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Acute rejection is the most common reason for graft failure after kidney transplantation,
and early detection is crucial to survival of function in the transplanted kidney. In this study
we introduce a new framework for automatic classification of normal and acute rejection
transplants from Dynamic Contrast Enhanced Magnetic Resonance Images (DCE-MRI).
The proposed framework consists of three main steps. The first isolates the kidney from the
surrounding anatomical structures by evolving a deformable model based on two density
functions; the first function describes the distribution of the gray level inside and outside
the kidney region and the second describes the prior shape of the kidney. In the second step,
nonrigid registration algorithms are employed to account for the motion of the kidney due
to the patient’s breathing. In the third step, the perfusion curves that show transportation
of the contrast agent into the tissue are obtained from the segmented cortex of the whole
image sequence of the patient. In the final step, we collect four features from these curves
and use Bayesian classifiers to distinguish between acute rejection and normal transplants.
Applications of the proposed approach yield promising results that would, in the near future,
replace the use of current technologies such as nuclear imaging and ultrasonography, which
are not specific enough to determine the type of kidney dysfunction.
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1. INTRODUCTION

In the United States, more than 12000 renal transplantations are performed
each year [1], but the transplanted kidneys face a number of surgical and medical
complications that cause a decrease in their functionality. Although such a decrease
in functionality can be reversed by proper treatment strategies and drug therapies
[2], the currently used techniques are not specific enough to diagnose the possible
diseases. For example, measurement of creatinine levels can be affected by diet and
medications [3]. Clearances of inulin and DTPA require multiple blood and urine
tests, and they provide information on both kidneys together, but not unilateral
information [4]. On the other hand, imaging tests are favorable since they provide
information on each kidney separately. However, the most frequently used imaging
technique, scintigraphy (also called nuclear imaging), preferred for its good func-
tional information, does not provide good spatial resolution. Without good spatial
resolution, precise anatomical detail cannot be obtained, so the diseases that affect
the different parts of the kidney (such as the cortex and medulla) cannot be diag-
nosed accurately [5]. Moreover, scintigraphy exposes the patients to a small dose
of radioactivity [6]. Another traditional imaging modality, Computed Tomography
(CT), uses nephrotoxic contrast agents and exposes patients to radiation despite
its superior functional and anatomical information [7]. Ultrasonography has been
found to show normal findings despite severe renal dysfunction [8], and several
studies on color Doppler sonography and power Doppler sonography (e.g., [9–
11]) have not been able to yield significant information to evaluate renal function.
Therefore, despite all its high costs and morbidity rates, biopsy is remains the gold
standard for diagnosis after renal transplantation. Unfortunately, the downside of
biopsy is that patients are subjected to such risks as bleeding and infection; more-
over, the relatively small needle biopsies may lead to over- or underestimation
of the extent of inflammation in the entire graft [12]. Hence, a noninvasive and
repeatable technique would not only be useful but is needed to ensure survival of
transplanted kidneys. For this reason, a fairly new imaging technique, Dynamic
Contrast Enhanced Resonance Imaging (DCE-MRI), has gained considerable at-
tention due to its ability to yield superior anatomical and functional information.
With DCE-MRI it has been possible to distinguish the different structures of the
kidney (such as the cortex and medulla) in a noninvasive way, and, combined with
function information, image analysis with DCE-MRI can help in detecting diseases
that affect the different parts of renal transplants. Therefore, the CVIP Lab at the
University of Louisville and the Urology and Nephrology Center at the University
of Mansoura have begun an ongoing collaboration to detect acute rejection from
normal functioning of transplants. This study focuses on the DCE-MRI findings
of this collaboration.
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Acute rejection is the attack of the recipient’s immune system on a foreign
kidney. Therefore, prompt anti-rejection therapy can suppress the immune system
and save the transplanted kidney [13]. Moreover, acute rejection is the most impor-
tant cause of renal dysfunction [14] among the diagnostic possibilities following
renal transplantation (e.g., acute rejection, acute tubular necrosis, cyclosporin tox-
icity, and obstruction [15]). Therefore, early and noninvasive detection of acute
rejection is crucial.

Within the framework of our collaborative research, patients’ urine and blood
are tested daily at 9:00 a.m. for detection of acute rejection after transplantation.
Following these tests, the abdomen is imaged using Color Doppler Ultrasonog-
raphy during the first 2 weeks. If circumstances do not require it previously,
DCE-MRI is performed at the end of the 2-week nursing period. If in addition
to the other tests, DCE-MRI findings are normal, then no further action is taken.
However, if the findings are abnormal, a biopsy is performed to determine the type
of rejection or the type of kidney disease. Images of patients with histopathologi-
cal diagnosis of acute rejection episodes and normal transplant images are sent to
the University of Louisville to test and train the analysis software. In this study, we
focused on Dynamic Contrast Enhanced Resonance Imaging (DCE-MRI) findings.

In Dynamic Contrast Enhanced Resonance Imaging (DCE-MRI), the contrast
agent gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) is injected into
the bloodstream. During its passage from the blood to the kidneys and on to the
urinary system, the kidneys are imaged rapidly and repeatedly. As the Gd-DTPA
perfuses into the kidney, it causes a change in tissue relaxation time, which creates
a contrast change (intensity increase/decrease) in the images. If the intensity is
averaged over the kidney tissue (either cortex or medulla) and plotted against time,
a signal curve (change in average intensity vs. time) is obtained. Such intensity
curves obtained from the kidney are called MR renograms [5]. The pattern of
an MR renogram is an indicator of the kidney’s degree of functionality, and it
can be used in determining the type of the rejection or dysfunction. Moreover,
since DCE-MRI provides good anatomical information, separate renograms can
be obtained for the cortical and medullary structures of the kidney, which will help
in distinguishing the diseases that affect different parts of the kidney. Hence, a
typical protocol using dynamic MRI involves the following steps: (1) collecting a
sequence of images from the kidney region as the contrast agent perfuses through
the kidney; (2) following the contrast difference in the kidney over time (image
intensity information from the cortex varies with time as the contrast agent perfuses
through the kidney); and (3) establishing a correspondence between change of
contrast in the image sequence and kidney status. Such a protocol requires some
intermediate image processing steps — namely, segmentation, registration, and
classification — explained in later sections of this chapter.
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2. RELATED WORK IN RENAL IMAGE ANALYSIS
USING DCE-MRI

Starting with examination of rats, studies to acquire functional, dynamic, and
anatomic information on the kidneys date back to the early 1980s, covering a
variety of objectives from simply understanding the normal behavior of a kid-
ney to detecting kidney diseases. The potential of DCE-MRI to help understand
kidney function has been investigated in various studies (see [7, 16–28], to cite
a few). This imaging modality has been applied to various kidney diseases in
several other studies, such as for detection of renal ischemic lesions [29], for
evaluation of renal failure [30], for acute tubular necrosis [31], for assessment
of chronic medical nephropathies [32], to differentiate obstructive from nonob-
structive hydronephrosis [33, 34], to evaluate rejection [35], to differentiate acute
tubular necrosis from transplant rejection in patients with delayed kidney function
[36], to differentiate acute tubular necrosis from acute transplant rejection [14], for
functional and morphological evaluation of live kidney donors [37], to study renal
function in nephrolithiasis and hydronephrosis [26], to observe the effect of hy-
pertension on kidney function [38], and for evaluation of normal and transplanted
rat kidneys [12].

