Computational Statistics Handbook with MATLAB®

Wendy L. Martinez
Angel R. Martinez

CHAPMAN & HALL/CRC
Boca Raton London New York Washington, D.C.
To

Edward J. Wegman

Teacher, Mentor and Friend
Table of Contents

Preface ... xv

Chapter 1
Introduction
1.1 What Is Computational Statistics? ... 1
1.2 An Overview of the Book ... 2
 Philosophy ... 2
 What Is Covered ... 3
 A Word About Notation .. 5
1.3 MATLAB Code .. 6
 Computational Statistics Toolbox .. 7
 Internet Resources .. 7
1.4 Further Reading ... 8

Chapter 2
Probability Concepts
2.1 Introduction .. 11
2.2 Probability ... 12
 Background .. 12
 Probability ... 14
 Axioms of Probability .. 17
2.3 Conditional Probability and Independence ... 17
 Conditional Probability .. 17
 Independence .. 18
 Bayes Theorem ... 19
2.4 Expectation ... 21
 Mean and Variance ... 21
 Skewness ... 23
 Kurtosis .. 23
2.5 Common Distributions ... 24
 Binomial .. 24
 Poisson .. 26
 Uniform .. 29
 Normal .. 31
 Exponential .. 33
 Gamma .. 36
 Chi-Square ... 37
 Weibull .. 38
 Beta ... 40
Chapter 3
Sampling Concepts
3.1 Introduction .. 51
3.2 Sampling Terminology and Concepts ... 51
 Sample Mean and Sample Variance ... 53
 Sample Moments .. 54
 Covariance .. 56
3.3 Sampling Distributions ... 58
3.4 Parameter Estimation ... 60
 Bias .. 61
 Mean Squared Error ... 61
 Relative Efficiency .. 62
 Standard Error .. 62
 Maximum Likelihood Estimation .. 63
 Method of Moments ... 66
3.5 Empirical Distribution Function ... 68
 Quantiles ... 69
3.6 MATLAB Code .. 73
3.7 Further Reading .. 74
Exercises ... 76

Chapter 4
Generating Random Variables
4.1 Introduction .. 79
4.2 General Techniques for Generating Random Variables 79
 Uniform Random Numbers .. 79
 Inverse Transform Method .. 82
 Acceptance-Rejection Method .. 85
4.3 Generating Continuous Random Variables 89
 Normal Distribution .. 89
 Exponential Distribution ... 89
 Gamma .. 91
 Chi-Square ... 93
 Beta .. 95
 Multivariate Normal .. 96
 Generating Variates on a Sphere 99
4.4 Generating Discrete Random Variables 100
 Binomial .. 100
 Poisson ... 102
 Discrete Uniform .. 104
Chapter 5
Exploratory Data Analysis
5.1 Introduction ... 111
5.2 Exploring Univariate Data ... 112
 Histograms ... 113
 Stem-and-Leaf .. 116
 Quantile-Based Plots - Continuous Distributions 119
 Q-Q Plot .. 119
 Quantile Plots ... 123
 Quantile Plots - Discrete Distributions 126
 Poissonness Plot .. 126
 Binomialness Plot .. 129
 Box Plots ... 132
5.3 Exploring Bivariate and Trivariate Data 135
 Scatterplots .. 135
 Surface Plots ... 138
 Contour Plots .. 138
 Bivariate Histogram .. 141
 3-D Scatterplot .. 145
5.4 Exploring Multi-Dimensional Data 147
 Scatterplot Matrix ... 147
 Slices and Isosurfaces .. 149
 Star Plots ... 155
 Andrews Curves ... 157
 Parallel Coordinates .. 162
 Projection Pursuit .. 168
 Projection Pursuit Index .. 171
 Finding the Structure ... 172
 Structure Removal .. 174
 Grand Tour .. 178
5.5 MATLAB Code ... 183
5.6 Further Reading .. 184
 Exercises .. 187

