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Abstract

A novel and robust 3-D segmentation approach is pro-
posed using level sets based on shape constraints. The ap-
proach depends on both the gray level and shape informa-
tion. A partial differential equation (PDE) is developed to
control the evolution of the level sets. The PDE does not
include weighting coefficients to be tuned, overcoming the
disadvantages of other PDE approaches. The shape infor-
mation is gathered from a set of the signed distance maps
representing the training data as a histogram of the occur-
rences of the points inside and outside the object. We use a
novel statistical approach to get a probability density func-
tion (pdf) for the signed distance map of the points inside
and outside and also the distribution of gray level inside
and outside the object. The proposed statistical approach is
based on modelling the empirical density function (normal-
ized histogram of occurrence) for either the gray level dis-
tribution or signed distance map with a linear combination
of Gaussians (LCG) with positive and negative components.
We modify an Expectation-Maximization (EM) algorithm to
deal with the LCGs and also propose a novel EM-based se-
quential technique to get a close initial LCG approximation
for the modified EM algorithm to start with. The pdf’s of
the signed distance and intensity gray level are embedded
in the speed function of the level set specifying the direction
of evolution. Experimental results show how the approach
is accurate in segmenting different types of 2-D and 3-D
data sets including medical images.

1 Introduction

Surgical planning, navigation, medical visualization and
diagnostics all benefit from image segmentation; and level
sets segmentation has retained its attention (see [1, 22, 4,
2, 8, 17, 5]) due to their topological flexibility and inde-
pendence of the parameterizations of the evolving contour.
However, segmentation process is still a challenge because

of the image noise and inhomogeneities; therefore segmen-
tation algorithms can not depend only on image information
but also have to exploit the prior knowledge of shapes and
other properties of the structures to be segmented.

The incorporation of shapes and deformable models be-
came popular with Leventon et al.[7] and Shen et al. [15]
by attracting the level set function to the likely shapes
from a training set specified by principal component anal-
ysis (PCA). Recently, the approach of [7] was extended in
[19, 18] and [20]. In [19], shapes are represented with a lin-
ear combination of 2D distance maps where the weight esti-
mates maximize the distance between the mean gray values
inside and outside the shape. In [18], the idea is to use a
deterministic model to represent the desired shape as a lin-
ear combination of the weighted signed 2D distance maps,
the weights being estimated by minimizing a mutual infor-
mation based cost function. However, as noted in [19], the
space of distance maps is not closed with respect to linear
operations, so that the distance map for zero level shape of
a linear combination of the maps does not necessarily coin-
cide with the latter combination. As a result, the model may
produce an unpredictable shape.

The training shapes are represented with the like linear
combination of the training signed 2D distance maps also
in the papers of a second research group [20]. Here, all
the shapes are described with a multidimensional Gaussian
probability model of the weights in the linear combination.
But apart from a probabilistic description, the model has
similar inconsistencies.

In [6], registration is combined with the segmentation
process in an energy minimization problem. The evolving
curve/surface is embedded in a higher dimensional level set
function and registered iteratively with a shape model. In
[11], a 3D shape-segmentation approach is proposed where
a shape model is built from a set of training shapes using
distance functions. A level set function evolves minimizing
the shape alignment energy and the intensity gray level.

In this paper, a novel and robust segmentation approach
is proposed based on the level set technique with shape con-
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straints. The segmentation approach depends on both gray
level intensity and shape information; whereas the shape
information is gathered from a set of training shapes. A
signed distance function is assigned to each shape and the
signed distance values are collected in the form of a his-
togram representing the occurrences of each value. Prob-
ability density functions of the object and background are
formed based on the signed distance value in addition to
the gray level intensity. These functions are estimated using
our new approach known as the modified expectation max-
imization (EM) which estimates the density function by a
linear combination of Gaussians (LCG) with positive and
negative components. The estimated pdf’s are used in a
variational approach making the segmentation accurate and
fast.

2 Shape Modelling by Level Sets

Shape representation is the main task in shape analysis.
The selection of such representation is very important in
several computer vision and medical applications such as
registration and segmentation. There are several ways de-
scribed in [7, 13, 16]. Although some of these ways are
powerful enough to capture local deformations, they require
a large number of parameters to deal with important shape
deformations. So an emerging way to represent shapes is
derived using level sets [9]. This representation is invari-
ant to translation and rotation. Given a curve/surface V that
represents boundaries of a certain shape, we can define the
following level set function:

φ(x, y, z) =

⎧⎨
⎩

0, (x, y, z) ∈ V
d((x, y, z), V ) (x, y, z) ∈ RV

−d((x, y, z), V ) Otherwise
(1)

where RV is the region defined by the shape and
d((x, y, z), V ) is the minimum Euclidean distance between
the image location (x, y, z) and the curve/surface V .