These studies are significant, as they have ascertained DCE-MRI to be a very
promising technique not only for assessing renal blood flow and consequently
help understand kidney function, but also to evaluate several clinical disorders.
However, most of these studies were performed by radiologists who selected a
region of interest (ROI) (a small window) from the kidney and followed signal
change within this region of interest. Unfortunately, such approaches not only
require manual interaction of the operators, but also ROI selection biases the final
decision and brings up the same issue of over- or underestimating the problem
in the entire graft, just as with biopsy. Moreover, manual window selection, and
generating a function curve from this window over a time-sequence of images,
assumes that the kidneys (renal contours) remain exactly the same from scan
to scan. However, renal contours may not always exactly match due to patient
movement or breathing effects; therefore, image registration schemes should be
applied first before ROI selection. Also, to automate the algorithm and to cancel
ROI dependency, segmentation algorithms that can separate the kidney from the
surrounding structures, and that can further separate the kidney into its cortex and
medulla compartments are needed. In the remainder of this section, we discuss
the previous computerized studies that made use of image processing techniques.

To the best of our knowledge, the first computerized renal image analysis
scheme was developed by Gerig et al. [25] in 1992. In this study, the prior contour
information for each study was obtained by manually drawing the contour from
one image. For the rest of the images, image discontinuities (edges) were detected,
and the model curve was matched to these edges using a Hough transform. To
extend the algorithm to arbitrary rotation and translation, the model contour was
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rotated and translated to get the best correlation, giving the registration parameters
of the image. The rotation in this scheme was limited to ∓4 degrees in 1-degree
steps. For the cases of when the patient inadvertently moved or breathed, detection
of kidney contour was severely impeded; therefore, a 50% vote rule was defined,
that is, at least 50% of the kidney needed to be detected for registration to work.
A similar procedure with some extensions was used by Yim et al. in [22].

The handicaps of this image analysis scheme can be listed as follows: (i) the
need for manual selection of a contour for each study; (ii) the problems that can be
faced in case of a large movement by the patient, and (iii) the great computational
expense of the Hough transform (the algorithm was implemented in parallel in [25],
and one patient took about an hour to evaluate). Moreover, this registration method
is highly dependent on the edge detection filter. Although the strength of edge
detection was increased by using opposed-phase gradient echo imaging that puts
a dark line between the water-based kidney and the perirenal fatty tissue, still, the
algorithm worked better in smaller areas since increasing the field of view (FOV)
parameter caused the algorithm to match more partial contours. Following this
same procedure, healthy volunteers and hydronephrosis patients were compared
in [26], and DCE-MRI was shown to be a reliable method for kidney analysis.

Noting the lack of special protocols and the consequent problems with edge
detection in the registration process, the second image analysis study came from
Giele et al. [28] in 2001, where three movement correction methods were compared
based on image matching, phase difference movement detection (PDMD), and
cross-correlation. In all these methods, a mask is generated from the best image
manually, and its similarity to a given image is calculated. Consequently, the
(i, j) values that give the highest similarity become the translation parameters
for the given image. Among these methods, the PDMD method demonstrated
the best performance, but only with an 68% accuracy compared to the results of a
radiologist. More importantly, in all three registration algorithms only translational
motion was handled and rotational motion was not mentioned, the existence of
which has been discussed in a number of studies (see [26, 39, 40]).

For segmentation of the kidneys, Priester et al. [41] subtracted the average of
pre-contrast images from the average of early-enhancement images, and thresh-
olded the subtraction image to obtain a black-and-white mask kidney image. Fol-
lowing this step, objects smaller than a certain size were removed and the remaining
kidney object was closed with erosion operations and manual interactions to obtain
a kidney contour.

This approach was furthered by Giele et al. [5] by applying an erosion filter
to the mask image to obtain a contour via a second subtraction stage. The possible
gaps in this contour were closed by a hull function to get the boundary of the kid-
ney, then via repeated erosions applied to this contour, several rings were obtained,
which formed the basics of the segmentation of the cortex from the medulla struc-
tures. Of course, in such a segmentation the medulla structures were intermixed
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with the cortex structures, so a correlation study had to be applied to better classify
the cortical and medullary pixels.

Also in 2001, Boykov et al. [42] presented the use of graph cuts using Markov
models. In this algorithm, each voxel is described as a vector of intensity values
over time, and initially, several seed points are put on the objects and on the
background to give user-defined constraints as well as an expert sample of intensity
curves. These expert samples of intensity curves are used to compute a two-
dimensional histogram that would be used further as a data penalty function in
minimizing the energy function in the Markov model. Although the results looked
promising, this algorithm was tested only on one kidney volume, and manual
interaction was still required.

Following these studies, computerized image analysis schemes for the regis-
tration and segmentation of kidneys were introduced by Sun et al. [12, 21, 23, 24,
40, 43] in a series of studies performed on rats and human subjects. The study
on humans ([21, 40]) made use of a multistep registration approach. Initially, the
edges were aligned using an image gradient-based similarity measure consider-
ing only translational motion. Once roughly aligned, a high-contrast image was
subtracted from a pre-contrast image to obtain a kidney contour, which was then
propagated over the other frames searching for the rigid registration parameters
(rotation and translation). For segmentation of the cortex and medulla, the level
sets approach of Chan et al. [44] was used.

In most of these previous efforts, healthy transplants were used in the image
analysis, so the edge detection algorithms were applicable. However, in the case
of acute rejection patients, the uptake of contrast agent was decreased, so edge
detection algorithms generally failed in giving connected contours. Therefore, in
our approach, we avoid edge detection schemes; instead, we combine the use of
gray-level and prior shape information.

