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Abstract: In the United States, more than 12000 renal transplantations are performed annually� but the trans-
planted kidneys face a number of surgical and medical complications that cause a decrease in their function-
ality. In an effort to understand the reasons for this functionality decrease, considerable attention has recently
been focused on Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) due to its superior
functional and anatomical information. The biggest challenge in the analysis of DCE-MRI is the segmenta-
tion of kidneys from abdomen images because of the high noise and partial volume effects introduced during
the rapid and repeated scanning process. In this paper, a general framework is introduced for the segmen-
tation of kidneys from DCE-MR images of the abdomen. The proposed segmentation algorithm consists of
three main steps. In the first step, an average kidney shape is constructed from a dataset of previously seg-
mented kidneys, and an average signed distance map density is obtained describing the shape of the kidneys.
In the second step, the gray level density is calculated for a given new kidney image using a modified ex-
pectation maximization (EM) algorithm. In the third step, a deformable model is evolved based on the two
density functions obtained from the previous two steps: the first one describes the prior shape of the kid-
ney, and the second one describes the distribution of the gray level inside and outside the kidney region. The
new deformable model is able to handle intricate shapes without getting stuck in edge points� and gives very
promising results that are comparable to radiologists’ segmentation.

Keywords: Dynamic Contrast Enhanced MRI, Gd-DTPA, acute rejection, renal transplantation, deformable models,
segmentation, shape database

1. INTRODUCTION

Acute rejection – the immunological response of the human immune system to the foreign
kidney – is the most important cause of graft failure after renal transplantation (Rigg 1995),
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Figure 1. Current protocol. For each subject, 150 abdomen images are taken from one cross-section
with 4 second intervals. An example DCE–MRI series for one subject is shown here with five of the
images in the sequence, numbered (1, 10, 13, 18, 27). Details of the protocol are given in Yuksel (2005).

and the differential diagnosis of acute transplant dysfunction remains a difficult clinical prob-
lem. Currently, the diagnosis of rejection is done via biopsy, but biopsy has the downside
effect of subjecting the patients to risks like bleeding and infections. Moreover, the relatively
small needle biopsies may lead to over or underestimation of the extent of inflammation in
the entire graft (Yang et al. 2001). Therefore, a noninvasive and repeatable technique is not
only helpful but also necessary in the diagnosis of acute renal rejection.

In Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI), a contrast
agent called Gd-DTPA is injected into the bloodstream, and as it perfuses into the organ, the
kidneys are imaged rapidly and repeatedly. During the perfusion, Gd-DTPA causes a change
in the relaxation times of the tissue and creates a contrast change in the images as shown
in Figure 1. As a result, the patterns of the contrast change gives functional information,
while MRI provides good anatomical information which helps in distinguishing the diseases
that affect different parts of the kidneys. However, even with an imaging technique like
DCE-MRI, there are several problems: (i) the spatial resolution of the dynamic MR images
is low due to fast scanning� (ii) the images suffer from motion induced by the breathing
patient, which necessitates advanced registration techniques� (iii) the intensity of the kidney
changes non-uniformly as the contrast agent perfuses into the cortex, which complicates the
segmentation procedures.

To the best of our knowledge, there has been only limited work on dynamic MRI to
overcome the problems of registration and segmentation. For the registration problem, Gerig
et al. (1992) proposed using the Hough transform to register the edges in an image to the
edges of a mask, and Giele (2002) introduced a phase difference movement detection method
to correct kidney displacements. Both of these studies required building a mask manually
by drawing the kidney contour on a 2D DCE-MRI image, followed by registration of the
time frames to this mask. Therefore, the inherent segmentation (by drawing the contours)
was essentially manual. For automatic registration that does not depend on segmentation,
we previously proposed using mutual information registration (Yuksel 2005, Yuksel et al.
2005).

For the segmentation problem, Boykov et al. (2001) described the use of graph cuts
using Markov models, in which the energy is minimized depending on the manually exerted
seed points. Giele (2002) used image subtraction to obtain a mask, and closed the possible
gaps using a hull function. For further segmenting the medulla and the cortex structures,
repeated erosions were applied to the mask to obtain several rings� however, in such rings, the
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medulla structures were intermixed with the cortex structures, so a correlation study had to
be applied to better classify the cortical and medullary pixels.