Chapter 6
Monte Carlo Methods for Inferential Statistics
6.1 Introduction ... 191
6.2 Classical Inferential Statistics 192
 Hypothesis Testing .. 192
 Confidence Intervals .. 201
6.3 Monte Carlo Methods for Inferential Statistics 204
Table of Contents

8.7 Further Reading ... 311
Exercises ... 314

Chapter 9
Statistical Pattern Recognition
9.1 Introduction ... 317
9.2 Bayes Decision Theory .. 319
 Estimating Class-Conditional Probabilities: Parametric Method ... 321
 Estimating Class-Conditional Probabilities: Nonparametric ... 322
 Bayes Decision Rule ... 323
 Likelihood Ratio Approach ... 329
9.3 Evaluating the Classifier .. 332
 Independent Test Sample ... 333
 Cross-Validation ... 335
 Receiver Operating Characteristic (ROC) Curve 337
9.4 Classification Trees ... 342
 Growing the Tree .. 347
 Pruning the Tree ... 352
 Choosing the Best Tree .. 356
 Selecting the Best Tree Using an Independent Test Sample ... 357
 Selecting the Best Tree Using Cross-Validation 361
9.5 Clustering .. 367
 Measures of Distance ... 367
 Hierarchical Clustering ... 369
 K-Means Clustering .. 373
9.6 MATLAB Code ... 376
9.7 Further Reading ... 379
Exercises ... 381

Chapter 10
Nonparametric Regression
10.1 Introduction .. 385
10.2 Smoothing ... 390
 Loess ... 391
 Robust Loess Smoothing .. 396
 Upper and Lower Smooths ... 400
10.3 Kernel Methods ... 401
 Nadaraya-Watson Estimator .. 404
 Local Linear Kernel Estimator ... 405
10.4 Regression Trees ... 407
 Growing a Regression Tree ... 410
 Pruning a Regression Tree ... 411
 Selecting a Tree .. 412
10.5 MATLAB Code .. 419
10.6 Further Reading ... 420
Exercises .. 422

Chapter 11
Markov Chain Monte Carlo Methods
11.1 Introduction .. 425
11.2 Background .. 426
 Bayesian Inference .. 426
 Monte Carlo Integration .. 427
 Markov Chains ... 429
 Analyzing the Output ... 430
11.3 Metropolis-Hastings Algorithms ... 430
 Metropolis-Hastings Sampler ... 431
 Metropolis Sampler .. 433
 Independence Sampler .. 438
 Autoregressive Generating Density ... 439
11.4 The Gibbs Sampler ... 443
11.5 Convergence Monitoring .. 452
 Gelman and Rubin Method .. 453
 Raftery and Lewis Method .. 458
11.6 MATLAB Code .. 458
11.7 Further Reading .. 461
Exercises .. 462

Chapter 12
Spatial Statistics
12.1 Introduction .. 465
 What Is Spatial Statistics? ... 465
 Types of Spatial Data ... 466
 Spatial Point Patterns ... 467
 Complete Spatial Randomness .. 469
12.2 Visualizing Spatial Point Processes ... 471
12.3 Exploring First-order and Second-order Properties 475
 Estimating the Intensity ... 475
 Estimating the Spatial Dependence ... 478
 Nearest Neighbor Distances - G and F Distributions 478
 K-Function ... 482
12.4 Modeling Spatial Point Processes ... 485
 Nearest Neighbor Distances .. 486
 K-Function .. 490
12.5 Simulating Spatial Point Processes .. 495
 Homogeneous Poisson Process .. 495
 Binomial Process .. 497
 Poisson Cluster Process ... 499
 Inhibition Process .. 501
 Strauss Process ... 504
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6 MATLAB Code</td>
<td>505</td>
</tr>
<tr>
<td>12.7 Further Reading</td>
<td>507</td>
</tr>
<tr>
<td>Exercises</td>
<td>508</td>
</tr>
</tbody>
</table>

