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Abstract

Most of the previous efforts on enhancing the DT-MRI estiora@smoothing
have been based on “what is assumed to be correct”; and tleonly very few
studies concentrating on the validation of these appr@achikis project presents
our current efforts and observations for a validation framm. In the scope of
this framework, high resolution fluoroscopy slices obtdifrem the brain stem of
a rat are compared with the fibers tract maps obtained frorpribeessing of the
Diffusion Tensor Magnetic Resonance images of the sam&eseral steps prior
to comparison involve (i) the segmentation of the fibers ftbe fluoro data and
the registration of the fibers for 3D stacking; (ii) procegsof the DT-MRI data
to obtain the fiber tracts; (iii) 3D registration of the fluarolume to the DT-MRI
data. The details of these steps are further investigateddghout this report.

1 Introduction

Research efforts in the processing of diffusion tensor mtigiresonance imaging
(DTMRI) data has increased drastically to understand tleoanical connectivity in
the brain. Researchers have been using DT-MRI for segmemtéor fiber tracking,
for registration and for visualization; however, veryléttesearch has been performed
to validate the findings of DT-MRI. As such, in [1], the incect fiber trajectories found
with DT-MRI were demonstrated on an affected descendingpmpathway whose
anatomy is well known.

The reason is, DT-MRI fiber tracking algorithms generallguame that the fiber
pathways coincide with the orientation of the eigenvectitih the highest diffusivity.
However, it is well known today that, with such basic apptess; it is very difficult to
track the fibers at the fiber crossings. At the crossings,ahsar only gives volume-
averaged information about the direction of the fibers asstithted in Fig. 1; which
does not represent the reality. To refrain from such mistakee fiber tracts need
to be validated using high resolution histological dataweer, a gold standard for
validation DT-MRI is still lacking; and only a few studies $aorked on validation
approaches.

Lin et al. in [2] superimposed DT-MRI with manganese-enhanced MRl paifco
tracts. Although this is an invivo approach that doesn’hrihe tissue distortion or
destruction problems as in histological methods; long filwesre not enhanced because
of the limited transmission of thé/n>* ions. Moreover, the subjective threshold
selection for the segmentation of thén?t-enhanced pixels introduced varying errors.



Campbellet al. [3] applied the flux maximizing flows techique by Vasilevslely
al. [4] to the segmentation of the fibers in histology images.sTapproach was fur-
thered by Vemuret al. [5] where the segmented fibers were registered to the DT-MRI
fiber tracts for validation; but the registration was pemfed in 2D. Following these
studies, Campbedt al.[6] validated the performance of their fiber tracking al¢fuomi
with a physical phantom constructed from excised rat spinads. For fiber tracking
high angular resolution diffusion imaging (HARDI) data wased which is known to
superiorly handle of the true spatially non-Gaussian di€fa of the medium [7].

Figure 1: Diffusion Tensor overlying two crossing fibertsaf8].

In this study, we are investigating a framework to valid&ee fiber tracts obtained
from DTI data with the fibers obtained from the fluoroscopgesdi. While DTI data
gives the connectivity information in the brain stem, thef#obtained from the fluoro
data are used to validate the goodness of the fiber tractmebdtiom DTI. In this way,
we are hoping to be one step closer to the reality comparelantpm studies.

The sequence of steps below from the scope of our framewondkadigure show-
ing these steps is given in Fig. 2:

1) The fibers in the 2D fluoroscopy slices are first enhanceuawtesselness filter
developed by Franggt al.[9].

2) Secondly, the fibers are segmented from the slices usiegeh $et approach
developed by Vasilevskigt al.[4].

3) The fluoro slices processed above are not registered toother as the tissue is
distorted and transformed while being cut and placed irdaiicroscope slide. There-
fore they cannot be stacked in 3D; but thanks to the landnmarkise left bottom of the
histology images, they can be registered and then stackKedito3D data. Hence, the
segmented fibers are treated as point sets and registeneitbsiaously using the tech-
nigue described by Wanet al. [10]. (At this point, the landmarks on the images are
also included in the point set registration). This simudtauns registration cancels the
effect of the displacement introduced during the sepexaaring of the histological
tissue.

4) The registration parameters obtained from the prevites are applied to the
original images to register them (not as point sets, but agés); so that the registered
2D images can be putinto a stack in 3D.