3. RELATED WORK IN SHAPE-BASED SEGMENTATION

Both active contours and level sets tend to fail in the case of noise, poor image
resolution, diffused boundaries, or occluded shapes if they do not take advantage of
the a priori models. Four of the popular segmentation algorithms that make use of
only gray-level information are shown in Figure 1 implemented with ITK Version
2.0; namely, thresholding level sets [45], fast marching level sets [46], and geodesic
active contours [47]. However, especially in the area of medical imaging, organs
have well-constrained forms within a family of shapes [48]. Thus, additional
constraints based on the shape of the objects have been greatly needed aside from
the gray-level information of these objects.

Therefore, to allow shape-driven segmentation, Leventon et al. [49] used a
shape prior whose variance was obtained thorough Principal Component Analy-
sis (PCA), and used this shape prior to evolving the level sets to the maximum a
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(a)

(b) (c)

(d) (e)

Figure 1. (a) Kidney to be segmented from the surrounding organs. The results of some
popular segmentation algorithms that depend only on gray-level and gradient information,
(b) connected thresholding, (c) fast marching level sets, (d) geodesic active contours, and
(e) thresholding level sets segmentation.
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posteriori shape. Chen et al. [50] calculated an average of a registered training
set to be a shape prior, and defined an energy functional that basically minimizes
a Euclidean distance between a given point and its shape prior. In [51] a rep-
resentation of the segmenting curve was generated based on the pose and shape
parameters of a training set, which were optimized using a region-based energy
functional. In [48, 52] a shape prior and its variance obtained from training data
were used to define a Gaussian distribution, which was then used in the external
energy component of a level sets framework. In Litvin et al.’s study [53], a shape
boundary prior was formed from the features of the boundary, and this boundary
was used within a level set framework.

Recently, Tsai et al. [54] used a deterministic model to represent the desired
shape as a linear combination of weighted signed 2D distance maps and estimated
these weights by minimizing a mutual information-based cost function. In ad-
dition, Yang et al. [55] described the shapes with a multidimensional Gaussian
probability model of these weights.

Different from previous studies, in our segmentation approach the contour
points move by comparing the energy at the neighboring points; but with different
energy terms that will be explained in Section 5. With this new energy component,
the contour moves with both the current gray-level and prior shape information;
thus, it does not get stuck in edge points, and handles intricate shapes. Also
different from previous studies, the prior shape information is a density estimation
of the signed distance map inside and outside the object of interest, not the average
image itself. This algorithm overcomes the inability of deformable models to stop
in a state of high noise or in the case of missing edges.

During the remainder of the present study, we will discuss the data acquisition
protocol in Section 4 and give an overview of the components of the framework. In
Section 5 we will introduce our segmentation approach, starting with the general
idea of the method. We will then go into the details and explain shape model
construction from a database in Section 5.1. In Section 5.2 we will offer an
introduction to our density estimation scheme; in Sections 5.3, 5.4, and 5.5 we
will explain the details of implementation of our density estimation framework.
Section 5.3 introduces a modified EM algorithm, and Section 5.4 introduces a
sequential EM algorithm to closely initialize the parameters of the EM estimation.
Section 5.5 explains classification of the Gaussian components and the stopping
conditions. Given the shape model and the density estimations for the shape
model and the gray level of an image to segment, in Section 5.6 we explain how
the deformable model evolves in an image. After the whole sequence of a patient
is segmented, we introduce a nonrigid registration algorithm in Section 6 that
deforms the kidney object on isocontours. Once all the images are aligned, the
cortex of one early-enhancement image is extracted in Section 7, and then used as
a mask to calculate the average cortex intensity signal in the rest of the sequence.
The results of classification based on these signals are presented in Section 8, and
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the study is concluded in Section 9 with speculation about future work and further
discussion.

4. METHODS AND DATA ACQUISITION

During development of this study, we observed that good selection of a DCE-
MRI imaging protocol is as important as the image analysis — if not more im-
portant. The key point in the protocol is to take the images as quickly as possible
while trying to conserve the quality. A compromise on image quality results in too
much noise and partial volume effects; on the other hand, a compromise on speed
results in fewer data points, which prevents us from being able to classify signals.
Therefore, with collaborative efforts, the protocol was modified a number of times
to acquire standard and better-quality imaging. The protocol described below has
been found to be optimal with the current MRI hardware (Signa Horizon GE 1.5T
scanner).

In our protocol, gradient-echo T1 imaging is employed by a Signa Horizon GE
1.5T scanner (Signa Horizon LX Echo speed; General Electric Medical Systems,
Milwaukee, WI, USA) with the use of a phased-array Torso surface coil; the
contrast agent (Gadolinium DTPA) is introduced via a wide-bore veno-catheter,
placed at the antecubital vein, at a rate of 3–4 ml/sec, with a dose of 0.2 ml/kg·BW.
Images are taken at 5 mm thickness with no interslice gap, the repetition time (TR)
is 34 msec, the TE minimum, the field of view (FOV) is 42 × 42 cm, and with a
600× 600 matrix. For each patient, 150 temporal sequences of coronal scans are
taken at 4-second intervals. A sample of what a DCE-MRI looks like with this
protocol is shown in Figure 2.

With this protocol, we propose the following framework [56] for image anal-
ysis, as shown in Figure 3:

1. Segmentation of the kidneys from the abdomen images.

2. Nonrigid registration for motion compensation.

3. Renogram generation.

4. Feature extraction.

5. Classification of acute rejection patients and normal transplants.

5. KIDNEY SEGMENTATION

Accurate segmentation of the kidney from DCE-MRI is a challenge, since
the gray-level distribution of the kidney and surrounding organs is not highly
distinguishable; we thus add additional constraints based on the shape of the objects
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Figure 2. Example of a DCE-MRI series. For each patient, 150 images are taken from one
cross-section with 4-second intervals. Eight of one subject (numbers 1, 4, 5, 6, 10, 15, 21,
27) are shown here to give an idea of the protocol.
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Figure 3. Block diagram of the proposed image analysis to create a CAD system for renal
transplantation. See attached CD for color version.

to control evolution of the deformable models in the segmentation process. So the
proposed deformable model takes into account not only the gray-level distribution
but also a shape model of the kidney that depends on a sign distance map.

A conventional parametric deformable 2D model, or snake, is a curve Φ =
(φ(τ) = (u(τ), v(τ); τ ∈ T ) in planar Cartesian coordinates (u, v), where τ is
the continuous or discrete index of a contour point, and T is the index range. The
deformable model moves through the spatial image domain to minimize the total
energy:

E = Eint + Eext =
∫

τ∈T

ξint
(
φ(τ)

)
+ ξext

(
φ(τ)

)
dτ, (1)

where ξint(φ(τ)) and ξext(φ(τ)) denote the internal and external forces, respec-
tively, that control the pointwise model movements. The total energy is the sum of
two terms: the internal energy keeping the deformable model as a single unit and
the external one attracting the model to the region boundary. The internal force
is typically defined as ξint(φ(τ) = ς|φ′(τ)|2 + κ|φ′′(τ)|2, where weights ς and κ
control the curve’s tension and rigidity, respectively, and φ′(τ) and φ′′(τ) are the
first and second derivatives of φ(τ) with respect to τ .

