

2. Ideal Transformer Operation

- No leakage fluxes
- Negligible winding internal resistances
- B-H characteristic of the magnetic material is singlevalued, and linear
 - No hysteresis loss
- Magnetic core has a very high μ_r , i.e. Core reluctance is negligible.
- No copper, no core losses (Efficiency $\eta = 100\%$)
- Interwinding capacitatances are negligle at power frequencies (50Hz, 60Hz)

Basic Relations

1. From Faraday's Law: $e_1 = N_1 d\phi/dt$, and $e_2 = N_2 d\phi/dt$

So,

$$\frac{e_1}{e_2} = \frac{N_1}{N_2}$$

2. Since winding resistances & leakage fluxes are negligible:

$$\frac{v_1}{v_2} = \frac{N_1}{N_2}$$

Terminology

 V_1, I_1, Z_1 : actual primary quantities V_2, I_2, Z_2 : actual secondary quantities

 V'_1 , I'_1 , Z'_1 : primary quantities referred to secondary side V'_2 , I'_2 , Z'_2 : secondary quantities referred to primary side

$$V_1' = \frac{N_2}{N_1} V_1, \quad I_1' = \frac{N_1}{N_2} I_1, \quad Z_1' = \left(\frac{N_2}{N_1}\right)^2 Z_1$$

$$V_2' = \frac{N_1}{N_2} V_2, \quad \mathbf{I}_2' = \frac{N_2}{N_1} I_2, \quad Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

4. Short-circuit and Open-circuit Tests

- Measure voltage (V), current (I) and power (P) in order to determine the equivalent circuit parameters of the transformer:
 - For leakage impedance parameters
 - with secondary short circuited
 - For exciting branch parameters
 - with secondary open circuited

NOTE

- For an inductive load, $Z_L = R_L + jX_L$ - Always $V'_1 > V_2$, i.e. VR% > 0
- For a capacitive load, $Z_L = R_L jX_L$ - Usually $V'_1 \le V_2$, i.e. VR% ≤ 0 (where $-x'_{eq} \sin \theta \ge r'_{eq} \cos \theta$)

$$\begin{split} \eta &= \frac{P_{\text{out}}}{P_{\text{out}} + P_{\text{losses}}} \ 100\% & P_{\text{losses}} = P_{\text{cu}} + P_{\text{core}} \\ \eta &= \frac{P_{\text{out}}}{P_{\text{out}} + P_{\text{cu}_2} + P_{\text{core}}} \ 100\% & P_{\text{cu}} = P_{\text{cu}_1} + P_{\text{cu}_2} \\ \eta &= \frac{V_2 I_2 \cos \theta}{V_2 I_2 \cos \theta + I_1^2 r_1 + I_2^2 r_2 + V_1^2 g_c} \ 100\% & P_{\text{cu}} \approx I_2^2 r_{eq}' \\ \end{split}$$

$$\begin{split} &= \frac{(1 - 1)^2 I_2 \cos \theta}{V_2 I_2 \cos \theta + I_2^2 r_2 + V_1^2 g_c} \ 100\% & P_{\text{cu}} \approx I_2^2 r_{eq}' \\ \end{bmatrix}$$

$\begin{array}{l} \textbf{Maximum efficiency}\\ \textbf{Maximum efficiency} \quad \frac{d\eta}{dI_2} = 0\\ \textbf{where} \quad \eta = \frac{V_2 I_2 \cos \theta}{V_2 I_2 \cos \theta + I_2^2 r_{eq}' + P_{core}} \quad 100\%\\ \frac{d\eta}{dI_2} = 0 \quad \Longrightarrow \quad V_2 \cos \theta \left(V_2 I_2 \cos \theta + I_2^2 r_{eq}' + P_{core} \right) - \left(V_2 \cos \theta + 2I_2 r_{eq}' \right) V_2 I_2 \cos \theta = 0\\ V_2 I_2 \cos \theta + I_2^2 r_{eq}' + P_{core} - \left(V_2 \cos \theta + 2I_2 r_{eq}' \right) I_2 = 0\\ P_{core} - I_2^2 r_{eq}' = 0\\ P_{core} = I_2^2 r_{eq}' \\ \hline \textbf{P}_{core} = P_{cu} \qquad \text{i.e.,} \quad V_1^2 g_c = I_2^2 r_{eq}' = I_2'^2 r_{eq}' \\ \end{array}$

Thus, maximum efficiency is achieved if core loss equals to the copper loss.

Examples

- 1. A 12kVA, 220/440V, 50 Hz single phase transformer has the following test data:
 - No-load test: 220V, 2A, 165W (measured at primary side)
 - Short-circuit test: 12V, 15A, 60W (measured at secondary side)
- a) Calculate the equivalent circuit parameters referred to primary side
- b) Calculate the primary terminal voltage on <u>full-load</u> at a power factor of: 0.8 pf lagging.

• $r_1 = 0.09 \ \Omega$ and $x_1 = 1.7 \ \Omega$

•
$$r_2 = 1.2 \times 10^{-3} \Omega$$
 and $x_2 = 2.26 \times 10^{-2} \Omega$

Neglecting core losses,

- a) Calculate the primary voltage and voltage regulation for rated load at 76% pf lagging
- b) Repeat a) for a load of 76% pf leading
- c) Calculate the transformer efficiency for parts a) and b) with a core loss $P_{core} = 547W$.

• $r_1 = r'_2 = 0.2 \Omega$

•
$$x_1 = x'_2 = 0.45 \ \Omega$$

• $r_c = 10 \text{ k}\Omega$ and $x_m = 1.55 \text{ k}\Omega$

Using both the exact and approximate equivalent circuit of the transformer, determine

- a) Voltage regulation
- b) Efficiency

for rated load at 0.8pf lagging

- 4. At 10kVA, 8000:230V transformer has a leakage impedance referred to primary of 90+ j400 Ω . Exciting branch parameters are
 - $r_c = 500 \text{ k}\Omega$ and $x_m = 60 \text{ k}\Omega$
- a) If primary voltage $V_1 = 7967V$ and actual load impedance $Z_L = 4.2+3.15\Omega$, find the secondary voltage of the transformer
- b) If the load is disconnected, and a capacitor of $-j6\Omega$ is connected in its place, what will be the load voltage?