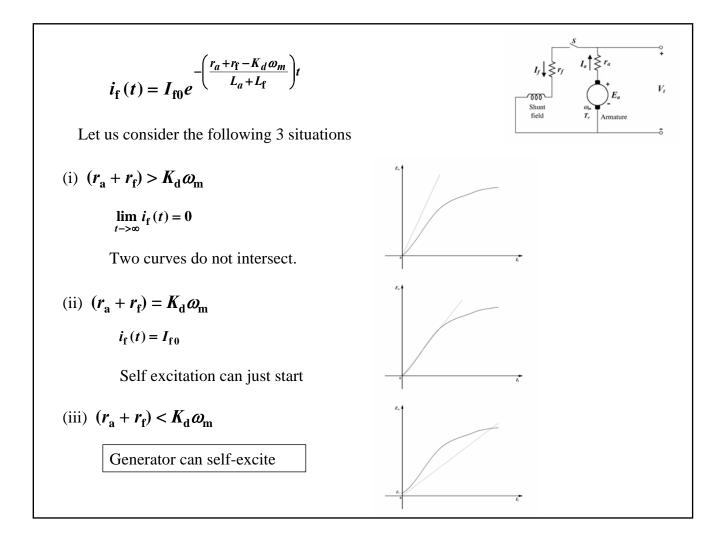
Applying Laplace transformation we obtain

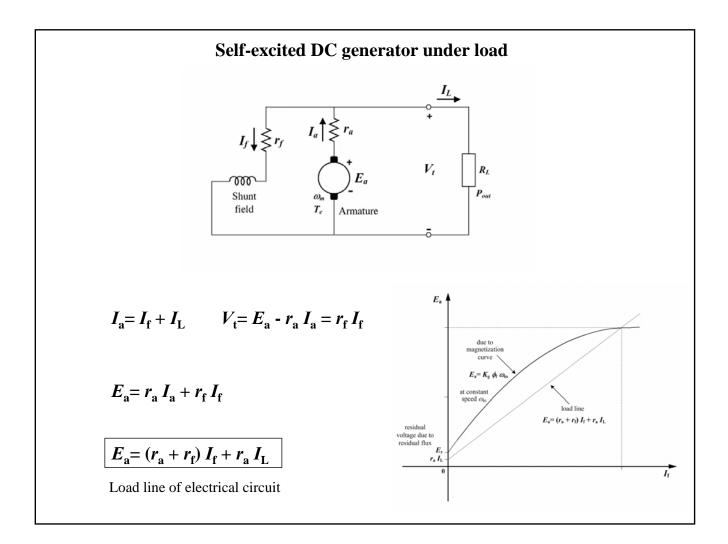
$$K_{d}\omega_{m}I_{f}(s) = (L_{a} + L_{f})sI_{f}(s) + (r_{a} + r_{f})I_{f}(s) - (L_{a} + L_{f})I_{f0}$$

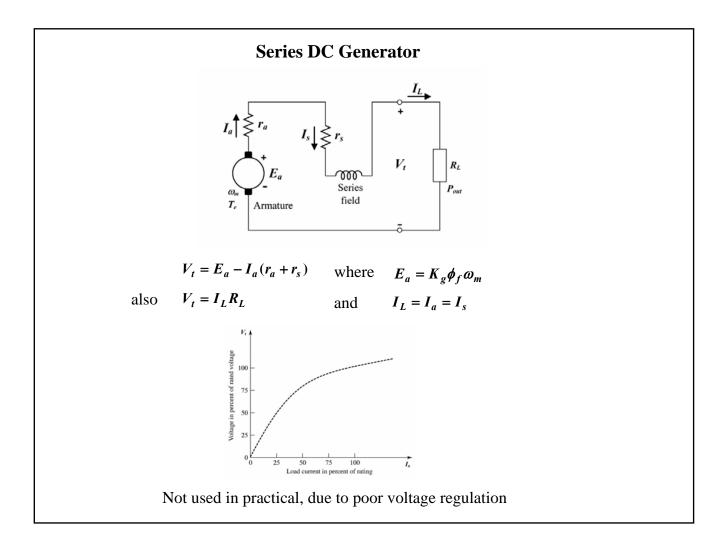
So the time domain solution is given by

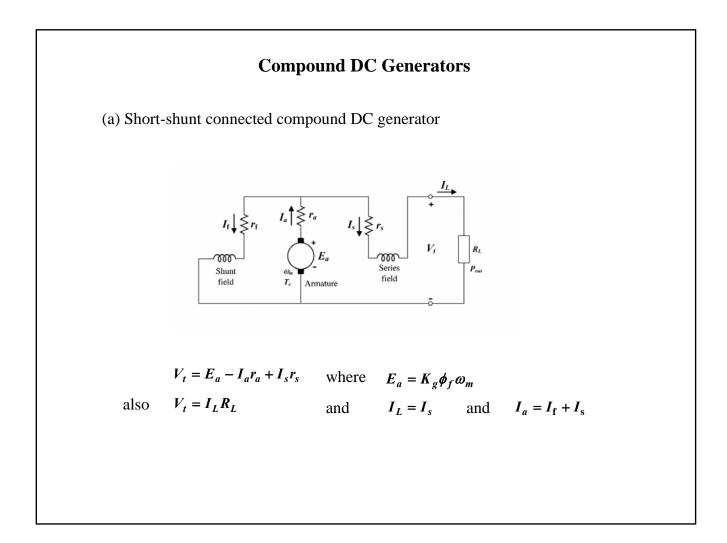
$$i_{\rm f}(t) = I_{\rm f0} e^{-\left(\frac{r_a + r_{\rm f} - K_d \omega_m}{L_a + L_{\rm f}}\right)t}$$