Typical external forces designed in [57] to lead an active contour toward step
edges in a grayscale image Y are:

ξext

(
φ(τ)

)
= −|∇Y(φ(τ))|2 or

−∣∣∇[G(φ(τ)) ∗Y(φ(τ))
]∣∣2 , (2)

whereG(. . .) is a 2D Gaussian kernel and∇denotes the gradient operator. But both
these and other traditional external forces (e.g., based on lines, edges, or the GVF)
fail to make the contour closely approach an intricate boundary with concavities.
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Moreover, due to high computational complexity, the deformable models with most
of such external energies are slow compared to other segmentation techniques.

As a solution to these problems, we modify the external energy component
of this energy formulation, and we formulate an energy function using the density
estimations of two distributions: the signed distance map from shape models and
the gray-level distribution [58]. The external energy component of our deformable
models is formulated as:

ξext

(
φ(τ)

)
=

{
−pg(q|k)ps(d|k) if k = k∗

pg(q|k)ps(d|k) if k �= k∗ .

In this formulation, k is the region label with k = 1, 2, with k = 1 denoting the
kidney class, k = 2 denoting the other tissue, q is the gray level, and d is the signed
distance, where ps(d|k) is the density that describes the signed distance map inside
and outside the object, and pg(q|k) is the density estimation of the gray level. With
this energy function, the stochastic external force for each control point φ(τ) of
the current deformable model evolves in a region k∗. The detailed steps of shape
model construction are explained in Section 5.1, and gray-level density estimation
is explained in Section 5.2.

5.1. Shape Model Construction

The signed distance map density, ps(d|k), in the above-mentioned external
energy is calculated using a shape model obtained from the images in the data set.
The steps to construct this shape model are as follows:

1. Manually segment the objects of interest from the database as shown in
Figure 4a,b.

2. Align the images in the training data sets using 2D affine registration (ro-
tation, translation, and scaling) using Mutual Information (MI) [59] as a
similarity measure as shown in Figure 4c.

3. Convert aligned images obtained from the previous step to binary images
as shown in Figure 4d.

4. Calculate the 2D edge V that describes the boundary of the object for all
the manually segmented M number of images obtained in Step 3.

5. From the M number of shapes calculated in Step 3, calculate the signed
distance map inside and outside each object. For m = 1, . . . ,M , the
signed distance map can be calculated as follows:

dm(i, j) =




0 (i, j) ∈ Vi

S((i, j), Vm) (i, j) ∈ RVm

−S((i, j), Vm) Otherwise
, (3)
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where RV is the region lying inside the kidney shape and S((i, j), Vm) is
the minimum Euclidean distance between image location (i, j) and curve
Vm. The results of this step are shown in Figure 4e,f.

6. Compute the empirical density of the aligned signed distance maps (Figure
4e) as shown in Figure 4g.

7. Calculate the average signed distance map of the kidney at location (i, j)
as:

d(i, j) =
1
M

M∑
m=1

dm(i, j). (4)

Then threshold the sign distance map at zero level to obtain an average
shape.

8. Average the signed distance maps to obtain an average density estimation
of the shape.

Figure 5a shows the average signed distance map for a kidney object. We get
the average shape of the kidney by thresholding the signed distance map shown
in Figure 5a at zero level, the result of which is shown in Figure 5b. In the same
way, we calculate the average empirical densities of the empirical densities shown
in Figure 4g, with the result shown in Figure 6. With this approach, all the shape
variability is gathered into one density function. Compared to the other approaches
such as that of [60], we do not need to conduct a principal component analysis,
which is difficult for a big database that contains big images (size 600× 600).

Figure 7 evaluates the quality of MI-based affine alignment, with the region
maps images being pixelwise averages of all the training maps images, m =
1, . . . ,M , before and after mutual alignment of training set M . Similar shapes
are significantly overlapped after the alignment, that is, we decrease the variability
between shapes.

5.2. Density Estimation

In this section we introduce a new statistical model that approximates an
empirical probability density function of scalar data with a linear combination
of discrete Gaussians (LCDG) with positive and negative components. Due to
both positive and negative components, the LCDG approximates interclass tran-
sitions more accurately than a conventional mixture of only positive Gaussians.
To estimate the parameters of LCDG, we modify an Expectation-Maximization
(EM) algorithm to deal with the LCDG with positive and negative components and
also propose a novel EM-based sequential technique to get a close initial LCDG
approximation with which the modified EM algorithm should start.
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Figure 4. Steps of shape reconstruction. Samples of the database (a), manual segmentation
results (b), affine mutual information registration (c), binarization (d), signed distance maps

attached CD for color version.
(e), level sets functions (f), and the empirical densities of signed distance maps (g). See
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(a) (b)

Figure 5. Average signed distance map for the kidney object (a), and the average shape of
the kidney after thresholding the average signed distance map from the zero level (b). See
attached CD for color version.

Figure 6. Average empirical signed distance map density representing the shape. It is
calculated as the average empirical density of empirical densities shown in Figure 4g.
The positive distances indicate the kidney area, while the negative distances indicate the
background.

In the following we describe this model to estimate the marginal density for
the gray-level distribution pg(q) in each region. The same approach is used to
estimate the density of the signed distances ps(d) for the object and background.
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(a) (b)

Figure 7. Comparison of the shape overlaps in the training data sets before (a) and after
(b) alignment.

Let Q = {0, . . . , Q} denote sets of gray levels q in the given image. Here,
Q+ 1 is the number of gray levels in the given image. Let S = {(i, j) : 1 ≤ i ≤
I, 1 ≤ j ≤ J} be a finite arithmetic grid supporting gray level images Y : S →
Q. The discrete Gaussian (DG) is defined as the discrete probability distribution
Ψθ = (ψ(q|θ) : q ∈ Q) on Q such that ψ(q|θ) = Φθ(q + 0.5) − Φθ(q − 0.5)
for q = 1, . . . , Q− 2, ψ(0|θ) = Φθ(0.5), ψ(Q− 1|θ) = 1−Φθ(Q− 1.5) where
Φθ(q) is the cumulative Gaussian (normal) probability function with a shorthand
notation θ = (µ, σ2) for its mean, µ, and variance, σ2.

