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ABSTRACT 

 

Hyperspectral imaging is widely used in many fields such as 

geology, medicine, meteorology, and so on. Despite the high 

spectral resolution, the spatial resolution of the 

hyperspectral sensors is severely limited. In this paper, we 

propose a novel maximum a posteriori (MAP)-based 

approach based on the joint superresolution of the 

abundance maps, to enhance the resolution of hyperspectral 

images. In the proposed approach, first, the endmembers 

and their abundance maps are estimated using Vertex 

Component Analysis (VCA) and Fully Constrained Least 

Squares (FCLS), respectively. Second, a high resolution 

(HR) abundance map is reconstructed for each low 

resolution (LR) abundance map using a MAP-based 

approach. In the MAP-formulation data, smoothness and 

edge preservation constraints are extended to include a unity 

constraint term specific to abundances. The proposed 

algorithm is tested on both synthetic images and real image 

sequences. The experimental results and comparative 

analysis verify the effectiveness of the proposed algorithm.  

 

Index Terms— Hyperspectral, Super-resolution, 

Spectral Unmixing, Markov Random Field, Graph Cut 

Energy Minimization 

 

1. INTRODUCTION 

 

Hyperspectral sensors have the ability to acquire images in 

many narrow spectral bands in the electromagnetic 

spectrum. Despite the high spectral resolution, the spatial 

resolution of the hyperspectral sensors is severely limited 

because of the limitations of the imaging hardware [1]. The 

limit of resolution can lead to mixed pixels that are pixels 

occupied by two or more pure elements, called endmembers. 

These mixed pixels adversely affect the detection and 

recognition performance in many practical applications. In 

the literature, many algorithms are proposed to increase the 

resolution of hyperspectral images [1][2][3]. Several 

researchers have studied spectral mixture analysis to find 

subpixel information [3][4]. These studies estimate the 

abundance maps and obtain super-resolution land cover 

maps by finding subpixel locations of the endmembers. 

Generally, interpolated abundances are assumed to consist 

of pure pixels which may not be an accurate assumption [5]. 

Another approach is using super-resolution mapping by 

fusing a hyperspectral image with a High Resolution (HR) 

image [6]. However, in general, obtaining a hyperspectral 

image with a HR panchromatic or multispectral image is 

difficult.  There are also neural network based methods 

which require a learning phase [7]. In this paper, we propose 

a totally new approach where the abundance maps are 

jointly superresolved, to enhance the resolution of 

hyperspectral images. We treat each abundance map 

corresponding to an endmember as a separate source of 

information; and we use the subpixel information from LR 

abundance maps to reconstruct HR abundances. 

Experiments have been performed on both synthetic and real 

data to assess the effectiveness of the method. The 

remainder of the paper is organized as follows. Section II 

gives a detailed description of the proposed approach. 

Section III presents the experimental results and Section IV 

gives the conclusion and future work. 

 

2. MAP-BASED HYPERSPECTRAL SUPER-

RESOLUTION 

 

The main idea is of the proposed approach is to jointly 

utilize the abundance fractions of the endmembers present in 

the scene in the resolution enhancement process. In our 

approach the abundance maps are superresolved as opposed 

to interpolating the spectra of each pixel.  This approach 

needs to interpolate only a few abundance maps to construct 

the resolution enhanced hyperspectral image in all spectral 

bands. Therefore, it is also a time-efficient way of resolution 

enhancement for hyperspectral images. The block diagram 

of the proposed method is given in Figure 1.  First, spectral 

unmixing is applied which is the combination of endmember 

extraction and abundance map estimation. After abundance 

maps are extracted, HR abundance maps are generated using 

MRF based energy model with Graph Cut optimization. 

Finally, abundance maps are merged to obtain HR image in 

each spectral band.  

  



   
 

Figure-1: Block diagram of the proposed method. LR 

abundance maps of each endmember is interpolated through 

MRF and Graph cuts to obtain HR abundance maps, which 

are then combined to get a HR hyperspectral image. 

 

5.1. Spectral Unmixing 

 

In the linear spectral mixture model, any pixel in the scene 

can be expressed as a linear combination of the 

endmembers. The goal of spectral unmixing is to find the 

abundances of the endmembers in the image. In general, 

there are three main stages in spectral unmixing, namely 

dimension reduction (optional), endmember selection and 

abundance map estimation. There are various spectral 

unmixing algorithms in the literature [8]. In this study, we 

have selected the Vertex Component Analysis (VCA) [9] 

algorithm to find the endmembers in the scene for its fairly 

good performance and lack of need for dimension reduction. 

For the abundance map estimation, we have selected the 

Fully Constraint Least Squares (FCLS) which models the 

material quantification accurately enough [10]. 

 

5.2. Super-resolution Reconstruction (SRR) 

 

The observation model that related the HR abundance maps 

to the LR abundance maps can be given as with the 

constraint of summation of the abundances for each pixel is 

unity. We use the following observation model: 

 

                                         k = B●D● k + nk      

 

In this observation model, Ak  and   k  are the LR and HR 

abundance maps of the k
th

  endmember  respectively and nk 

is the observation Gaussian noise.  B and D are the blurring 

and downsampling operations. Moreover, in this model, 

summation of the LR abundance maps is unity: 

    

∑     

 

 

 

The problem of finding  k  given Ak  is an ill-posed inverse 

problem and SRR algorithms can be used to find the HR 

abundance maps (i.e.  k). Bayesian methods are effectively 

used in SRR problem [11]. These methods insert 

probabilistic information to the problem. In MAP-based 

approach, the most probable HR image is searched 

iteratively using the image prior knowledge. We use this 

model as a base model and extend the model with additional 

constraint terms related to abundance maps. Minimization of 

the energy functions for each endmember construct HR 

abundance maps. Merging these HR abundances gives us 

HR hyperspectral images in each spectral band.  