5) The 3D stack is again processed with the same vesselrtes#His time in 3D.
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Figure 2: Framework for DT-MRI fiber tracts validation witistology images.

6) The filtered volume is now segmented one more time; butithisin 3D. Hence,
the fibers from fluoroscopy images are obtained in 3D.

7) At the same time, DTI is processed to obtain fiber tractagutiie algorithm
developed by Basset al. [11].

8) The 3D fiber tracts from DTI and the volume of fluoro fibersragarded as point
sets and are registered using the algorithm described if. Féwever; due to high
number of points in the registration, and the big differebeéveen the resolutions
of these two point sets; the point sets are first randomly saanpOf the randomly
sampled point sets, the affine transformation parameteichvgive the minimal error
is selected.

2 Efforts, Observations and Results:

In this section, we will be detailing each of the eight stepeigin the introduction part.

We will discuss both the approaches we tried which did nokwand the approaches
we found useful to overcome those problems. The math behiadvio papers that

were implemented is discussed and the results are dispfayedl the steps of the

framework.

2.1 Data:

The data tested in this project consists of the following:
Fluoroscopy Data 1: 17 images, each of size 1030x1312,tslicknessiOum
DATA 2: 20 images, first 6 of size 450x357, the rest is of siz6x858.



DT-MRI Data: of size 34x39, 15 slices, slice thickn@ss m.

2.2 Mutual Information Registration — why it didn’t work:

At the beginning of our study, we had planned to first regiiter 2D histological
images, and then segment them. For this purpose, we triegafinformation regis-
tration; however, two problems are faced: (i) the regigiragets biased if we register
all the images onto one image; (ii) there is no landmark tduata the goodness of
the registration. Therefore, we have found that we showtsegment the fibers from
the histological slices, than register them using a simelbais point set registration
method. The segmentation and point-set registration idtgos will be desribed in the
sections below.

2.3 Implementation of Frangi Vesselness Filter:

The Frangi vesselness filter analyses the local behavidums mnage using the Hes-
sian matrix; where the differentiation is defined by a coatioh with derivatives of
Gaussians [9]:
0
I, = s7I(x) = 8—G(x, s)
X
where the D-dimensional Gaussian is defined as

o el
G(z,s) = Fe 2s?
28?2

with ~ as the scaling parameter.

With the derivatives so defined, the Hessian matrix can bed@s:
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Let the eigenvalues dff be|\;| < |A\2] < |A3]. For an ideal tubular structure in a
3D image, the smallest eigenvalue will be close to zero, haather two eigenvalues
will be much bigger and almost equal to each other. Also,ghe® eigenvalues will
be at their maximum at the vessel’s centerline. With thereigkies sorted as above,
the vesselness function in 3D is given as:

V() 0 if/\g>00’f‘/\3>0
S) = 2 2
’ (1 — exp(—524))exp(— 32 (1 — exp(— £=))
where
| A2 |A1]
Ry=+= , Rp=—=
|Aa] V| A2A3]

In 2D, the equations are modified as:

0 ifAs >0
Vas) = fre ]

)= [ exp(—%)(l - e:vp(—%))
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A
Rp = +—
RPN
In my implementation, | foun@ = 5 ands = 0.5¢02 to be good values. As you
increases’, you get more connected lines (but fatter).

2.4 Implementation of Flux Maximizing Flows:

Rather than tracking the movement of a given cont@unoving with speed in its
normal direction? according to the evolution equation

oC
~ —F#
ot "

we consider the signed distance functipto C and track its motion with the evolution
equation
9¢

L _F .
5 = LIVol

known as the level sets method [12].

Vasilevskiy et al. [4] has proposed a flux maximizing geometric flows approach
that has allowed the segmentation of thin blood vessels.id&ehere is to evolve a
curve to increase the inward flux of a fixed vector field thotoitg boundary; where
the flow is given by:

oC S
whereN is the unit outward normal to each point on the cufveThis flow evolves a
curve to a configuration where its normals are aligned wighvictor field. In the level
sets form, the equation can be written as:

o¢

= = din(V)||V9l.

A major lack in this paper was the fact that the image forcesewt given in
detail. So, we used a curvature force for smoothness, aamrisflation force to be
able to grow, and the flux maximizing flow to attract the levetl ® zero crossings.
Advection forces were not used.