Such representation can account for local deformations
that are not visible for iso-contours that are far away from
the original shape, and for geometrical features of the shape
that can also be derived naturally from this representation.

By this representation, we can construct a database of
curves/surfaces and signed distance functions that represent
variations for a certain shape. So, given a set of aligned
curves/surfaces V1, ..., VN , level sets φ1, ..., φN are calcu-
lated as training data. From this information, we can extract
a histogram of the occurrences of signed distance values
which characterizes the shape and its local variations. Also,
a mean curve/surface VM is calculated as an average of
the corresponding points of all the training curves/surfaces.
Simply, we can get this curve/surface by picking each point
in the first training curve/surface and get the nearest points

in the other curves/surfaces, then calculate the average as
follows:

VM (xj , yj , zj) =
1
N

N∑
i=1

Vi(xi, yi, zi), (2)

where (xi, yi, zi) are the corresponding points.

3 Curve/Surface Evolution and Level Sets

Within the level set formalism [14], the evolving
curve/surface is a propagating front embedded as the zero
level of a scalar function φ(x, y, z, t). The continuous
change of φ(x, y, z, t) can be described by the partial dif-
ferential equation:

∂φ(x, y, z, t)
∂t

+ F (x, y, z)|∇φ(x, y, z, t)| = 0, (3)

where F (x, y, z) is a velocity function and ∇ =
[ ∂
∂x , ∂

∂y , ∂
∂z ]T . The function φ(x, y, z, t) deforms itera-

tively according to F (x, y, z), and the position of the 2D/3D
front is given at each iteration by solving the equation
φ(x, y, z, t) = 0. Practically, instead of Eq.(3), the value
φ(x, y, z, tn+1) at step n+1 is computed from φ(x, y, z, tn)
at step n by the relation:

φ(x, y, z, tn+1) = φ(x, y, z, tn) −�t · F |∇φ(x, y, z, tn)|.
(4)

The design of the velocity function F (x, y, z) plays the ma-
jor role in the evolutionary process. Among several for-
mulations proposed in [10], we have chosen the following
formulation:

F (x, y, z) = ν − εk(x, y, z), (5)

where ν = 1 or −1 for the contracting or expanding front
respectively, ε is a smoothing coefficient which is always
small with respect to 1, and k(x, y, z) is the local curvature
of the front. The latter parameter acts as a regularization
term.

4 Statistical Model for Density Estimation

In this paper we introduce a new algorithm called a
modified Expectation-Maximization algorithm that approx-
imates an empirical probability density function of scalar
data with a linear combination of Gaussians (LCG) with
positive and negative components. Due to both positive
and negative components, the LCG approximates inter-class
transitions more accurately than a conventional mixture of
only positive Gaussians.
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This approach is suitable for estimating the marginal
density for either the gray level distribution pg(q) or signed
distances ps(d) in each region in the given image. In the
following section we will describe this model for estimating
the marginal density for the gray level distribution pg(q) in
each region and the similar way can be used to estimate the
density of the signed distances ps(d) in the given image.

To identify the model accurately, we approximate the
marginal gray level probability density in each region with
a LCG having Cp,i positive and Cn,i negative components:

pg(q|i) =
Cp,i∑
r=1

wp,i,rϕ(q|θp,i,r) −
Cn,i∑
l=1

wn,i,lϕ(q|θn,i,l);

(6)
such that

∫ ∞
−∞ pg(q|i)dq = 1. Here, q is the gray level,

and ϕ(q|θ) is a Gaussian density having a shorthand no-
tation θ = (μ, σ2) for its mean, μ, and variance, σ2.
In contrast to more conventional normal mixture models,
the components are now both positive and negative and
have only one obvious restriction in line with Eq. (6):∑Cp,i

r=1 wp,i,r − ∑Cn,i

l=1 wn,i,l = 1. These weights are not
the prior probabilities, and the LCG of Eq. (6) is considered
as a functional form of the approximation of a probability
density depending on parameters (w, θ) of each component.