In contrast to a conventional mixture of Gaussians and/or other simple dis-
tributions, one per region, we closely approximate the empirical gray-level dis-
tribution for the given image with an LCDG having Cp positive and Cn negative
components:

pg:w,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r)−
Cn∑
l=1

wn,lψ(q|θn,l), (5)

under the obvious restriction on the weights w = [wp,., wn,.]:

Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1. (6)

To estimate the parameters for the model given in Eq. (6), we modify the con-
ventional EM algorithm to take into account both positive and negative discrete
Gaussian components. The details of the algorithm are described below.
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5.3. Modified EM Algorithm for LCDG

Let F = [f(q) : q ∈ Q] be an empirical relative frequency distribution of
gray levels q collected over the whole image Y. Assuming independent signals in
the pixels (i, j) ∈ S, the empirical distribution represents an unknown probability
density ψψ(q) of gray values such that

∫∞
−∞ ψψ(q)dq ≡ ∑Q

q=0 f(q) = 1. We
assume that F is approximated by an LCDG PC:w,Θ = [pC(q) : q ∈ Q] with Cp
positive and Cn negative components ψ(q|θ):

pw,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r)−
Cn∑
l=1

wn,lψ(q|θn,l). (7)

In line with Eq. (7), the positive weights w are restricted to unity as shown in Eq.
(6):

We also assume here that the numbers Cp and Cn of the components of each
type are known after the initialization in Section 5.4 and do not change during the
EM process. The initialization also provides the starting parameter values w[0]

and Θ[0].
The probability densities form a proper subset of the set of the LCDG due to

the additional restriction pw,Θ(q) ≥ 0, which holds automatically for probability
mixtures with no negative components only. As mentioned earlier, this special
feature is ignored because our goal is to closely approximate the empirical data
only within the limited range [0, Q]. The approximating function of Eq. (7) is
assumed strictly positive only in the points q = 0, 1, . . . , Q.

The log-likelihood of the empirical data under the assumed independent sig-
nals is as follows:

L(w,Θ) =
1
|S| log


 ∏

(i,j)∈S

f(Yi,j)




=
1
|S| log


∏

q∈Q

(pw,Θ(q))|S|f(q)




=
∑
q∈Q

f(q) log pw,Θ(q). (8)

The LCDG that provides a local maximum of the log-likelihood in Eq. (8) can
be found using the iterative block relaxation process extending the conventional
scheme in [61] that was proposed initially in [62].

Let

p
[m]
w,Θ(q) =

Cp∑
r=1

w[m]
p,rψ(q|θ[m]

p,r )−
Cn∑
l=1

w
[m]
n,l ψ(q|θ[m]

n,l )
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be the LCDG at step, or iteration, m. Relative contributions of each data item
q = 0, . . . , Q into each positive and negative Gaussian at the step m are specified
by the respective conditional weights:

π[m]
p (r|q) =

w
[m]
p,rψ(q|θ[m]

p,r )

p
[m]
w,Θ(q)

; π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ[m]

n,l )

p
[m]
w,Θ(q)

, (9)

such that the following condition holds:

Cp∑
r=1

π[m]
p (r|q)−

Cn∑
l=1

π[m]
n (l|q) = 1; q = 0, . . . , Q. (10)

Multiplying the right-hand side of Eq. (8) by the left-hand side of Eq. (10),
which is valid since this latter has unit value, the log-likelihood of Eq. (8) can be
rewritten in the equivalent form:

L(w[m],Θ[m]) =
Q∑

q=0

f(q)


 Cp∑

r=1

π[m]
p (r|q) log p[m]

w,Θ(q)




−
Q∑

q=0
f(q)

[
Cn∑
l=1

π[m]
n (l|q) log p[m]

w,Θ(q)

]
. (11)

The next equivalent form more convenient for specifying the block relaxation
process is obtained after replacing log p[m]

w,Θ(q) in the first and second brackets

with the equal terms: logw[m]
p,r + logψ(q|θ[m]

p,r ) − log π[m]
p (r|q) and logw[m]

n,l +

logψ(q|θ[m]
n,l )− log π[m]

n (l|q), respectively, which follow directly from Eq. (9).
The block relaxation converges to a local maximum of the likelihood func-

tion in Eq. (11) by repeating iteratively the following two steps of conditional
maximization (comprising the E-step and the M-step, respectively [61]):

1. Find the conditional weights of Eq. (9) by maximizing the log-likelihood
L(w,Θ)under the fixed parametersw[m], Θ[m] from the previous iteration
m, and

2. Find the parameters w[m+1], Θ[m+1] by maximizing L(w,Θ) under the
fixed conditional weights of Eq. (9)

until the changes of the log-likelihood and all the model parameters become small.
The first step performing the conditional Lagrange maximization of the log-

likelihood of Eq. (11) under the Q + 1 restrictions of Eq. (10) results just in the
conditional weights π[m+1]

p (r|q) and π[m+1]
n (l|q) of Eq. (9) for all r = 1, . . . , Cp;

l = 1, . . . , Cn and q = 0, . . . , Q.



DEFORMABLE MODELS FOR THE DETECTION OF ACUTE RENAL REJECTION 311

The second step performs conditional Lagrange maximization of the log-
likelihood of Eq. (11) under the restriction of Eq. (6). It results in the conditional
mathematical expectations of the model parameters involving the fixed conditional
weights of Eq. (9) as conditional probabilities. The expected weights w[m+1] at
the second step conform to:

w
[m+1]
p,r =

∑
q∈Q

f(q)π[m+1]
p (r|q)

w
[m+1]
n,l =

∑
q∈Q

f(q)π[m+1]
n (l|q) .

The expected parameters Θ[m+1] of each Gaussian have conventional forms that
follow from the unconditional maximization of the log-likelihood of Eq. (11):

µ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

qf(q)π[m+1]
c (r|q)

(σ[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − µ[m+1]

c,i

)2
f(q)π[m+1]

c (r|q).

where c stands for p or n, respectively.
This modified EM algorithm is valid while the weights of Eq. (9) are strictly

positive, and the initial LCDG approximation should comply with this limitation.
The iterations have to be terminated when the log-likelihood of Eq. (11) begins to
decrease. Generally, if the initialization is incorrect, this algorithm may diverge
from the very beginning. Thus, the initial LCDG has to closely approximate the
empirical distribution.

