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Abstract. Acute rejection is the most common reason of graft failure
after kidney transplantation, and early detection is crucial to survive the
transplanted kidney function. In this paper, we introduce a new approach
for the automatic classification of normal and acute rejection transplants
from Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-
MRI). The proposed algorithm consists of three main steps; the first step
isolates the kidney from the surrounding anatomical structures by evolv-
ing a deformable model based on two density functions; the first function
describes the distribution of the gray level inside and outside the kidney
region and the second function describes the prior shape of the kidney.
In the second step, a new nonrigid registration approach is employed
to account for the motion of the kidney due to patient breathing. To
validate our registration approach, we use a simulation of deformations
based on biomechanical modelling of the kidney tissue using the finite
element method (F.E.M.). Finally, the perfusion curves that show the
transportation of the contrast agent into the tissue are obtained from
the cortex and used in the classification of normal and acute rejection
transplants. Applications of the proposed approach yield promising re-
sults that would, in the near future, replace the use of current technolo-
gies such as nuclear imaging and ultrasonography, which are not specific
enough to determine the type of kidney dysfunction.

1 Introduction

In the United States, approximately 12000 renal transplants are performed an-
nually [1], and considering the limited supply of donor organs, every effort is
made to salvage the transplanted kidney [2]. Currently, the diagnosis of rejec-
tion is done via biopsy which has the downside effect of subjecting the patients
to risks such as bleeding and infections. Moreover, the relatively small needle
biopsies may lead to over or underestimation of the extent of inflammation in
the entire graft [3]. Therefore, a noninvasive and repeatable technique is not only
helpful but also needed in the diagnosis of acute renal rejection. In DCE-MRI, a
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contrast agent called Gd-DTPA is injected into the bloodstream, and as it per-
fuses into the organ, the kidneys are imaged rapidly and repeatedly. During the
perfusion, Gd-DTPA causes a change in the relaxation times of the tissue and
creates a contrast change in the images. As a result, the patterns of the contrast
change gives functional information, while MRI provides good anatomical infor-
mation which helps in distinguishing the diseases that affect different parts of
the kidneys. However, even with an imaging technique like DCE-MRI, there are
several problems such as, (i) the spatial resolution of the dynamic MR images
is low due to fast scanning, (ii) the images suffer from the motion induced by
the patient breathing which necessitates advanced registration techniques, (iii)
the intensity of the kidney changes non-uniformly as the contrast agent perfuses
into the cortex which complicates the segmentation procedures.

To the best of our knowledge, there has been limited work on the dynamic MRI
to overcome the problems of registration and segmentation. For the registration
problem, Gerig et al. [4] proposed, using Hough transform, to register the edges in
an image to the edges of a mask and Giele et al. [5] introduced a phase difference
movement detection method to correct for kidney displacements. Both of these
studies required building a mask manually by drawing the kidney contour on a
2D DCE-MRI image, followed by the registration of the time frames to this mask.

Most of these efforts used healthy transplants in the image analysis, and
edge detection algorithms were sufficient. However; in the case of acute rejection
patients, the uptake of the contrast agent is decreased, so edge detection fails in
giving connected contours. For this reason, we consider the combined usage of
gray level and prior shape information to give better results.

2 Methods

In this paper we introduce a novel and automated technique (i) to segment
the kidney and (ii) to correct for the motion artifacts caused by breathing and
patient motion. The details of the techniques are given below.

2.1 Segmentation

The first step of the proposed approach is to extract the kidney tissues from
DCE-MRI’s as shown in Fig. 1. Segmentation algorithms are based on using the
deformable model guided by a stochastic force which represents the intensity
and shape prior of the kidney. Details of the algorithm are presented in [6].

2.2 Model for the Local Deformation

In DCE-MRI sequences, the registration problem arises because of the patient
and breathing movements. To solve this problem, we propose a new approach
to handle the kidney motion. The proposed approach is based on deforming the
segmented kidney over evolving closed equispaced contours (i.e. iso–contours)
to closely match the prototype. The evolution of the iso-contours is guided by
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error = 0.3820% error = 0.3997% radiologist segmentation

Fig. 1. Segmentation results using the approach proposed in [6] with the errors w.r.t
the radiologist segmentation

an exponential speed function in the directions minimizing distances between
corresponding pixel pairs on the iso-contours of the objects to be registered.
The normalized cross-correlation is used as an image similarity measure which is
insensitive to intensity changes (e.g. due to tissue motion in medical imagery and
the contrast agent). Unlike free–form deformation approaches based on B-spline,
our technique is less expensive computationally.