The mixture of K LCGs, p(q) =
∑K

i=1 wip(q|i), has the
same form but a larger number of components, e.g., Cp =∑K

i=1 Cp,i and Cn =
∑K

i=1 Cn,i if all the values θp,i,r and
θn,i,l differ for the individual models:

pg(q) =
Cp∑
r=1

wp,rϕ(q|θp,r) −
Cn∑
l=1

wn,lϕ(q|θn,l) (7)

To identify this model in the unsupervised mode, the mixed
empirical distribution of gray levels over the image has to
be first represented by a joint LCG of Eq. (7) and then
partitioned into individual LCG-models for each class i =
1, . . . , K.

Under the fixed number of the positive and negative com-
ponents, C, the model parameters w = {wc; c = 1, . . . , C}
and Θ = {θc : c = 1, . . . , C} maximizing the image like-
lihood can be found using an EM algorithm introduced in
Section 4.1. It modifies the conventional EM-scheme to
take account of the components with alternating signs.

The modified EM algorithm is sensitive to both its ini-
tial state specified by the numbers of positive and negative
Gaussians, and the initial parameters (mean and variance) of
each component. To find a close initial LCG-approximation
of the empirical distribution, we develop in Section 4.2 a se-
quential initializing EM-based algorithm.

4.1 Modified EM Algorithm for LCGs

Let f(q), q ∈ Q be an empirical relative frequency dis-
tribution representing an unknown probability density func-
tion ψ(q) such that

∫ ∞
−∞ ψ(q)dq ≡ ∑Q

q=0 f(q) = 1. We
assume that f(q) is approximated by an LCG Pg:w,Θ with
Cp positive and Cn negative components ϕ(q|θ):

pg:w,Θ(q) =
Cp∑
r=1

wp,rϕ(q|θp,r) −
Cn∑
l=1

wn,lϕ(q|θn,l) (8)

In line with Eq. (8), the positive weights w are restricted as
follows:

Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1 (9)

We also assume here that the numbers Cp and Cn of the
components of each type are known after the initialization
in Section 4.2 and do not change during the EM process.
The initialization provides also the starting parameter val-
ues w[0] and Θ[0].

The probability densities form a proper subset of the set
of the LCGs due to the additional restriction pw,Θ(q) ≥
0, which holds automatically only for probability mixtures
with no negative components.

The LCG that provides a local maximum of the log-
likelihood of the empirical data:

L(w,Θ) =
∑
q∈Q

f(q) log pg:w,Θ(q) (10)

can be found using the iterative block relaxation process
extending conventional EM schemes.

Let p
[m]
g:w,Θ(q) =

∑Cp
r=1 w

[m]
p,r ϕ(q|θ[m]

p,r ) −∑Cn
l=1 w

[m]
n,l ϕ(q|θ[m]

n,l ) be the LCG at step, or iteration
m. Relative contributions of each data item q = 0, . . . , Q
into each positive and negative Gaussian at the step m are
specified by the following respective conditional weights

π
[m]
p (r|q) = w[m]

p,r ϕ(q|θ[m]
p,r )

p
[m]
g:w,Θ(q)

; πn(l|q) =
w

[m]
n,l ϕ(q|θ[m]

n,l )

p
[m]
g:w,Θ(q)

Cp∑
r=1

π
[m]
p (r|q) −

Cn∑
l=1

π
[m]
n (l|q) = 1; q = 0, . . . , Q

(11)

Using these weights, the log-likelihood of Eq. (10) can be
rewritten in the equivalent form:

L(w[m],Θ[m]) =
Q∑

q=0
f(q)[

Cp∑
r=1

π
[m]
p (r|q) log p

[m]
g:w,Θ(q)]

−
Q∑

q=0
f(q)[

Cn∑
l=1

π
[m]
n (l|q) log p

[m]
g:w,Θ(q)](12)

where log p
[m]
g:w,Θ(q) in the first and the second brack-

ets should be replaced with the equal terms: log w
[m]
p,r +
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log ϕ(q|θ[m]
p,r )−log π

[m]
p (r|q) and log w

[m]
n,l +log ϕ(q|θ[m]

n,l )−
log π

[m]
n (l|q), respectively.