5.4. Sequential EM-Based Initialization

We assume that the number of dominant modes is equal to the given number
of classes. To simplify the notation, let the empirical distribution have only two
separate dominant modes representing the object (kidney) and the background,
respectively, since we have only two classes for this specific problem. The algo-
rithm we present below is easily extended to the general case of K > 2 dominant
modes. We assume that each dominant mode is roughly approximated with a sin-
gle Gaussian and the deviations of the empirical density from the two-component
dominant Gaussian mixture are described by other components of the LCDG in
Eq. (5). Therefore, the model has the two dominant positive weights, say, wp,1
and wp,2 such that wp,1 + wp,2 = 1, and a number of “subordinate” weights of

smaller absolute values such that
∑Cp

r=3 wp,r −
∑Cn

l=1 wn,l = 0.
The following sequential algorithm allows for estimating both the weights and

parameters of the individual Gaussians in the previous LCDG model, including
the number of the non-dominant components:
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1. Approximate a given empirical distribution F of gray levels in the image
Y with a dominant mixture P2 of two Gaussians using the conventional
EM algorithm.

2. Find the deviations ∆ = [∆(q) = f(q) − p2(q) : q ∈ Q] between
F and P2 and split them into the positive and negative parts such that
δ(q) = δp(q)− δn(q):

∆p = [δp(q) = max{δ(q), 0} : q ∈ Q}],
∆n = [δn(q) = max{−δ(q), 0} : q ∈ Q}].

(12)

3. Compute the scaling factor for the deviations: Scale =
∞∫

−∞
δp(q)dq ≡

∞∫
−∞

δn(q)dq.

4. If the factor Scale is less than an accuracy threshold, terminate and return
the model PC = P2.

1
Scale∆p and 1

Scale∆n
as two new “empirical densities” and use iteratively the conventional EM
algorithm to find sizes Cp and Cn of the Gaussian mixtures, Pp and Pn,
respectively, approximating the best scaled-up deviations.

(a) The size of each mixture corresponds to the minimum of the integral
absolute error between the scaled-up absolute deviation ∆p (or ∆n)
and its model Pp (or Pn). The number of components is increasing
sequentially by a unit step while the error is decreasing.

(b) Due to multiple local maxima, such a search may be repeated several
times with different initial parameter values in order to select the best
approximation.

6. Scale down the subordinate modelsPp andPn (i.e., scale down the weights
of their components) and add the scaled modelPp to and subtract the scaled
model Pn from the dominant model P2 in order to form the desired model
PC of the size C = 2 + Cp + Cn.

Since the EM algorithm converges to a local maximum of the likelihood
function, it may be repeated several times with different initial parameter values for
choosing the model that yields the best approximation. In principle, this process
can be repeated iteratively in order to approximate more and more closely the
residual absolute deviations between F and PC . But because each Gaussian in the
latter model impacts all the values p(q), the iterations should be terminated when
the approximation quality begins to decrease.

5. Otherwise,consider the scaled-up absolute deviations
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We use the Levy distance [63], ρ(F,P), between the estimated model P and
the empirical distribution F to evaluate the approximation quality. The distance
is defined as the minimum positive value α such that the two-sided inequalities
p(q − α)− α ≤ f(q) ≤ p(q + α) + α hold for all q ∈ Q:

ρ(F,P) = min
α>0
{α : p(q − α)− α ≤ f(q) ≤ p(q + α) + α ∀q ∈ Q}. (13)

It has been proven [63] that modelPweakly converges toFwhenρ(F,P)→ 0.
Our experiments show that the modified EM algorithm typically decreases an ini-
tially large Levy distance between the empirical distribution and its estimated
model to a relatively small value.

5.5. Classification of the Model Components

The final mixed LCDG model P has to be split intoK LCDG submodels, one
per class, by associating each subordinate component with a particular dominant
term in such a way as to minimize the expected misclassification rate. To illustrate
the association principle, let us consider the bimodal case with the two dominant
Gaussians having the mean values µ1 and µ2; 0 < µ1 < µ2 < Q. Let all the
subordinate components be ordered by their mean values, as well. Then those with
mean values smaller than µ1 and greater than µ2 relate to the first and second class,
respectively. The components having the mean values in the range [µ1, µ2] are
associated with the classes by simple thresholding such that the means below the
threshold, t, belong to the components associated with the first class. The desired
threshold minimizes the classification error e(t):

e(t) =

t∫
−∞

p(q|2)dq +

∞∫
t

p(q|1)dq. (14)

To make our approach of density estimation clear, we will discuss step-by-
step density estimation for the mixed empirical density of the average signed
distance map of the kidney object. Figure 8a shows the initial step of the bimodal
empirical distribution of signed distance map in Figure 6. The dominant modes
represent the brighter kidney area and its background, respectively. Figure 8b
shows the deviation and absolute deviation between the two dominant modes and
the empirical density. Figure 8c–f shows the final DG mixtures; the initial mixed
LCDG model consists of the 2 dominant, 3 additive, and 4 subtractive DGs, that is,
Cp = 5 and Cn = 4. Figure 8f shows that our modified EM algorithm converges
after the 16 first iterations of the refinement before the process terminates and
increases the log-likelihood from −6.18 for the initial LCDG to −5.10.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Estimated two dominant modes that present the kidney area and its background
(a); the scaled-up absolute deviation of the approximation and its LCDG model (b); ap-
proximation error for the scaled absolute deviation as a function of number of subordinate
Gaussians (c); density estimation of the scaled-up absolute deviation (d); final LCDG model
(e); and log-likelihood changes at the EM iterations (f).
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(a) (b)

Figure 9. Final two-class LCDG approximation of the mixed density (a); and final LCDG
models for each class (b).

Figure 9 presents the final estimated density using the LCDG model for both
mixed density and the marginal density for each class. In Figure 9a the Levy
distance between the empirical density and the estimated density is 0.008, which
indicates a good match between the empirical distribution and the estimated one.

It is important to note that this shape density is calculated only once; then it
is used as it is during kidney segmentation of all other given abdomen images.

5.6. Stepwise Deformable ModelAlgorithm and Segmentation Results

For any given image, the proposed algorithm of segmenting the region k∗ is
as follows:

1. Register the given image to one of the aligned images in the database using
2D affine registration based on using mutual information as a similarity
measure. This step makes the algorithm invariant to scaling, rotation, or
translation.

2. Use the modified EM algorithm to estimate the parameters of the LCDG
density model for signed distance mapps(d|k) inside and outside the object
of interest from the average shape which was calculated a priori.

3. Calculate the normalized histogram for the given image.

4. Use the modified EM algorithm to estimate the parameters of the LCDG
density model for each class pg(q|k), k being the class number k = 1...K.

5. Initialize the control points φ(τ) for the deformable model, and for each
control point φ(τ) on the current deformable model, calculate sign dis-
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Figure 10. Greedy propagation of the deformable model (a). The deformable model in (a)
is initialized in the given kidney to be segmented (b). See attached CD for color version.

tances indicating exterior (−) or interior (+) positions of each of the eight
nearest neighbors w.r.t. the contour as shown in Figure 10.