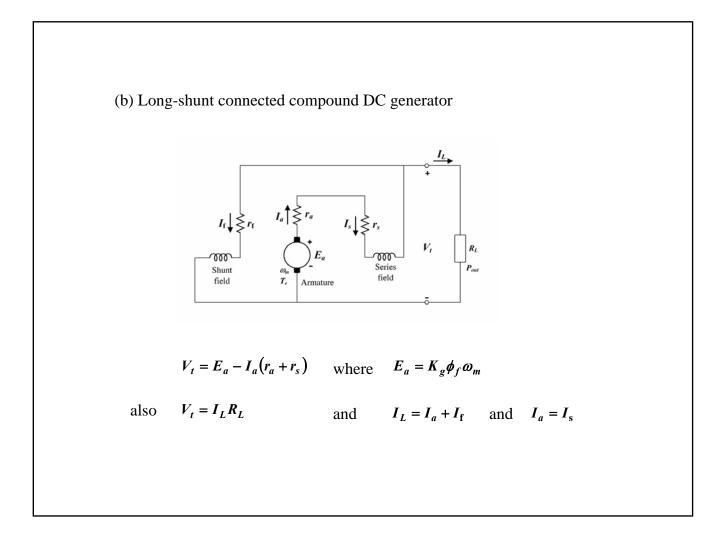


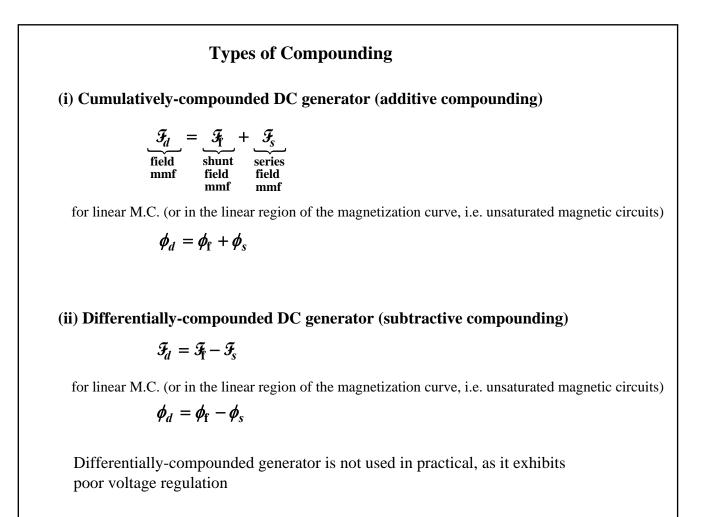


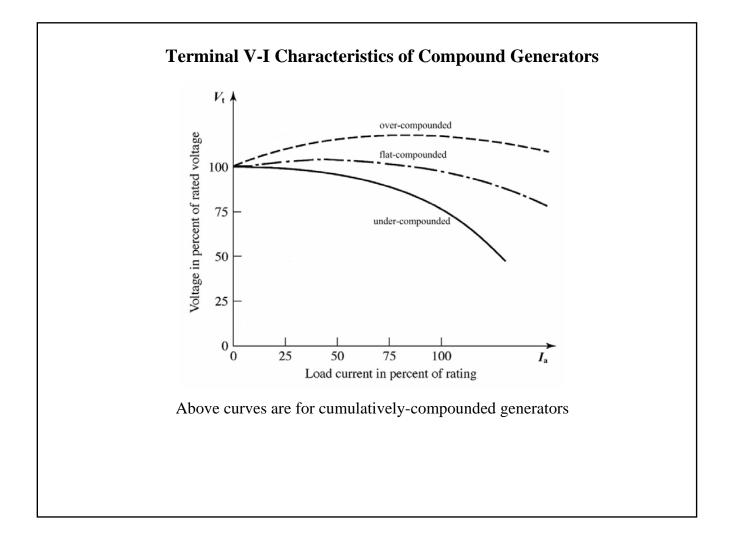


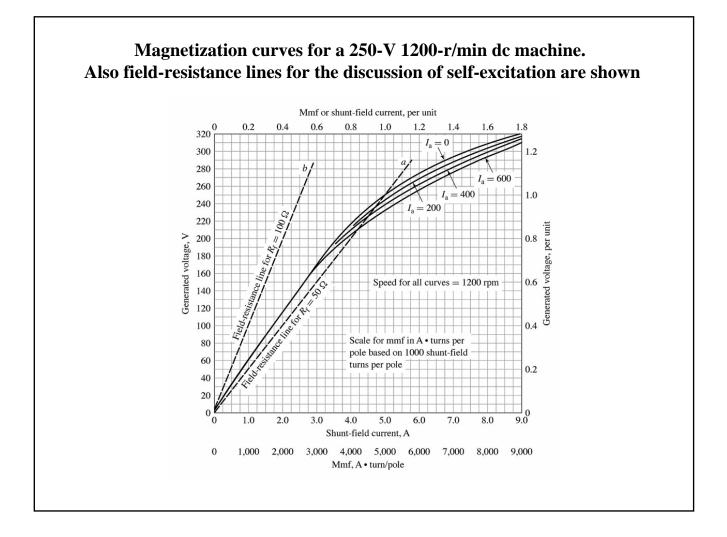












Examples

1. A 240kW, 240V, 600 rpm separately excited DC generator has an armature resistance, $r_a = 0.01\Omega$ and a field resistance $r_f = 30\Omega$. The field winding is supplied from a DC source of $V_f = 100$ V. A variable resistance R is connected in series with the field winding to adjust field current I_f . The magnetization curve of the generator at 600 rpm is given below:

$I_{f}(\mathbf{A})$	1	1.5	2	2.5	3	4	5	6
E_a (V)	165	200	230	250	260	285	300	310

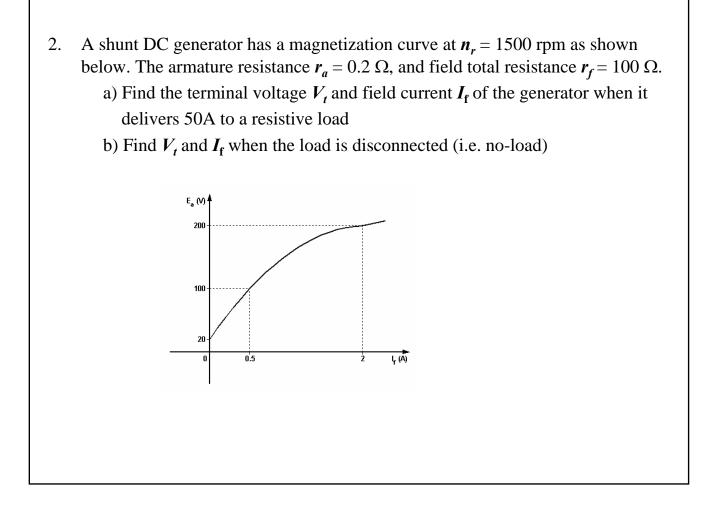
If DC generator is delivering rated voltage and is driven at 600 rpm determine:

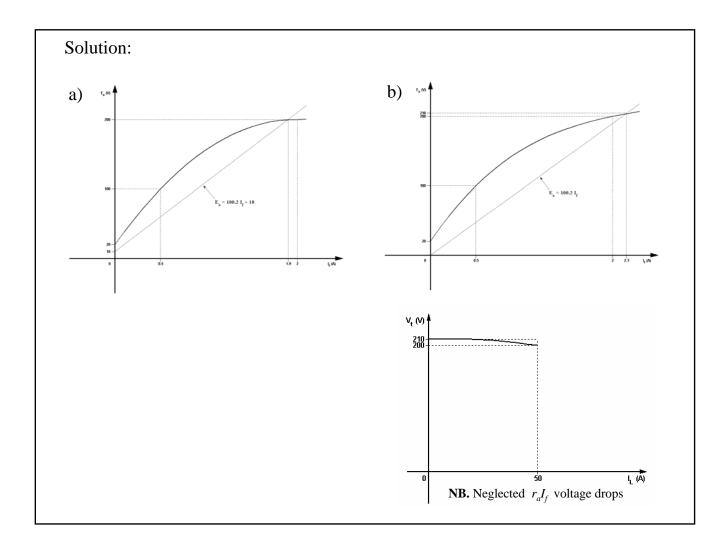
a) Induced armature emf, E_a

b) The internal electromagnetic power produced (gross power)

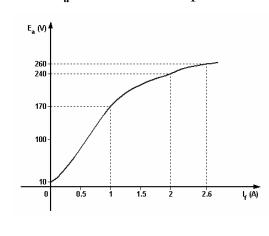
c) The internal electromagnetic torque

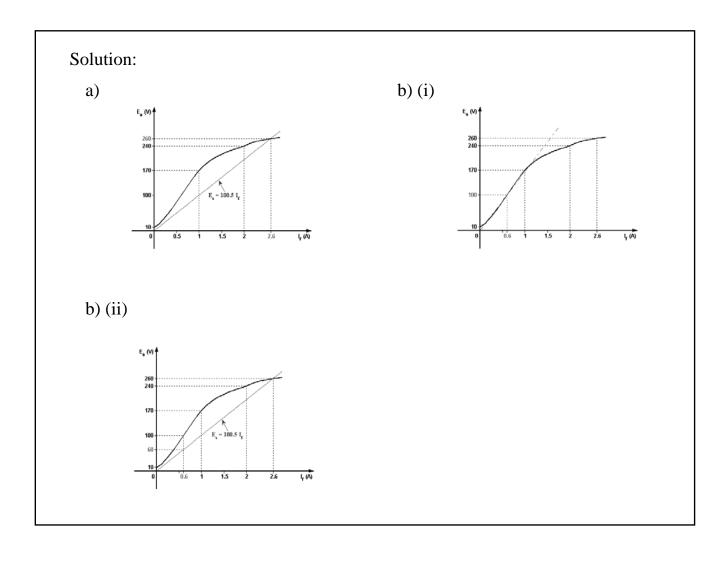
- d) The applied torque if rotational loss is $P_{rot} = 10$ kW
- e) Efficiency of generator
- f) Voltage regulation





- 3. The magnetization curve of a DC shunt generator at 1500 rpm is given below, where the armature resistance $r_a = 0.2 \Omega$, and field total resistance $r_f = 100 \Omega$, the total friction & windage loss at 1500 rpm is 400W.
 - a) Find no-load terminal voltage at 1500 rpm
 - b) For the self-excitation to take place
 - (i) Find the highest value of the total shunt field resistance at 1500 rpm
 - (ii) The minimum speed for $r_f = 100\Omega$.
 - c) Find terminal voltage V_t , efficiency η and mechanical torque applied to the shaft when $I_a = 60$ A at 1500 rpm.