The block relaxation converging to a local maximum of
the likelihood function in Eq. (12) repeats iteratively the fol-
lowing two steps:

1. E-step [m+1]: to find the parameters w[m+1], Θ[m+1]

by maximizing L(w,Θ) under the fixed conditional
weights of Eq. (11) for the step m, and

2. M-step [m + 1]: to find these latter weights by max-
imizing L(w,Θ) under the fixed parameters w[m+1],
Θ[m+1]

until the changes of the log-likelihood and all the model
parameters become small.

The E-step performs the conditional Lagrange maxi-
mization of the log-likelihood of Eq. (12) under the re-
striction of Eq. (9) to obtain the following estimates of the
weights:

w[m+1]
p,r =

∑
q∈Q

f(q)π[m]
p (r|q); w

[m+1]
n,l =

∑
q∈Q

f(q)π[m]
n (l|q)

Then the parameters of each Gaussian are obtained by the
unconditional maximization just as in the conventional EM
scheme (below “c” stands for “p” or “n”, respectively):

μ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

q · f(q)π[m]
c (r|q)

(σ[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − μ

[m+1]
c,i

)2

· f(q)π[m]
c (r|q)

The M-step performs the conditional Lagrange maxi-
mization of the log-likelihood of Eq. (12) under the Q + 1
restrictions of Eq. (11), and determines the conditional
weights π

[m+1]
p (r|q) and π

[m+1]
n (l|q) of Eq. (11) for all

r = 1, . . . , Cp; l = 1, . . . , Cn and q = 0, . . . , Q. The mod-
ified EM-algorithm is valid until these weights are strictly
positive, and the initial LCG-approximation should comply
to this limitation. The iterations have to be terminated when
the log-likelihood of Eq. (12) begins to decrease.

4.2 Sequential EM-Based Initialization

We assume that the number of dominant modes is equal
to the given number of classes. To simplify the notation, let
the empirical distribution have only two separate dominant
modes representing the object and the background, respec-
tively. The algorithm we present below is easily extended
to the general case of K > 2 dominant modes. We assume
that each dominant mode is roughly approximated with a
single Gaussian and the deviations of the empirical den-
sity from the two-component dominant Gaussian mixture
are described by other components of the LCG in Eq. (7).

Therefore the model has the two dominant positive weights,
say, wp,1 and wp,2 such that wp,1 +wp,2 = 1, and a number
of “subordinate” weights of smaller absolute values such
that

∑Cp
r=1 wp,r −

∑Cn
l=1 wn,l = 0.

The following sequential algorithm allows for estimating
both the weights and parameters of the individual Gaussians
in the latter LCG model, including the number of the non-
dominant components.

1. Approximate a given empirical distribution f(q), of
gray levels in the given image, with a dominant mix-
ture p2(q), of two Gaussians using the conventional
EM-algorithm.

2. Find the deviations Δ = [Δ(q) = f(q) − p2(q) :
q ∈ Q] between f(q) and p2(q) and split them into the
positive and negative parts such that δ(q) = δp(q) −
δn(q):

Δp = [δp(q) = max{δ(q), 0} : q ∈ Q}
Δn = [δn(q) = max{−δ(q), 0} : q ∈ Q}

(13)

3. Compute the scaling factor for the deviations: scale =∫ ∞
−∞ δp(q)dq ≡ ∫ ∞

−∞ δn(q)dq.

4. If the factor s is less than a given accuracy threshold,
terminate and return the model pg(q) = p2(q).

5. Otherwise consider the scaled-up absolute deviations
1

scaleΔp and 1
scaleΔn as two new “empirical densi-

ties” and iteratively the conventional EM-algorithm to
find sizes Cp and Cn of the Gaussian mixtures, pp(q)
and pn(q), respectively, approximating the scaled-up
deviations. The size of each mixture corresponds to
the minimum of the integral absolute error between
the scaled-up absolute deviation Δp (or Δn) and its
model pp(q) (or pn(q)). The number of the compo-
nents is increasing sequentially by unit step while the
error is decreasing.

6. Scale down the subordinate models pp(q) and pn(q)
(i.e. scale down the weights of their components) and
add the scaled model pp(q) to and subtract the scaled
model pn(q) from the dominant model p2(q) in order
to form the desired model pg(q) of the size C = 2 +
Cp + Cn.

Since the EM algorithm converges to a local maximum of
the likelihood function, it may be repeated several times
with different initial parameter values for choosing the
model giving the best approximation. In principle, this
process can be repeated iteratively in order to approximate
more and more closely the residual absolute deviations be-
tween f(q) and pg(q). But because each Gaussian in the lat-
ter model impacts all the values p(q), the iterations should
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be terminated when the approximation quality begins to de-
crease.