Following these studies, a multi-step approach to segmentation and registration was in-
troduced by Sun et al. (2004). Initially, the edges are aligned using an image gradient based
similarity measure considering only translational motion. Once roughly aligned, a high-
contrast image is subtracted from a pre-contrast image to obtain a kidney contour� which is
then propagated over the other frames searching for the rigid registration parameters. For
segmentation of the cortex and medulla, a level sets approach was used.

Most of these efforts used healthy transplants in the image analysis, and edge detection
algorithms were sufficient. However� in the case of acute rejection patients, the uptake of
the contrast agent is decreased, so edge detection fails to give connected contours. For this
reason, we found the combined use of gray level and prior shape information gave better
results.

2. SEGMENTATION FRAMEWORK

Within our segmentation framework, the user is asked to select an early enhancement image
(typically the 5–15th images of the sequence) and a late enhancement image (typically the
30–40th images of the sequence). In an early enhancement image, the cortical and medullary
tissue are distinguishable� whereas in a late enhancement image, the contrast is increased all
over the kidney, easing the segmentation process. Thus, a two-stage process is used for
segmentation in which (i) the kidney is segmented from the surrounding structures using the
late-enhancement image, and (ii) the segmented kidney is further segmented into cortex and
medulla using the early-enhancement image, as illustrated in Figure 2.

In segmenting the kidney from the surrounding structures, the gray level distribution of
the kidney and surrounding organs is not highly distinguishable� thus, we developed a de-
formable model which takes into account both the gray level distribution of the late-enhanced
kidney and a shape model of the kidney that depends on a sign distance map. The gray level
distribution is estimated using our modified EM algorithm (Farag et al. 2004), which uses a
linear combination of Gaussians with positive and negative components.

The rest of the paper is organized as follows: in the next section, we describe our
modified EM algorithm using linear combination of Gaussian distribution with positive and
negative components. In Section 2.2, we describe how to obtain a shape model from a data-
base of formerly segmented images. From these images, we calculate the signed distance
maps and estimate their density. By representing both shape and intensity as 1-D density
functions, we obtain a fast and computationally inexpensive deformable model which is de-
scribed in Section 2.3. Results and further directions are discussed in Section 3.

2.1. Density Estimation with a Modif ied EM Algorithm

Our modified Expectation-Maximization algorithm approximates an empirical probability
density function of scalar data with a linear combination of discrete Gaussians (LCDG) with
positive and negative components. Due to both positive and negative components, the LCDG
approximates inter-class transitions more accurately than a conventional mixture of only
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Figure 2. Segmentation framework. An early enhancement image, seed points, and a late enhancement
image are selected from the current patient. For kidney segmentation, a deformable model is initialized
at the seed points to evolve with the gray level density estimation and the signed distance map density
estimation of prior shape. With a second deformable model, cortex and medulla are extracted from the
kidney region.

positive Gaussians. In the following, we describe this model to estimate the marginal density
for the gray level distribution pg�q� in each region where q is the gray level. The same
approach is also used to estimate the density of the signed distances ps�d� in the given image
where d is the signed distance inside and outside the object.

Let q � Q � �0� 1� � � � � Q�1� denote the Q-ary gray level. The discrete Gaussian (DG)
is defined as the discrete probability distribution �� � ���q��� : q � Q� on Q such that

��q��� � ���q � 0�5�����q � 0�5� for q � 1� � � � � Q � 2�

��0��� � ���0�5�� ��Q � 1��� � 1����Q � 1�5�

where ���q� is the cumulative Gaussian (normal) probability function with a shorthand no-
tation � � �	� 
 2� for its mean, 	, and variance, 
 2.

In contrast to a conventional mixture of Gaussians and/or other simple distributions, one
per region, we closely approximate the empirical gray level distribution for the given image
with a LCDG having Cp positive and Cn negative components:
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pg:w����q� �
Cp�

r�1

�p�r��q�� p�r��
Cn�
l�1

�n�l��q�� n�l� (1)

under the obvious restriction on the weights w � [� p��� �n��]:

Cp�
r�1

�p�r �
Cn�

l�1

�n�l � 1� (2)

To estimate the parameters for the model shown in equation (2), we modify the con-
ventional EM algorithm to take into account both positive and negative discrete Gaussian
components. Our modified EM algorithm for LCDG maximizes the log-likelihood of the
empirical data to find the optimal model parameters assuming statistical independence of the
mixed signals:

L�w��� �
�
q�Q

f �q� log pw����q�� (3)