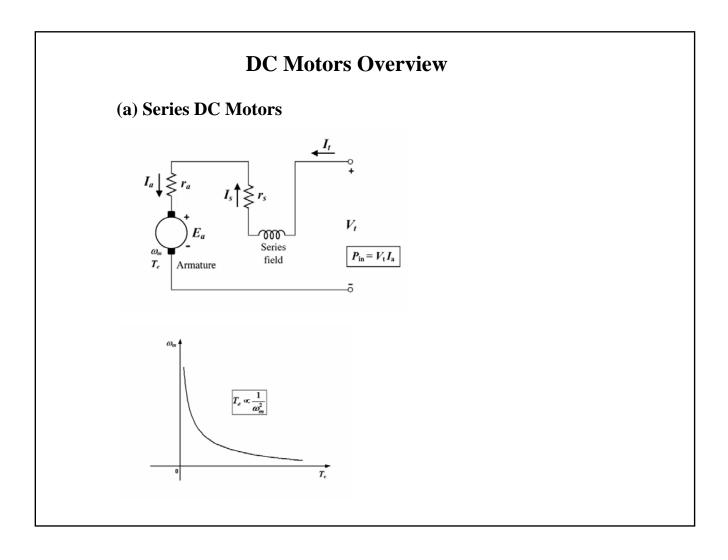


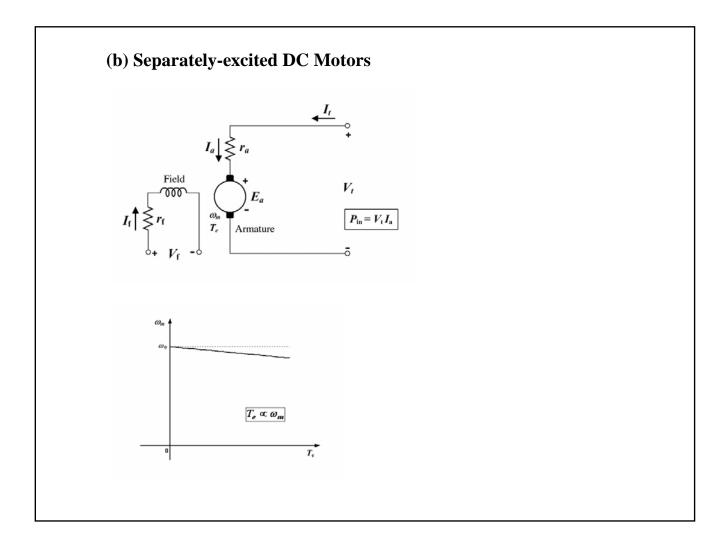


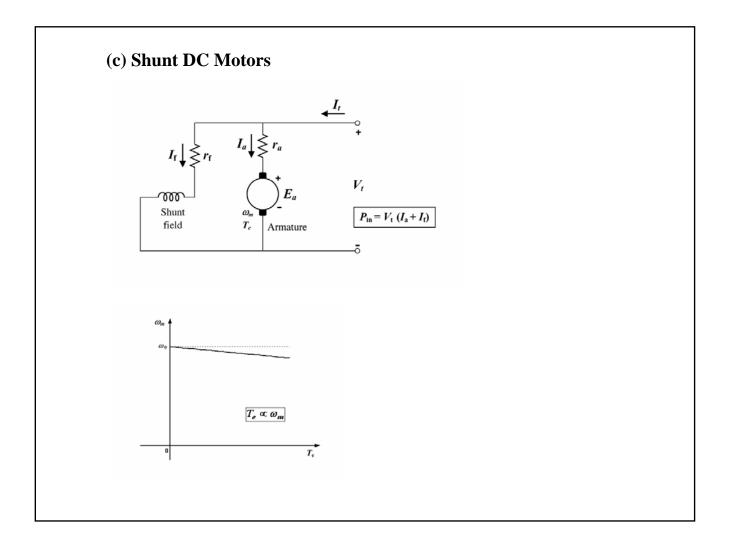
4. Analysis of DC Motors

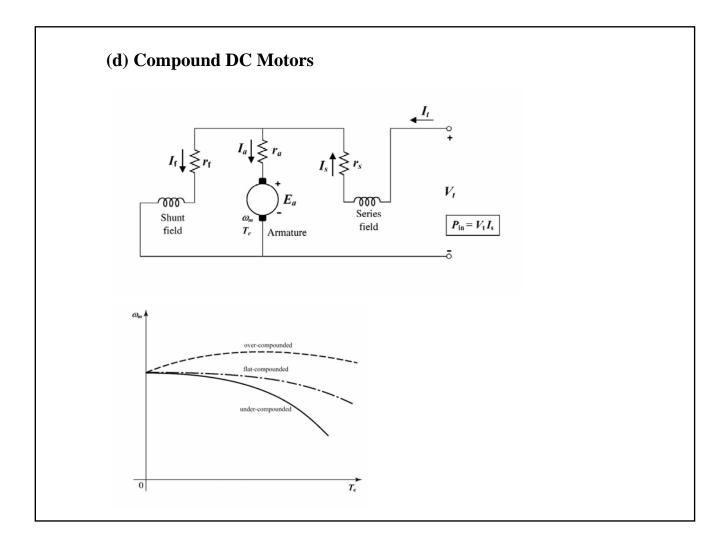
DC motors are adjustable speed motors. A wide range of torquespeed characteristics (T_e - ω_m) is obtainable depending on the motor types given below:

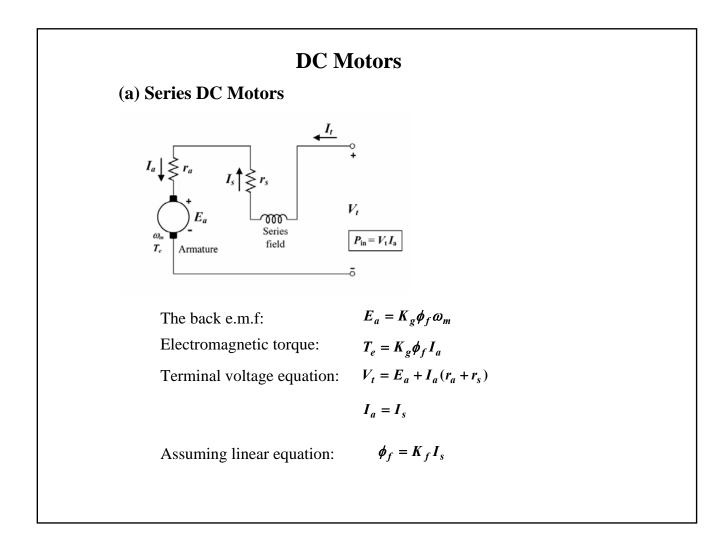
- Series DC motor
- Separately-excited DC motor
- Shunt DC motor
- Compound DC motor











$$T_{e} = K_{g}\phi_{f}I_{a} \qquad \dots \qquad \phi_{f} = K_{f}I_{s}$$

$$T_{e} = K_{g}K_{f}I_{s}I_{a} \qquad \dots \qquad I_{a} = I_{s}$$

$$T_{e} = K_{d}I_{a}^{2}$$

$$K_{g}\phi_{f} = K_{d}I_{a}$$

$$\omega_{m} = \frac{E_{a}}{K_{g}\phi_{f}} = \frac{V_{t} - I_{a}(r_{a} + r_{s})}{K_{g}\phi_{f}} \qquad \dots \qquad E_{a} = K_{g}\phi_{f}\omega_{m}, \quad V_{t} = E_{a} + I_{a}(r_{a} + r_{s})$$

$$\omega_{m} = \frac{V_{t} - I_{a}(r_{a} + r_{s})}{KI_{a}} \qquad \dots \qquad K_{g}\phi_{f} = KI_{a}$$

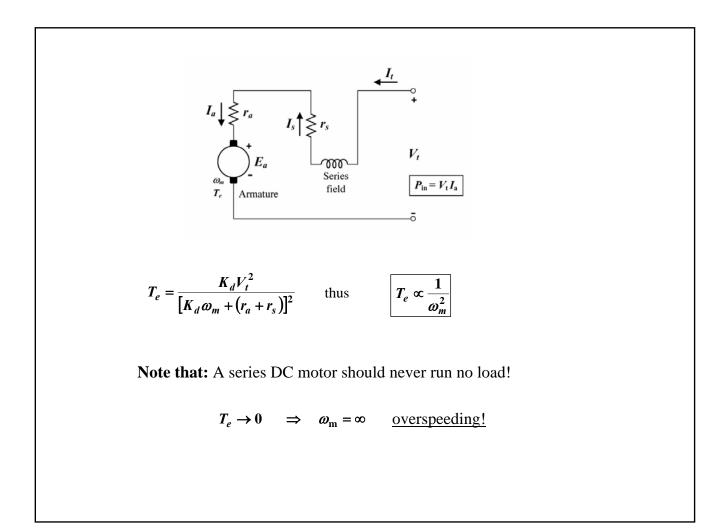
$$E_{a} = K_{d}I_{a} \qquad \dots \qquad K_{g}\phi_{f} = KI_{a}$$

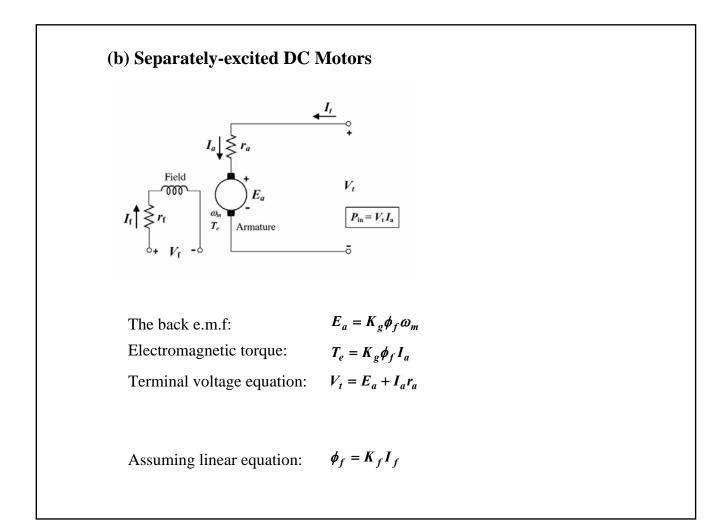
$$E_{a} = K_{d}I_{a} \qquad \dots \qquad K_{g}\phi_{f} = KI_{a}$$