6. Check the label k for each control point:

(a) If the point is assigned to the region k = k∗, then

i. Estimate the region labels for its neighbors using a Bayesian
classifier such that they have the (−) distance.

ii. If some of these sites are also assigned to the class k∗, then
move the control point to the neighboring position ensuring the
minimum total energy (i.e., expand the contour).

iii. Otherwise, do not move this point (the steady state).

(b) If the point is assigned to the region k �= k∗, then

i. Estimate the region labels for its neighbors using a Bayesian
classifier such that they have the (+) distance.

ii. Move the control point to the neighboring position ensuring the
minimum total energy (i.e., contract the contour).

7. If the iteration adds new control points, use the bicubic interpolation of the
whole contour and then smooth all its control points with a lowpass filter.

8. Repeat steps 6 and 7 until no positional changes in the control points occur.

The first step of our approach is to estimate the density from the given image
for both the kidney object and its background. Unlike the shape density estimation,
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the gray-level density estimation step will be repeated for every image we need to
segment; so that our approach is adaptable for all data.

Figure 11 shows the initial approximation of the bimodal empirical distribution
of Q = 256 gray levels over a typical DCE-MRI (Dynamic Contrast-Enhanced
Magnetic Resonance Imaging) slice of human abdomen. The dominant modes
represent the brighter kidney area and its darker background, respectively. After
the additive and subtractive parts of the absolute deviation are approximated with
the DG mixtures, the initial mixed LCDG model consists of the 2 dominant, 4
additive, and 4 subtractive DGs, that is, Cp = 6 and Cn = 4. The LCDG models
of each class are obtained with t = 78, ensuring the best class separation.

Figure 12 presents the final LCDG model obtained by refining the above
initial one using the modified EM algorithm introduced in Section 5.3. The first
37 iterations of the algorithm increase the log-likelihood of Eq. (11) from −6.90
to−4.49. Also, the Levy distance between the empirical density and the estimated
density is 0.007, which indicates a good match between the empirical distribution
and the estimated one.

The second step of the proposed approach is the alignment step. Figure
13a demonstrates one of our aligned databases. Figure 13b shows one kidney
image that we need to segment. Figure 13c shows the result of the registration of
(a) and (b) using MI. Figure 14 shows the final steps of the proposed approach.
The resulting segmentation in Figure 14c has an error of 0.23% with respect to
radiologist segmentation (ground truth). Figure 15 shows another example of
kidney segmentation using the proposed approach. To highlight the accuracy
of the proposed approach, we compared the proposed approach with the more
conventional geometric deformable model presented in [60], where the level set-
based shape prior gives an error of 4.9% (Figure 15g). Similar results for four
other kidney images in Figure 16 suggest that the latter approach fails to detect
sizeable fractions of the goal objects.

In the above examples, the abdominal images were from different patients to
show the applicability of our approach, and also to demonstrate the difficulty of
the problem. From here on, we will be using the images of only one patient to
illustrate the steps of our approach. The segmentation results of one patient are
given in Figure 17, a part of whose sequence was given in Figure 2.

6. MODEL FOR THE LOCAL DEFORMATION

In DCE-MRI sequences, the registration problem arises because of patient
movement and breathing. To overcome this problem, we proposed a new ap-
proach to handle kidney motion. The proposed approach is based on deforming
the segmented kidney over closed equispaced contours (i.e., isocontours) to closely
match the prototype. We did not use a free-form deformation based on a B-spline
on a square lattice because that requires additional smoothing constraints that lead
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(a) (b)

(c) (d)

Figure 11. Initial LCDG model of the bimodal empirical gray-level distribution: the DMRI
slice (a), its empirical gray-level distribution approximated with the dominant mixture of
the DGs (b), the scaled-up absolute deviation of the approximation and its LCDG model
(c), and the LCDG model of each class (d) for the best separating threshold t = 78. See
attached CD for color version.

to very time-consuming computations. Instead we used evolution of the isocon-
tours guided with an exponential speed function in the directions that minimize
the distances between corresponding pixel pairs on the isocontours of both the
objects. The normalized cross-correlation is used as an image similarity measure
insensitive to intensity changes (e.g., due to tissue motion in medical imagery and
the contrast agent).

The first step of the proposed approach is to use the fast marching level set
methods [46] to generate the distance map inside the kidney regions, as shown in
Figure 18a,b. The second step is to use this distance map to generate equally spaced
separated contours (isocontours) as shown in Figure 18c,d. Note that the number
of isocontours depends on the accuracy and speed that the user needs to achieve.
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(a) (b)

(c) (d)

Figure 12. Final 2-class LCDG model (a), log-likelihood changes at the EM iterations (b),

separating threshold t = 85 (d). See attached CD for color version.

(a) (b) (c)

Figure 13. Kidney from the aligned database (a); a kidney to segment (b); alignment of (a)
and (b) using affine mutual information registration (c).

ten components of the final LCDG (c), the final LCDG model of each class for the best
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(a) (b)

(c) (d)

Figure 14. Initialization of deformable model (a); final segmentation of the aligned image
(b); final segmentation (c) after multiplying the aligned image by inverse transformation
(error = 0.23%); and radiologist segmentation (d). See attached CD for color version.

The third step of the proposed approach is to use normalized cross-correlation to
find the correspondence between isocontours. Since we start with aligned images,
we limit our searching space to a small window (e.g., 10 × 10) to improve the
speed of the proposed approach. The final step is evolution of the isocontours.
Here our goal is to deform the isocontours in the first (target) image to match the
isocontours in the second (source) image. Before we discuss the details of the
evolution algorithm, let us define the following terminology:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 15. Chosen training kidney prototype (a); an image to be segmented (b); its align-
ment to the prototype (c); the contour of the training prototype superimposed on the aligned
test image (d); the segmentation result (e); the same result (f) after its inverse affine trans-
form to the initial image (b) (total error 0.63% in comparison to ground truth (h); the final
boundary and the ground truth are in red and green, respectively), and the segmentation (g)

attached CD for color version.
with the algorithm in [60] (the total error 4.9% in comparison to ground truth (h)). See
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Error 0.67% Error 4.1%

Error 1.5% Error 7.4%

Error 1.5% Error 6.4%

Error 1.3% Error 5.9%

Figure 16. Segmentation of four other kidney DCE-MR images: the left column — our
final boundaries and the ground truth (in red and green, respectively); the right column
— the segmentation with the algorithm in [60] vs. the ground truth (in red and green,
respectively). See attached CD for color version.
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Figure 17. Segmentation results of a DCE-MRI series, a part of which was shown in Figure 2.
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(a) (b)

(c) (d)

Figure 18. Distance map of two kidneys (a, b) and the samples of isocontours (c, d). See
attached CD for color version.