A local maximum of the log-likelihood in equation (3) is given with the EM process ex-
tending the one in Schlesinger and Hlavac (2002) onto alternating signs of the components.
Let

p[m]
w����q� �

Cp�
r�1

� [m]
p�r �

�
q�� [m]

p�r

�� Cn�
l�1

� [m]
n�l �

�
q�� [m]

n�l

�
denote the current LCDG at iteration m. Relative contributions of each signal q � Q to each
positive and negative DG at iteration m are specified by the respective conditional weights

 [m]
p �r �q� � � [m]

p�r �
�
q�� [m]

p�r

�
p[m]

w����q�
�  [m]

n �l�q� � � [m]
n�l �

�
q�� [m]

n�l

�
p[m]

w����q�
(4)

such that the following constraints hold:

Cp�
r�1

 [m]
p �r �q��

Cn�
l�1

 [m]
n �l�q� � 1� q � 0� � � � � Q � 1� (5)

The following two steps iterate until the log-likelihood changes become small:

E– step [m � 1]: Find conditional expectations of the parameters w[m�1], �[m�1] using the
fixed weights of equation (4) for the step m as conditional probabilities, and

M– step [m�1]: Find the latter weights by maximizing L�w��� under the fixed parameters
w[m�1], �[m�1].

As shown in Schlesinger and Hlavac (2002), this block relaxation process converges to
a local maximum of the likelihood in equation (3). The modified EM algorithm is sensi-
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Figure 3. An MRI scan of a kidney (a), and its gray level density estimation with the Modified EM
Algorithm. (b) LCG components of the density estimation� (c) final estimated density pg�q� for the
empirical density f �q� of the kidney image� (d) marginal density estimation for each class.

tive to the initialization, so a sequential EM algorithm has been used to obtain an initial-
ization (Farag et al. 2006). The final mixed LCDG-model pC�q� is partitioned into the
K LCDG-submodels P[k] � [p�q�k� : q � Q], one per class, or region k � 1� � � � � K ,
by associating subordinate discrete Gaussians with the dominant terms so that the expected
misclassification rate is minimized. From the sequence given in Figure 2, a scan of a kid-
ney is given in Figure 3(a), and the steps to estimate its gray level density are illustrated in
Figure 3(b, c, d).

2.2. Forming the Shape Database

To obtain a prior shape model for the kidney, we used a database of 30 subjects, 5 of which
are shown in Figure 4(a). As a first step, we manually segmented the kidneys from these sub-
jects and aligned them using affine registration (translation, rotation and scaling) as shown
in Figure 4(b). Then we obtained the 2D shape model of a kidney with the following steps:
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Figure 4. (a) A sample of the kidney database from five subjects. (b) Affine registration of the data
set. (c) Boundaries of the aligned kidneys. (d) Signed distance maps of the data set representing the
distances to the kidney contours. (e) Signed distance map densities obtained from (d) using the modified
EM algorithm.
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1. Manually segment the kidneys from the surrounding organs and align the segmented data
set using affine registration. The results of affine registration is shown in Figure 4(b).

2. From the database given in Figure 4(a), find the 2D edge V of the kidneys as shown in
Figure 4(c).

3. For each edge image, calculate the signed distance function Sd�i� j� as shown in Fig-
ure 4(d). Signed distance function basically calculates the Euclidean distance between a
point on the image and the closest point to it on the contour, and gives a positive distance
value if the point on the image is inside the object, or gives a negative distance otherwise.
In mathematical terms, signed distance function Sd�i� j� can be represented as:

Sd�i� j� �

�������
0 �i� j� � V

d��i� j�� V � �i� j� � RV

�d��i� j�� V � Otherwise

(6)

where RV is the region which lies inside the shape and d ��i� j�� V � is the minimum
Euclidean distance between the image location �i� j� and the curve V . This represen-
tation is invariant to translation and rotation.

4. Calculate the occurrences of distance values (i.e. generate distance map histograms) for
all the database, and estimate their density with the modified EM algorithm. These den-
sities are shown in Figure 4(e).

5. Add the densities found in the previous step and obtain an average density function, as
shown in Figure 5(a).

6. Average the signed distance values calculated in Step 3. If average signed distance
Sa� �i� j� of a pixel �i� j� is positive, assign the pixel to be kidney, otherwise make it a
background in the average shape image. With this step, an average kidney as shown in
Figure 5(f) is obtained. It is worth noting the similarity of this average kidney to the
kidney images found in anatomy books.

With these steps, shape modelling is completed, and an average kidney shape, as well
as an average signed distance density, is obtained. These are the only two things that are
kept and used in the deformable model formulation� i.e. the average density function (Fig-
ure 5(e)) and the average kidney shape (Figure 5(f)). Any new kidney image that needs to be
segmented is first registered to this average kidney shape, then the average signed distance
density is used in the deformable contour energy calculations.