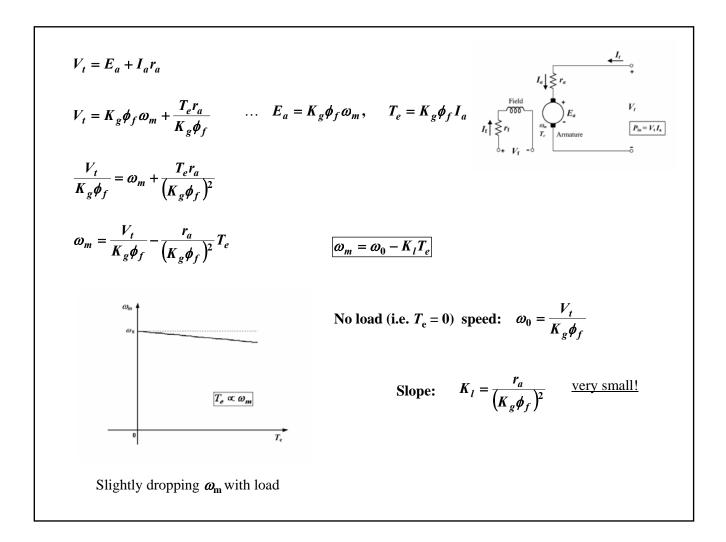
$$I_{a} = \frac{V_{t}}{KI_{a}} \qquad \dots \qquad E_{a} = K_{g}\phi_{f}\omega_{m}$$

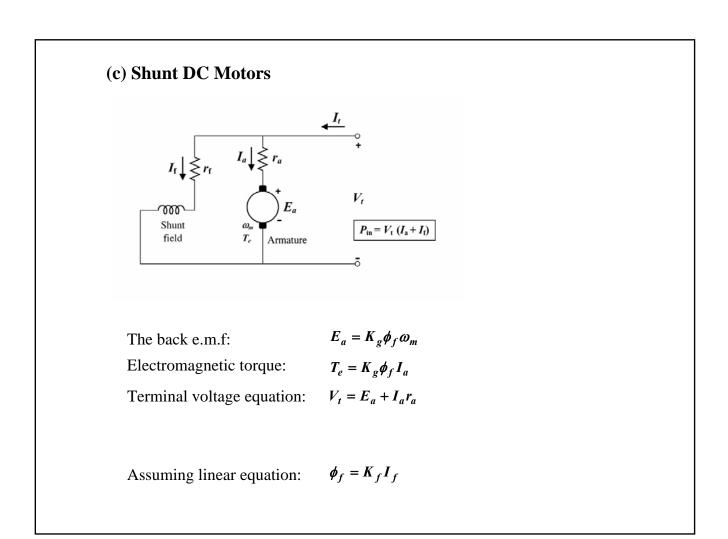
$$I_{a} = \frac{V_{t}}{K_{d}\omega_{m} + (r_{a} + r_{s})} \qquad \dots \qquad E_{a} = K_{g}\phi_{f}\omega_{m}$$

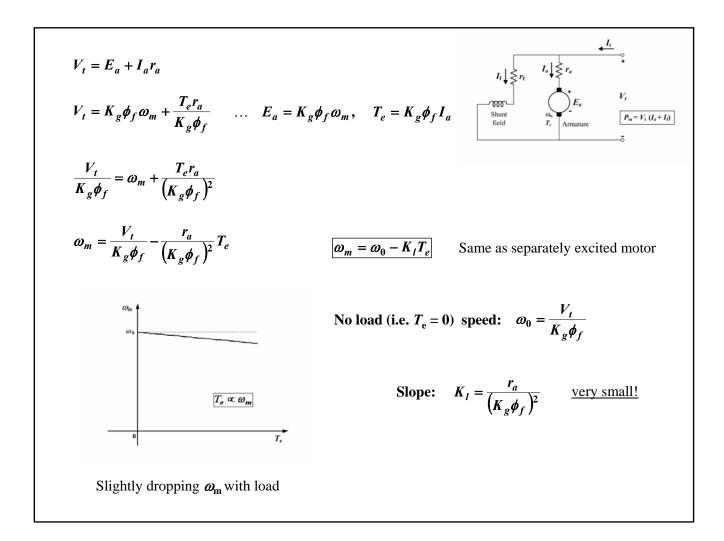
$$I_{a} = \frac{V_{t}}{K_{d}\omega_{m} + (r_{a} + r_{s})} \qquad \dots \qquad E_{a} = K_{g}\phi_{f}\omega_{m}$$