 

5.2.1. Energy Function 

 

In order to determine the energy function, we start from an 

initial energy model which is based on MAP-MRF 

framework defined as [12]: 

 
E = Ed+λEs 

 

The first term in this equation can be named as the data 

constraint that guarantees the consistency of the HR 

abundance maps with the observed data and the second as 

the a priori information. When we use MRF as the prior 

model, our goal is to obtain smooth HR abundance maps 

while keeping the original LR maps. Moreover, for the LR 

abundance maps, summation of the abundances for each 

pixel is unity, and this constraint should also hold for the 

HR abundance maps. Therefore, there is an interrelation 

between HR abundance maps. Finally, to preserve edges and 

prevent the over-smoothing, edge preserving regularization 

is required in the energy function. Combining all these 

constraints, we define an energy function that has data, edge 

preserving and smoothness terms in order to meet the 

requirements of the prior model. These terms are explained 

below: 

 

1) Data Constraint (DC): Assuming the model noise is 

AWGN, the data constraint term can be written as  
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where D:  Downsampling Operation 

              B:   Blurring Operation 

 S:   Spectral Signatures of Endmembers 

                   HR Abundance Map 

 A:   LR Abundance Map 

 N:   Number of Pixels   

 

2) Smoothness Constraint (SC): Arrangement should 

reflect a spatial consistency in HR abundance map. 
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where  (k) is the abundance of pixel k; and           is the 4-

neighborhood of  (k).        

 

3) Unity Constraint (UC):  In HR Image, sum of the 

abundances of a single pixel should be unity.  

∑‖ ( )( )‖   

 

   

         

 

where E is the number of endmembers. 

 

4) Edge Preserving Constraint (EPC):  In HR Image, edges 

of the LR images should be preserved if gradient is 

greater than a threshold. In other words, we masked this 

constraint using mask coefficients (Mx,My) if gradients 

(Gx, Gy) are smaller than a threshold: 

 

  (   )           (   )             otherwise 0 

 

  (   )           (   )             otherwise 0 

 
Using the mask coefficients, we can define the EPCs in x 

and y directions: 

    (   )     ‖( (   )   (( +  )  ))‖ 
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Sum of the EPCs in both directions gives us the total EPC: 
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where R
H
 is the number of rows in the HR abundance map 

and C
H
 is the number of columns in HR abundance map.  

 

Combining the terms related to data constraint and a-priori 

information, the energy function that is to be minimized can 

be written as: 

 

        +      +        

 

Minimization of the energy function E for each endmember 

while satisfying the UC condition gives the HR abundance 

maps. DC, SC and EPC are independent for each 

endmember whereas UC is a joint constraint between 

endmembers. Therefore, HR abundance maps are jointly 

checked for the UC condition. 

 

5.2.2. Minimization of Energy Function 

 

In [12], different energy minimization methods such as 

Iterated Conditional Modes (ICM), Graph Cut Expansion 

(GCE), Graph Cut Swap (GCS), Max-Product Loopy Belief 

Propagation (LBP) are compared and benchmarks are given. 

In these benchmarks, it is concluded that GCE is clearly the 

winner in terms of runtime. Moreover, it performs best 

minimization in energy in majority of the cases. Therefore, 

we selected GCE as the Energy minimization method for 

our study. GCE algorithm searches a labeling such that no 

expansion move for any label α yields a labeling with lower 

energy [13]. Although, Graph Cut is typically used for 

labelling problems, recently it is also being used for the 

SRR problem [14] We treat each different abundance of an 

endmember as a label and apply GCE method to enhance 

the resolution by finding the optimal labeling by minimizing 

the given energy function.  

 

3. EXPERIMENTAL RESULTS 

 

We applied the proposed method to both synthetic and real 

hyperspectral images. Due to page limit, we only give the 

results of real hyperspectral image experiments. Image 

dataset consists of 31 narrow bands, each with 

approximately 10nm bandwidth and centered at steps of 

10nm from 420nm to 720nm [15]. Instead of the whole 

image, 160x160 patches are used in the experiments. 80x80 

input test images are generated applying 2x downsampling 

to these image patches. These test images are input to the 

proposed system. The output is the 2x resolution enhanced 

version (160x160) of the 80x80 input test images. Result of 

the proposed method is compared with original 160x160 

image, bicubic interpolated image and graph cut interpolated 

image. Bicubic and graph cut interpolation is directly 

applied to the downsampled hyperspectral image as in 

proposed method. The results of the hyperspectral image are 

shown in Figure 2 and 3 for the first spectral band (i.e. 420 



nm). Visually, the proposed method is promising as 

compared to other interpolated images. Bicubic interpolated 

image is degraded by smoothing. Graph Cut Interpolated 

image is adversely affected from the noise. However, our 

proposed method preserves the edges and filters the noise in 

the hyperspectral image. In the experiments, we use {α=5, 

β=2, γ=100} coefficients as the weights of the constraints of 

energy function E.   

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Comparison of the super-resolution methods on 

one band. (a) Original Image, (b) Bicubic Interpolated 

Image, (c) Graph Cut Interpolated Image, (d) Proposed 

Method. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Comparison of the super-resolution methods on 

one band. (a) Original Image, (b) Bicubic Interpolated 

Image, (c) Graph Cut Interpolated Image, (d) Proposed 

Method. 

4. CONCLUSIONS 
 

This paper presented a spectral unmixing based approach 

for the super-resolution of hyperspectral images. The 

proposed method is tested on both synthetic and real 

hyperspectral images which have promising results. Further 

experiments will be conducted in order to quantitatively 

evaluate the performance of the proposed method.   
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