2.3. Deformable Model

In conventional deformable models, surfaces move in the direction that minimizes an energy
function that is composed of internal and external energy components given as:

E � Eint � Eext �
�
��T

�
� int ������� � ext ������

�
d� (7)

where � int������ and � ext������ denote the internal and external force, respectively.
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Figure 5. (a) Average signed distance map density. (b) Estimated two dominant modes which presents
the kidney area and its background� (c) positive and negative LCDG components for finer approximation�
(d) final density estimation� and (e) densities for two classes (red is for the kidney, blue is for the
background). (f) Average kidney shape. Pixels with positive signed distance map values are assigned to
be white indicating the kidney region� pixels with negative signed distance map values are assigned to
be black, indicating the background.

Typical external forces designed in Witkin et al. (1987) lead a deformable model toward
edges in a 2D grayscale image. This and other traditional external forces (e.g. based on lines
or, edges, or the gradient vector flow) fail to make the deformable model closely approach
an intricate boundary with concavities. As a solution to this problem, we modify the external
energy component of this energy formulation, and formulate an energy function using the
density estimations of two distributions: the signed distance map from shape models and
the gray level distribution. The external energy component of our deformable models is
formulated as (El-Baz et al. 2005):

� ext ������ �
	 �p�q�k�ps�d�k�p�k� if k � k	

p�q�k�ps�d�k�p�k� if k 
� k	�

In this formulation, k is the region label with k � 1 for the background and k � 2 for
kidney, q is the gray level, d is the signed distance�where pg�q�k� is the density estimation of
the gray level as described in Section 2.1� and ps�d�k� represents the density that describes
the signed distance map inside and outside the object as calculated in Section 2.2. With
this energy function, the stochastic external force for each control point ���� of the current
deformable model evolves in a region k	 as shown in Figure 6(a).
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Figure 6. The proposed deformable model in the kidney (a). For each of the neighbors of the control
point ��i�, four values are calculated to form the external energy: two values from the signed distance
density estimation ( ps�d�k � 1� and ps�d�k � 2�), and two values from the gray level density estimation
(pg�q�k � 1� and pg�q�k � 2�). Radiologist’s segmentation (b). Our segmentation results in an error
= 0.3820 w.r.t the radiologist segmentation (c). Segmentation results using the algorithm in Tsai et al.
(2003) with error = 10.1 (d).

For segmentation into cortex and medulla, we first ask the user to select seed points
from the possible medulla regions, and we allow separate deformable models to grow in
these regions, this time with only the gray level dependent energy function. Therefore, the
deformable model successfully moves within a lower and upper threshold to capture the
medulla regions, and the rest is the cortex.

3. RESULTS

Our segmentation results are comparable to the radiologist’s segmentation (0.382 for the ex-
ample given in Figure 6� and outperforms other well-known approaches such as that of Tsai
et al. (2003), which gives an error of 10.1. In the proposed approach, after the best image
selected by the user is segmented, its shape is used to segment the rest of the sequence as
shown in Figure 7(b) w.r.t the radiologist’s segmentation given in Figure 7(a). For segmen-
tation into cortex and medulla, the deformable model is evolved with only the gray level
information, with results shown in Figure 7(c, d).

In this paper we have presented a framework for the segmentation of kidneys from Dy-
namic Contrast Enhanced Magnetic Resonance Images, and introduced a new deformable
model with an energy as a function of both the gray level density and the prior shape infor-
mation as 1D density functions. For these density estimations, we introduced a modified EM
algorithm. This paper builds upon previous work and presents segmentation as a complete
framework in more detail. For more information on other applications of this approach, the
reader is referred to Elbaz et al. (2005), to Farag et al. (2006) for more information on our
current efforts towards the non-rigid registration of segmented kidneys, and to El-Baz et al.
(2006) for an overall picture of the project, which is the design of a CAD system for the
diagnosis of kidney diseases.
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Figure 7. (a) Radiologist’s segmentation for another slice of the same kidney. (b) Our segmentation re-
sult using the shape obtained in Figure 6. The error is 0.3997 w.r.t the radiologist’s segmentation. (c)
Segmentation of the cortex with the proposed algorithm. Several medullary seeds are initialized, and the
deformable model is allowed to grow from these seed points based on intensity. (d) The results of the
segmentation into cortex and medulla.
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