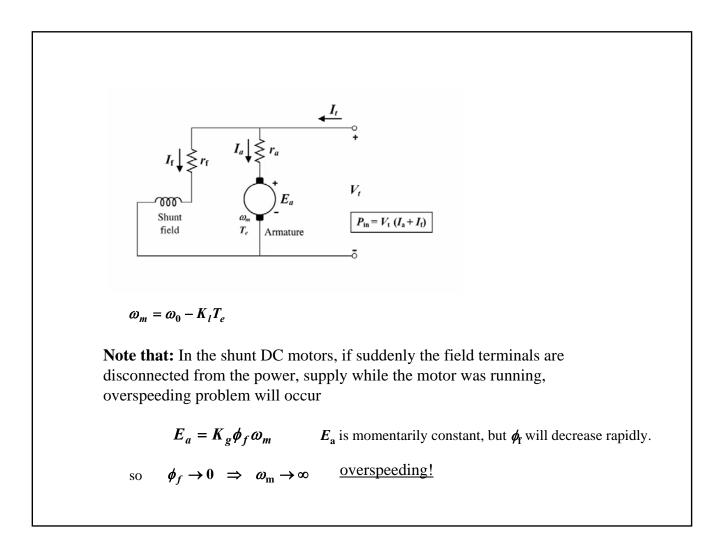


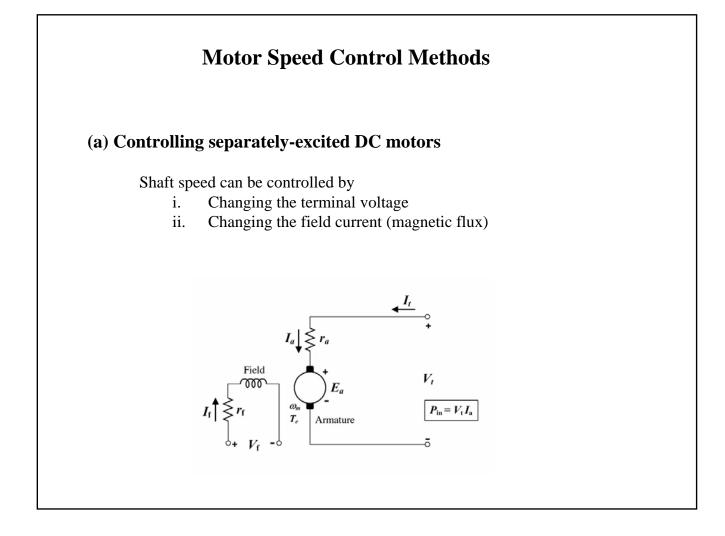


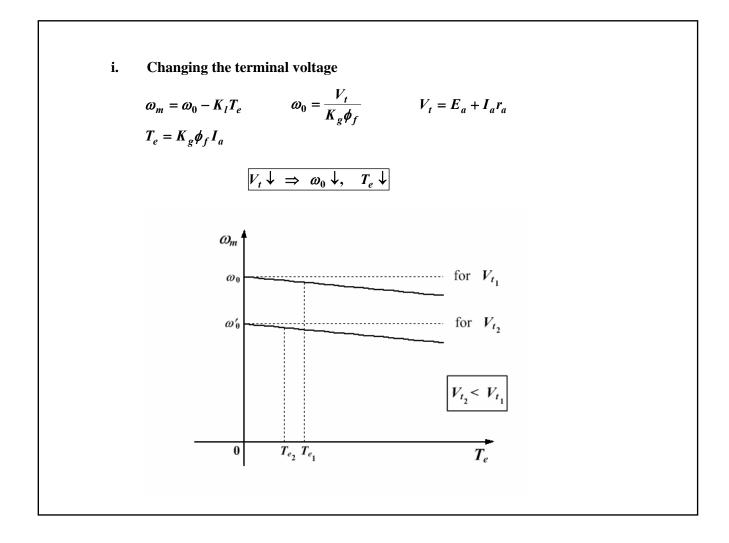


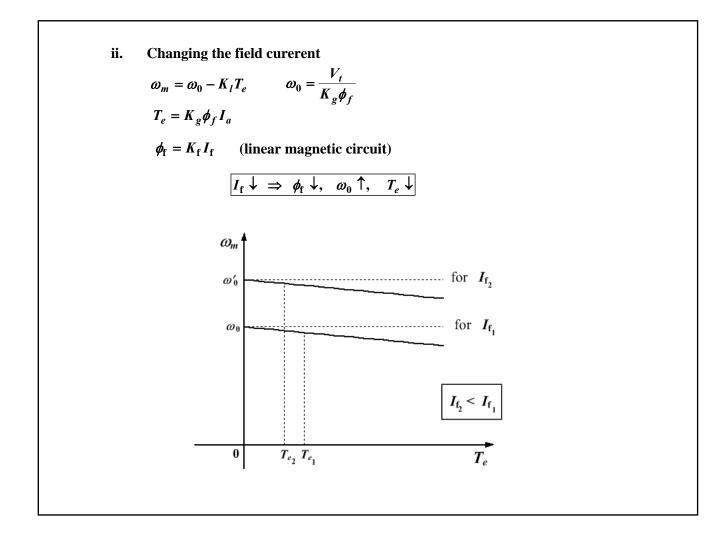


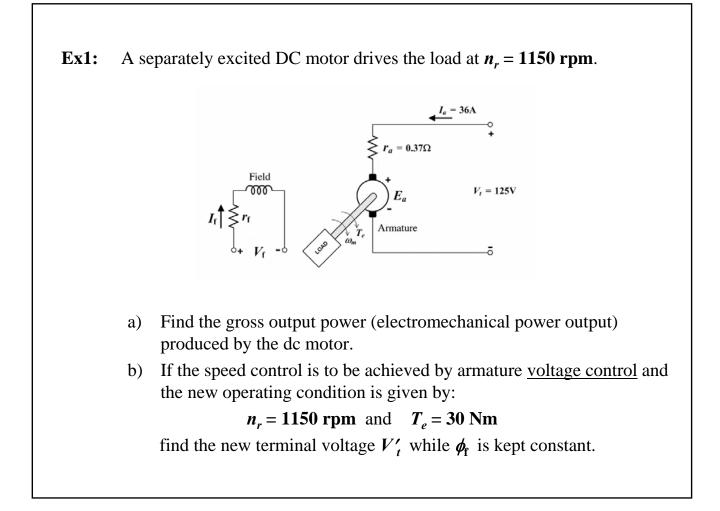








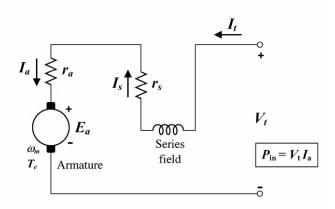


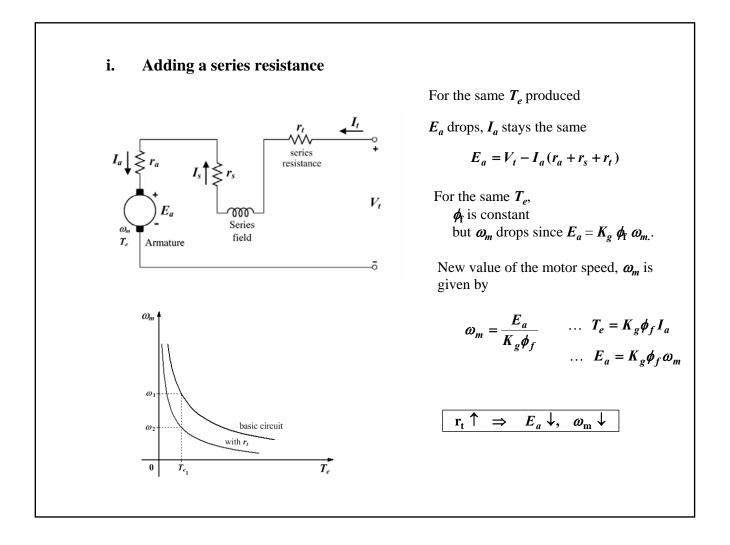


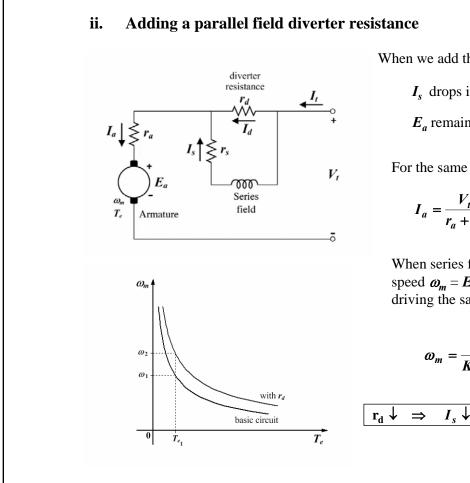
(b) Controlling series DC motors

Shaft speed can be controlled by

- i. Adding a series resistance
- ii. Adding a parallel field diverter resistance
- iii. Using a potential divider at the input (i.e. changes the effective terminal voltage)







When we add the diverter resistance

 I_s drops i.e. $I_s < I_a$.

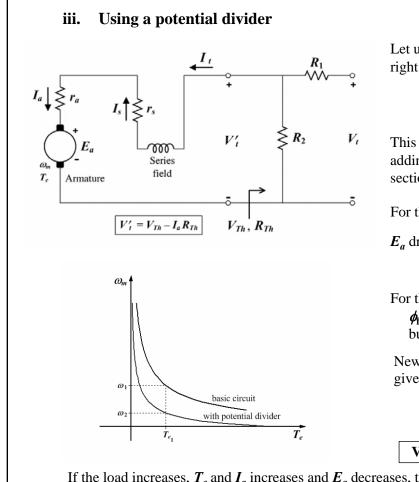
 E_a remains constant,

For the same T_e produced, I_a increases

$$I_a = \frac{V_t - E_a}{r_a + (r_s \parallel r_d)} \quad \dots \quad r_s \parallel r_d < r_s$$

When series field flux drops, the motor speed $\omega_m = E_a / K_g \phi_f$ should rise, while driving the same load.

$$\omega_{m} = \frac{E_{a}}{K_{g}\phi_{f}} \qquad \dots \qquad E_{a} = K_{g}\phi_{f}\omega_{m}$$