Appendix A

Introduction to MATLAB

A.1 What Is MATLAB? ... 511
A.2 Getting Help in MATLAB 512
A.3 File and Workspace Management 512
A.4 Punctuation in MATLAB 514
A.5 Arithmetic Operators 514
A.6 Data Constructs in MATLAB 516
 Basic Data Constructs 516
 Building Arrays 516
 Cell Arrays 517
A.7 Script Files and Functions 518
A.8 Control Flow ... 520
 For Loop ... 520
 While Loop ... 520
 If-Else Statements 521
 Switch Statement 521
A.9 Simple Plotting .. 521
A.10 Contact Information 524

Appendix B

Index of Notation .. 525

Appendix C

Projection Pursuit Indexes

C.1 Indexes ... 529
 Friedman-Tukey Index 529
 Entropy Index 530
 Moment Index 530
 Distances 531
C.2 MATLAB Source Code 532

Appendix D

MATLAB Code

D.1 Bootstrap Confidence Interval 539
D.2 Adaptive Mixtures Density Estimation 540
D.3 Classification Trees 542
D.4 Regression Trees 544
Appendix E
MATLAB Statistics Toolbox ... 547

Appendix F
Computational Statistics Toolbox 557

Appendix G
Data Sets .. 563
References .. 571
Index .. 585
Preface

Computational statistics is a fascinating and relatively new field within statistics. While much of classical statistics relies on parameterized functions and related assumptions, the computational statistics approach is to let the data tell the story. The advent of computers with their number-crunching capability, as well as their power to show on the screen two- and three-dimensional structures, has made computational statistics available for any data analyst to use.

Computational statistics has a lot to offer the researcher faced with a file full of numbers. The methods of computational statistics can provide assistance ranging from preliminary exploratory data analysis to sophisticated probability density estimation techniques, Monte Carlo methods, and powerful multi-dimensional visualization. All of this power and novel ways of looking at data are accessible to researchers in their daily data analysis tasks. One purpose of this book is to facilitate the exploration of these methods and approaches and to provide the tools to make of this, not just a theoretical exploration, but a practical one. The two main goals of this book are:

- To make computational statistics techniques available to a wide range of users, including engineers and scientists, and
- To promote the use of MATLAB® by statisticians and other data analysts.

MATLAB® and Handle Graphics® are registered trademarks of The MathWorks, Inc.

There are wonderful books that cover many of the techniques in computational statistics and, in the course of this book, references will be made to many of them. However, there are very few books that have endeavored to forgo the theoretical underpinnings to present the methods and techniques in a manner immediately usable to the practitioner. The approach we take in this book is to make computational statistics accessible to a wide range of users and to provide an understanding of statistics from a computational point of view via algorithms applied to real applications.

This book is intended for researchers in engineering, statistics, psychology, biostatistics, data mining and any other discipline that must deal with the analysis of raw data. Students at the senior undergraduate level or beginning graduate level in statistics or engineering can use the book to supplement course material. Exercises are included with each chapter, making it suitable as a textbook for a course in computational statistics and data analysis. Scien-
tists who would like to know more about programming methods for analyzing data in MATLAB would also find it useful. We assume that the reader has the following background:

- **Calculus**: Since this book is computational in nature, the reader needs only a rudimentary knowledge of calculus. Knowing the definition of a derivative and an integral is all that is required.

- **Linear Algebra**: Since MATLAB is an array-based computing language, we cast several of the algorithms in terms of matrix algebra. The reader should have a familiarity with the notation of linear algebra, array multiplication, inverses, determinants, an array transpose, etc.

- **Probability and Statistics**: We assume that the reader has had introductory probability and statistics courses. However, we provide a brief overview of the relevant topics for those who might need a refresher.

We list below some of the major features of the book.

- The focus is on implementation rather than theory, helping the reader understand the concepts without being burdened by the theory.

- References that explain the theory are provided at the end of each chapter. Thus, those readers who need the theoretical underpinnings will know where to find the information.

- Detailed step-by-step algorithms are provided to facilitate implementation in any computer programming language or appropriate software. This makes the book appropriate for computer users who do not know MATLAB.

- MATLAB code in the form of a Computational Statistics Toolbox is provided. These functions are available for download at:

 - http://www.infinityassociates.com
 - http://lib.stat.cmu.edu.