φA
niso

(h, ν) are the isocontours in the target image, where h = 1, . . . ,H is
the index of the control points in the given contour, niso = 1, . . . Niso is
the index of the isocontours, and ν is the iteration step.

φB
miso

(γ) are the isocontours in the source image, where γ = 1, . . . ,Γ is
the index of control points in the given contour, and miso = 1, . . . ,Miso
is the index of the isocontours.

S is the Euclidean distance between corresponding points located on both
isocontours of both images.

SA
niso,niso−1 is the Euclidian distance between φA

niso
(l, ν) and φA

n−1(l, ν).

V is the propagation speed function.
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(a) (b)

Figure 19.
version.

The most important step in model propagation is selection of propagation
speed function V. Selection of the speed function must satisfy the following
conditions:

1. V = 0 if S = 0.

2. V ≤ min(S, SA
niso,niso−1, S

A
niso,niso+1) if S > 0; is the smoothness con-

straint, which prevents the current point from passing the closest neighbor
contour, as shown in Figure 19.

A speed function of the following form satisfies the above conditions:

V = eβS − 1, (15)

where β is the propagation constant with the upper bound

β �
ln
(

min(S, SA
niso,niso−1, S

A
niso,niso+1) + 1

)
S

.

Based on the speed function shown in Eq. (15) we can deform the isocontours
using the following equation, as shown in Figure 19b:

φA(h, ν + 1) = V
S φ

B
miso

(γ) + S−V
S φA

niso
(h, ν) (16)

for h = 1, . . . ,H, miso = 1, . . . ,Miso, niso = 1, . . . , Niso.
To show the quality of the proposed approach, we fused the two kidney images

by means of the checkerboard visualization in Figure 20. It is clear from Figure 20b
that the connectivity between the two images at the edges and inside the kidney
region are improved after applying the proposed deformation model.

Model constraints (a), and model evolution (b). See attached CD for color
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Figure 20. Example of a DCE-MRI series after nonrigid registration.
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7. CORTEX SEGMENTATION

Strake et al. [64] have shown that the most important signal characteristics
come from the cortex of the kidney during acute rejection. Therefore, the final
step of our approach is to segment the cortex from the segmented kidney. To
achieve this task, we use the same approach but based now only on intensity. At
this step, since all the kidneys are aligned together, we select seed points from
the medulla regions, and evolve our deformable model based only on intensity.
After we extract the medullary regions, the rest is cortex, which is used as a mask
and propagated over the whole sequence to plot the average cortex intensity. In
Figure 21 we show the cortex segmentation results. In Figure 21a we manually
initialize several deformable models inside the medullar regions, and we allow our
deformable model evolve in these regions with gray-level information as shown
in Figure 21b. The cortex mask is applied to the rest of the sequence as shown in
Figure 21c–h.

8. RESULTS

The ultimate goal of the proposed algorithms is to successfully construct a
renogram (mean signals) from DCE-MRI sequences, showing the behavior of the
kidney as the contrast agent perfuses through the transplanted organ. In acute
rejection patients, the DCE-MRI images show a delayed perfusion pattern and
reduced cortical enhancement. We tested the above algorithms on thirty patients,
four of which are shown in Figure 22. The normal patient shows the expected
abrupt increase to higher signal intensities and the dip with a small slope. The
acute rejection patients show a delay in reaching peak signal intensities. From
these observations we have been able to conclude that the relative peak signal
intensity, the time to peak signal intensity, the slope between the peak and the
first minimum, and the slope between the peak and the signal measured from the
last image in the sequence are the four major features in the renograms of the
segmented kidney undergoing classification.

To distinguish between normal and acute rejection, we used a Bayesian super-
vised classifier, learning statistical characteristics from a training set for normal

performed for each feature by using a linear combination of Gaussians (LCDG)
with positive and negative components, and their parameters are estimated using
a modified EM algorithm that appeared in [65]. In our approach we used 50%
of the data for training and the other 50% for testing. For testing data the Bayes
classifier succeeded in classifying 13 of 15 correctly (86.67%). For the training
data the Bayes classifier classified all of them correctly, so the overall accuracy of
the proposed approach is 93.3%. All these values were calculated with respect to
biopsy results.

and acute rejection. The density estimation required in the Bayes classifier is



328 AYMAN EL-BAZ et al.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 21. Segmentation of the cortex from kidney images. Several medullary seeds
are initialized (a), and the deformable model grows from these seed points (b). After the
medulla is extracted from the kidney, the cortex is propagated over the whole sequence of
images, as shown in (c)-(h). See attached CD for color version.
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Figure 22. Cortex intensity vs. scan number from 4 subjects. There are 4 seconds between
each scan. Subjects 1 and 2 have acute rejection, subject 3 is normal, and subject 4 is
chronic glomerulopathy proved by biopsy. In these cortical renograms the normal patient
shows the expected abrupt increase in intensity along with a fast decrease, followed by a
constant valley and a slow decrease. On the other hand, these abrupt patterns are not seen
in acute rejection patients; there is no definite peak, and the time to reach peak intensity is
delayed. Subject 4 shows that DCE-MRI is also powerful in distinguishing other diseases.
See attached CD for color version.

9. CONCLUSION

In this chapter we presented a framework for the detection of acute renal rejec-
tion from Dynamic Contrast Enhanced Magnetic Resonance Images that includes
segmentation of kidneys from abdomen images, nonrigid registration, and Bayes
classification. For segmentation of kidneys from the abdomen images, we intro-
duced a new deformable model that evolves with both the gray-level information
of a given abdomen image, and the shape information obtained from a database
of manually segmented kidneys. The energy function of this deformable model
is a combination of (i) the gray-level density and (ii) the prior shape information
as a 1D density function. For these density estimations we introduced a modified
EM algorithm that closely approximates the densities. Following segmentation,
we introduced a nonrigid registration algorithm that deforms the kidney object on
isocontours instead of a square lattice, which provides more degrees of freedom to
obtain accurate deformation. After nonrigid registration, the kidney is segmented
into cortex and medulla, and the average gray-level value of the cortex for the
whole sequence of a patient is plotted. The features extracted from these signal
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plots (renograms) undergo Bayesian classification to understand if the transplanted
kidney is undergoing acute rejection or if it is functioning normally.

Our future work will include testing more patients, and testing the robustness
of our approach. In addition, we will try to classify other possible diseases that
occur after transplantation, and even try to understand the severity of rejection.
With such developments we believe that analysis of DCE-MRI imagery has a
high potential for replacing the current nuclear imaging tests or invasive biopsy
techniques.
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