$$\dots \qquad \phi_{f} = K_{f}I_{s}$$
$$\downarrow \Rightarrow \qquad I_{s}\downarrow, \qquad I_{a}\uparrow, \qquad \phi_{f}\downarrow, \qquad \omega_{m}\uparrow$$



Let us apply Thévenin theorem to the right of V'_t

$$V_{Th} = \frac{R_2}{R_1 + R_2} V_t \qquad R_{Th} = R_1 \parallel R_2$$

This system like the speed control by adding series resistance as explained in section (i) where $r_t \equiv R_{Th}$ and $V_t \equiv V_{Th}$.

For the same T_e produced

 E_a drops rapidly, I_a stays the same

$$E_a = V_{Th} - I_a (r_a + r_s + R_{Th})$$

For the same T_e ,

 $\phi_{\rm f}$ is constant

but ω_m drops rapidly since $E_a = K_g \phi_f \omega_m$.

New value of the motor speed, ω_m is given by

$$\omega_{m} = \frac{E_{a}}{K_{g}\phi_{f}} \qquad \dots \qquad T_{e} = K_{g}\phi_{f}I_{a}$$
$$\dots \qquad E_{a} = K_{g}\phi_{f}\omega_{m}$$
$$W_{t}^{\prime}\downarrow \implies E_{a}\downarrow\downarrow, \quad \omega_{m}\downarrow\downarrow$$

If the load increases, T_e and I_a increases and E_a decreases, thus motor speed ω_m drops down more.