The first step of the proposed registration approach is to use the fast marching
level set method [7] to generate the distance map inside the kidney regions as
shown in Fig. 2(a)–(b). The second step is to use this distance map to generate
equal space separated contours (iso-contours) as shown in Fig. 2(c)–(d). Note
that the number of iso-contours depends on the accuracy and the speed required
by the user. The third step of the proposed approach is to use normalized cross
correlation to find the correspondence between the iso-contours. Since we start
with aligned images, we limit our searching space to a small window (e.g. 10×10)
to improve the speed of the proposed approach. The final step is the evolution
of the iso-contours; here, our goal is to deform the iso-contours in the first image
(target image) to match the iso-contours in the second image (source image).
Before discussing the details of the evolution algorithm, let’s define the following:

– φA
niso

(., ν) are the iso-contours in the target image (A), where niso =1, . . . , Niso

is the index of the iso-contours, and ν the iteration step,
– φB

miso
(.) are the iso-contours in the source image (B), where miso=1, . . . , Miso

is the index of iso-contours,
– S(h, γh) denotes the Euclidean distance between a iso-contour point h on

image A and its corresponding iso-contour point γh on image B. Note that
γh is searched for within a local window centered at h′s position in image
B. Note also that γh may be the same for different h′s,

– SA
niso,niso−1(h) is the Euclidian distance between φA

niso
(h, ν) and φA

niso−1(h, ν)
at each iteration ν,

– V(.) is the propagation speed function.

The most important step in the model propagation is the selection of the
propagation speed function V(.). This selection must satisfy the following con-
ditions:
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1. V(h) = 0 if S(h, γh) = 0,
2. V(h) ≤ min(S(h, γh), SA

niso,niso−1(h), SA
niso,niso+1(h)) if S(h, γh) > 0; is the

smoothness constraint, which prevents the current point from cross passing
the closest neighbor contour as shown in Fig. 2(e).

The following speed function satisfies the above conditions:

V(h) = eβ(h).S(h,γh) − 1, (1)

where β(h) is the propagation constant with the upper bound

β(h) �
ln

(
min(S(h, γh), SA

niso,niso−1(h), SA
niso,niso+1(h)) + 1

)

S(h, γh)
.

Based on this speed function, we can deform the iso-contours using the following
equation as shown in Fig. 2(f):

φA(h, ν + 1) = V(h)
S(h,γh)φ

B
miso

(γh) + S(h,γh)−V(h)
S(h,γh) φA

niso
(h, ν) (2)

where h = 1, . . . , H denotes a point on the iso-contours on image A, and γh its
corresponding point on image B.

To show the quality of the proposed approach, we fused the two kidney images
by a checkerboard visualization in Fig. 3. It is clear from Fig. 3(b) that the
connectivity between the two images at the edges and inside the kidney region
are improved after applying the proposed deformation model.

(a) (b) (c)

(d) (e) (f)

Fig. 2. The distance map of two kidneys (a, b) and the iso–contours (c, d), a model
constrains (e), and a model evolution (f)
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(a) (b)

Fig. 3. Checkerboard image to show the quality of the approach, before non-rigid
registration (a), and after non-rigid registration (b)

2.3 Validation of Our Registration Approach Using the F.E.M.

In this section we propose to validate our deformable registration approach using
the finite element (F.E.) method. Given a 2D image of the kidney, we simulate
a deformation using a biomechanical modelling of the kidney tissue. The pair
of images (deformed and non–deformed ones) is used to test our algorithm. The
Abaqus/CAE (Ver. 6.5) 1 environment was used to generate a cubic spline fit

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. Validation of non-rigid registration. F.E mesh (a) before and (b) after defor-
mation. (c) Meshes (a) & (b) overlayed. (d)&(e) Sample of the selected correspondence
pairs determined from F. E meshes before & after deformation. (f) Results of the
proposed non-rigid registration approach. (g) The displacement field.