2.5 Point Set Registration in 2D:

After the fiber segmentation of fluoroscopy data, the fibeestagated as point sets.
In Fig 7(a), three of the fibers (the crossing points) areldigd with the pointsets
obtained from the landmarks in the fluoroscopy data (thaidraegions). As it can be
seen from the landmarks, the 2D data is not aligned correldidnce, these pointsets
are registered using the groupwise registration algoriiiitanget al.[13], and nicely
aligned without bias as shown in Fig 7(b).

Prior to the registration, the images that don't give sigaffit information on the
crossing of the fibers are dropped. Hence six of the imagésegate(numbers 13-18),
and registered. The registration parameters of these sigesiare as follows:



(a) (b)

(d)

(f)

Figure 3: Results of the vesselness filtering and fiber setatien of dataset 1, images
5 and 6. The original data is shown in (a) and (b), the vessslfikered images are
shown in (c) and (d) and the fiber segmentation results anershro(e) and (f); where
the final level sets are shown on the fluoroscopy images as red.
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Figure 4: A more detailed image showing the segmented fibethesecond dataset,
images 10 and 13. The correspoding level sets are displayddecfluoroscopy im-
ages as red. Among the two datasets we had, this data hadrestikition and more
distinct fibers; however, it does not have the landmarks sssrg for registration —or
at least necessary to understand the goodness of registreiience, the first dataset is
preffered in the rest of this project.
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Figure 5: A GUI is implemented which handles the segmematfathe fibers. Also
optionally, gradient anisotropic smoothing can be appieeinhance the fibers.
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Figure 7: The fibers obtained from the fluoroscopy data islalysul on top of each

other as point sets. The circular region is the landmarkd,tha crossings are the
fibers in the brain stem fluoroscopy data. The non-matchimgdytearks show the initial

mis-aligment of the 2D images. The segmented fiber poingsetsombined with the

landmark pointsets for registration. The registratiomutssare displayed in (b).

TranslationX, TranslationY, theta:
-46.2374,-137.8723,-0.3655
41.9311, -27.0859, -0.4474
-28.0452, 56.6688, -0.5070
42.3635, 82.3661,-0.4766
14.2967, 51.0205, -0.4748
-24.3037,-25.0920, -0.4670

2.6 Fiber Segmentation in 3D:

With the registration parameters given in the previousisecthe original images are
transformed as shown in Fig. 8. Hence, the data is now read3grocessing. The
images are then passes through a 3D vesselness filter anoieedie segmented once
again, but this time in 3D. The segmented fibers are againdedas pointsets and
visualized as in Fig. 9. In this visualization code, the usas the ability to go back
and forth between the 2D images while looking at the pointketd in 3D.

2.7 Point Set Registration in 3D:

At this step of the framework, pointsets are obtained fromEA-MRI data using a
fiber tracking algorithm by Basset al.[11]. The expected region of the fiber crossings
is shown in Fig. 10(a). The fibers obtained from this regi@teacked with a threshold
of FA =0.2; and visualized in Fig. 10(b). When the point setsrf the previous section
are visualized on top of the point sets obtained from DT-MRIe can clearly see the
need for affine registration in Fig. 11. However, these sats are huge, and hard to
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Figure 8: With the transformation parameters obtained ftben2D registration, the
original images are transformed.

Figure 9: After the registration step, the fibers are segatkagain, but this time with
the 3D version of the algorithm. The fibers segmented in 3D/&tealized in 3D as a
point set cloud. The user has the ability to go back and foetiwben the 2D images,
and observe the 3D point set cloud on the 2D images.
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align. The fibers from fluoroscopy data can easily get studibters from DTI with

a false transformation. Therefore, the pointsets are rahddecreased to one tenth
of their sizes, and then registered. Then the transformatéwameters corresponding
to the pointset pair with the smallest error are used in tegigy the original (not
subsampled) data. Fig. 10(a) displays the registratiohetubsampled pointset pair
with the minimal error.
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Figure 10: The red mark on the SO image of the DTI shows theatgdeegion of the
fiber crossings (a). The fibers in this region are tracked @hlized by the FLTView

software written by Angelos Barmpoutis [14].
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Figure 12: The final result of registering the fibers — from BRI (in blue) and from
fluoro (in pink).
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