The final mixed LCG-model pg(q) has to be split into K
LCG-submodels, one per class, by associating each subor-
dinate component with a particular dominant term in such
a way as to minimize the expected misclassification rate.
To illustrate the association principle, let us consider the
bi-modal case with the two dominant Gaussians having the
mean values μ1 and μ2; 0 < μ1 < μ2 < Q. Let all the sub-
ordinate components be ordered by their mean values, too.
Then let those with the mean values smaller than μ1 and
greater than μ2 relate to the first and second class, respec-
tively. The components having the mean values in the range
[μ1, μ2] are associated with the classes by simple threshold-
ing such that the means below the threshold, t, belong to
the components associated with the first class. The desired
threshold minimizes the classification error e(t):

e(t) =

t∫
−∞

pg(q|2)dq +

∞∫
t

pg(q|1)dq. (14)

5 Evolutionary Curve/Surface Model

The term (ν = ± 1) in Eq.( 5) specifies the direction of
the front propagation. Several approaches were developed
to make all fronts either contracting or expanding (see, e.g.,
[21]) in order to evolve in both directions and avoid overlaps
between the regions.The problem can be reformulated as
classification of each point at the evolving front. If the point
belongs to the associated class (object), the front expands
otherwise it contracts.

5.1 PDE System

The classification decision is based on Bayesian deci-
sion [3] at voxel (x, y, z) at the front. The term (ν) for each
point is replaced by the function ν(x, y, z) so the velocity
function is defined as:

F (x, y, z) = ν(x, y, z) − ε · k(x, y, z). (15)

where

ν(x, y, z) =
{ −1 if pg(q|1) ∗ ps(d|1) > pg(q|2) ∗ ps(d|2)

1 otherwise
(16)

If the voxel (x, y, z) belongs to the object, the front will
expand, otherwise it will contract. Now, we put the Eq.( 3)
in the general form using the derivative of the Heaviside
step function (δα(.)) as follows :

∂φ(x, y, z, t)
∂t

=
(
ε · k(x, y, z) − ν(x, y, z)

)
× δα(x,y,z)

(
φ(x, y, z)

)∣∣∇φ(x, y, z)
∣∣ .(17)

The function δα(.) selects the narrow band points around
the front and the parameter α controls the width of the nar-
row band.

5.2 Registration Step

To make the proposed approach of shape-based segmen-
tation invariant for the scaling, rotation, and translation of
the object, the first step of the proposed approach is to align
the image with any image from our aligned database. The
deformations that we use are defined using the Free Form
Deformations (FFD) as explained in [12]. The essence
of FFD is to deform an object by manipulating a regular
control lattice overlaid on its volumetric embedding space.
One of the main advantages of the FFD technique is that
it imposes implicit smoothness constraints during deforma-
tion, since it guarantees continuity at control points and
continuity elsewhere. Therefore there is no need to intro-
duce computationally expensive regularization components
on the deformed shapes.

5.3 Algorithm

1. Estimate the pdf’s of the object and background for the
intensity gray level and shape signed distance values
using the modified EM.

2. Register the image with any one of the aligned images
from the database.

3. Initialize the level set function.

4. Mark the points of the narrow band.

5. For each point calculate the signed distance value (d)
as the minimum Euclidean distance from VM .

6. If ps(d|1) ∗ pg(q|1) > ps(d|2) ∗ pg(q|2), then the front
expands at this point, otherwise it contracts.

7. Go to step 4. This process is repeated until the change
in the level set function is not significant.

6 Experimental Results

We illustrate the performance of the proposed techniques
by applying it on different 2-D and 3-D data sets. The first
example which we show is the segmentation of starfish. The
segmentation separates starfish from the surrounding back-
ground so that each image has only two dominant objects
(K = 2): the darker background and the brighter starfish.
Figure 1(a) demonstrates one of the aligned starfish images
from our database. Figure 1(b) shows one of the starfish
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(a) (b) (c)

Figure 1. (a) One of the aligned starfish im-
ages from the database, (b) Non-aligned im-
age of starfish, (c) Results of the registration
of (a) and (b)
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Figure 2. (a) Empirical density f(q) approx-
imated with the two dominant Gaussian
components pg:2(q) for the image shown in
Fig. 1(b), (b) Deviation and absolute devia-
tion between f(q) and pg:2(q), (c) Estimating
the number of subordinate mixture, (d) Esti-
mated density for the absolute deviation

images that we need to segment. Figure 1(c) shows the re-
sult of the registering the image shown in (a) to image in (b)
using the algorithm proposed in [12].