1 www.abaqus.com
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to the points representing the outer contour of the kidney object and then a
2D F.E. model was built from it. Figure 4(a), (b) and (c) show the 2D mesh
before and after deformation, and the overlay of these two meshes, respectively.
For the sake of generating a deformed shape only, we assumed the kidney tis-
sue to be isotropic and homogeneous elastic material with a Young Modulus
E = 2500Pa and a Poisson Ratio ν = 0.4. Note that this model does not re-
flect the results of any rheological experiments conducted on the kidney tissue.
A uniformly distributed pressure P = 100N was applied normal to the bound-
ary of the kidney. The points on this boundary are allowed to move freely in
the x and y directions, but are constrained to rotate around the z–axis. The
mesh consists of 1253 3-node linear plane stress angular elements. The average
displacement of the induced deformation is 4.75mm, the minimum is 1.19mm,
and the maximum is 6.9mm. The accuracy of the registration method is as-
sessed by registering the simulated deformed image to the original one and
comparing the recovered point displacements with the bio-mechanically simu-
lated ones. The average registration error is about 1.54mm, with a maximum
of 2.7458mm, a minimum of 0.0221mm, and a standard deviation of 0.5517.
This proves the accuracy of our non-rigid registration technique used in this
work.

2.4 Cortex Segmentation

Strake et.al. [8] had shown that the most important signal characteristics come
from the cortex of the kidney in the acute rejection problem. Therefore, the final
step of our approach is to segment the cortex from the segmented kidney. To
achieve this task, we use the same segmentation approach shown in [6] but based
only on the intensity. At this step, since all the kidneys are aligned together,
we select seed points from the medulla regions and evolve the deformable model
based only on intensity. After we extract the medullary regions, the rest is cortex,
which is used as a mask and propagated over the whole sequence to plot the
average cortex intensity. In Fig. 5, we show the cortex segmentation results.
In Fig. 5(a), we manually initialize several deformable models inside medulla
regions, and we let the deformable model to evolve in these regions with gray

(a) (b) (c) (d) (e)

Fig. 5. The segmentation of the cortex from the kidney images. Several medullary
seeds are initialized (a), and the deformable model grows from these seed point (b).
After the medulla is extracted from the kidney, the cortex is propagated over the whole
sequence of images as shown in (c)–(e).
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Fig. 6. Normalized cortex signals from 4 subjects w.r.t. scan number. Subjects 1 and 2
are acute rejection, subject 3 is normal and subject 4 is chronic glomerulopathy proved
by biopsy.

level information as shown in Fig. 5(b). The cortex mask is applied to the rest
of the sequence as shown in Fig 5(c)-(e).

3 Results and Conclusion

The ultimate goal of the proposed algorithms is to successfully construct a
renogram (mean intensity signal curves) from the DCE-MRI sequences, showing
the behavior of the kidney as the contrast agent perfuses into the transplant. In
acute rejection patients, the DCE-MRI images show a delayed perfusion pattern
and a reduced cortical enhancement. We tested the above algorithms on thirty
patients, four of which are shown in Figure 6. The normal patient shows the
expected abrupt increase to the higher signal intensities and the valley with a
small slope. The acute rejection patients show a delay in reaching their peak
signal intensities. From these observations, we have been able to conclude that
the relative peak signal intensity, time to peak signal intensity, the slope between
the peak and the first minimum, and the slope between the peak and the signal
measured from the last image in the sequence are the major four features in the
renograms of the segmented kidney for classification.

To distinguish between normal and acute rejection, we use Bayesian super-
vised classifier learning statistical characteristics from a training set for the nor-
mal and acute rejection. The density estimation required in the Bayes classifier
is performed for each feature by using a linear combination of Gaussians (LCG)
with positive and negative components. The parameters of the LCG components
are estimated using a modified EM algorithm [9]. In our approach, we used 50%
of the data for the training and the other 50% for testing. For testing data,
the Bayes classifier succeeds to classify 13 out of 15 correctly (86.67%). For the
training data, the Bayes classifier classifies all of them correctly, so the overall
accuracy of the proposed approach is 93.3%.
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In this paper, we presented a framework for the detection of acute renal re-
jection from DCE-MRI which includes segmentation of the kidneys from the ab-
domen images, non-rigid registration and Bayes classification. Our future work
will include testing on more patients; the results of the proposed framework are
promising and might replace the current nuclear imaging tests or the invasive
biopsy techniques.
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