Figure 2 illustrates the sequential EM-based initializa-
tion, (a) the empirical density of starfish image shown in
Fig. 1(b) and the initial mixture of two Gaussians approxi-
mating the dominant modes, (b) the deviation between the
empirical density f(q) and the mixture of the two dominant
components pg:2(q), (d) the estimated density of the scaled
deviation using the six Gaussian components which give the
minimum error between the estimated density for the devi-
ation and the empirical deviation as shown in Fig. 2(c).

Figure 3 presents the final LCG-model and its 8 compo-
nents obtained by the modified algorithm as well as the suc-
cessive changes of the log-likelihood. The first 10 iterations
of the refining EM-algorithm increase the log-likelihood of
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Figure 3. (a) Final density estimation of the bi-
modal distribution, (b) The dynamic changes
of the log-likelihood of the modified EM al-
gorithm, (c) All components of the final LCG,
(d) The marginal density estimation for each
class.
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Figure 4. (a) Average signed distance of
aligned star images, (b) Final estimated den-
sity, (c) The marginal density estimation for
each class.

Eq. (12) from −4 to −2.9; then the modified EM algo-
rithm terminates since the log-likelihood begins to decrease.
The minimum classification error of 0.00018 between the
starfish and the background for the final LCG-model is ob-
tained with the threshold t = 82 in Eq. (14). In this case the
LCG-components 1–3 and 4–6 correspond to the starfish
and the background, respectively.

Figure 4(a) shows the average signed distance of all
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aligned segmented starfish. We used the approach as dis-
cussed in the previous sections to estimate the marginal den-
sity that describes the distribution of signed distance inside
and outside the starfish object. The results of this approach
are shown in Fig. 4(b) and (c).

(a) (b) (c)

Figure 5. (a) The initialization of the level
sets function to segment the aligned starfish
shown in Fig. 1(c), (b) The segmentation of
the aligned image, (c) The final segmenta-
tion of starfish after multiplying the aligned
starfish image by the inverse of the transfor-
mation function (which we used in the rigid
registration) with error 0.4% with the ground
truth.

Figure 5 shows the result of our proposed segmentation
approach with error of 0.4% with the ground truth. Also,
more results on different real star-fish images are given in
Fig. 6.

Error 0.91% Error 1.23%

Error 0.9060% Error 1.2551%

Figure 6. More results for starfish with differ-
ent deformations and appearance models

In the following part, we test the proposed segmentation
approach on 3D data sets to show that it can work robustly
for 3D images as well. To get an accurate 3D shape model
of the lateral ventricles of the brain, the 3D images were

taken from 30 subjects.
Using the these 30 datasets for the ventricles, we are fol-

lowing our density estimation approach to estimate the den-
sity of the gray level distribution and the signed distance
map inside and outside the ventricles. In this estimation, we
are considering that the brain MRI consists of two classes:
one class is composed of the gray matter, white matter, fat
and bones; and the other class is the CSF of the brain (inside
and outside the ventricles). The results of density estima-
tion using the proposed approach are shown in Fig. 7 and
the segmentation results at different signal to ratios (SNR)
(obtained by adding Gaussian noise with different variance)
are shown in Fig. 8.

7 Conclusion

We have presented a segmentation approach that de-
pends on both the intensity gray level and the shape infor-
mation. Our modified EM is used to estimate the density
distribution of the intensity and signed distance values. The
density distributions are embedded in the PDE that controls
the evolution of the level set function. We consider the reg-
istration between the average shape (2D/3D) and the object
to be segmented as a basic step in our approach. Unlike the
other approaches, our segmentation does not need energy
minimization avoiding the local minimum problem. Differ-
ent types of images are used and the results are promising.
This technique is very suitable to segment the anatomical
structures that have noise and inhomogeneity problems.

This algorithm is very robust and accurate, it is invariant
to translation, rotation and scaling. Therefore, the presented
segmentation algorithm is not only useful for medical imag-
ing society but also for the computer vision applications.
Our future work will include the segmentation of 2D and
3D color objects.
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