 Please review the readme file for installation instructions and information on any changes.

- Exercises are given at the end of each chapter. The reader is encouraged to go through these, because concepts are sometimes explored further in them. Exercises are computational in nature, which is in keeping with the philosophy of the book.

- Many data sets are included with the book, so the reader can apply the methods to real problems and verify the results shown in the book. The data can also be downloaded separately from the toolbox at http://www.infinityassociates.com. The data are pro-
vided in MATLAB binary files (.mat) as well as text, for those who want to use them with other software.

- Typing in all of the commands in the examples can be frustrating. So, MATLAB scripts containing the commands used in the examples are also available for download at

- A brief introduction to MATLAB is provided in Appendix A. Most of the constructs and syntax that are needed to understand the programming contained in the book are explained.

- An index of notation is given in Appendix B. Definitions and page numbers are provided, so the user can find the corresponding explanation in the text.

- Where appropriate, we provide references to internet resources for computer code implementing the algorithms described in the chapter. These include code for MATLAB, S-plus, Fortran, etc.

We would like to acknowledge the invaluable help of the reviewers: Noel Cressie, James Gentle, Thomas Holland, Tom Lane, David Marchette, Christian Posse, Carey Priebe, Adrian Raftery, David Scott, Jeffrey Solka, and Clifton Sutton. Their many helpful comments made this book a much better product. Any shortcomings are the sole responsibility of the authors. We owe a special thanks to Jeffrey Solka for some programming assistance with finite mixtures. We greatly appreciate the help and patience of those at CRC Press: Bob Stern, Joanne Blake, and Evelyn Meaney. We also thank Harris Quesnell and James Yanchak for their help with resolving font problems. Finally, we are indebted to Naomi Fernandes and Tom Lane at The MathWorks, Inc. for their special assistance with MATLAB.

Disclaimers

1. Any MATLAB programs and data sets that are included with the book are provided in good faith. The authors, publishers or distributors do not guarantee their accuracy and are not responsible for the consequences of their use.

2. The views expressed in this book are those of the authors and do not necessarily represent the views of DoD or its components.

Wendy L. and Angel R. Martinez
August 2001
Chapter 1

Introduction

1.1 What Is Computational Statistics?

Obviously, computational statistics relates to the traditional discipline of statistics. So, before we define computational statistics proper, we need to get a handle on what we mean by the field of statistics. At a most basic level, statistics is concerned with the transformation of raw data into knowledge [Wegman, 1988].

When faced with an application requiring the analysis of raw data, any scientist must address questions such as:

- What data should be collected to answer the questions in the analysis?
- How much data should be collected?
- What conclusions can be drawn from the data?
- How far can those conclusions be trusted?

Statistics is concerned with the science of uncertainty and can help the scientist deal with these questions. Many classical methods (regression, hypothesis testing, parameter estimation, confidence intervals, etc.) of statistics developed over the last century are familiar to scientists and are widely used in many disciplines [Efron and Tibshirani, 1991].

Now, what do we mean by computational statistics? Here we again follow the definition given in Wegman [1988]. Wegman defines computational statistics as a collection of techniques that have a strong “focus on the exploitation of computing in the creation of new statistical methodology.”

Many of these methodologies became feasible after the development of inexpensive computing hardware since the 1980’s. This computing revolution has enabled scientists and engineers to store and process massive amounts of data. However, these data are typically collected without a clear idea of what they will be used for in a study. For instance, in the practice of data analysis today, we often collect the data and then we design a study to
gain some useful information from them. In contrast, the traditional approach has been to first design the study based on research questions and then collect the required data.

Because the storage and collection is so cheap, the data sets that analysts must deal with today tend to be very large and high-dimensional. It is in situations like these where many of the classical methods in statistics are inadequate. As examples of computational statistics methods, Wegman [1988] includes parallel coordinates for high dimensional data representation, nonparametric functional inference, and data set mapping where the analysis techniques are considered fixed.

Efron and Tibshirani [1991] refer to what we call computational statistics as computer-intensive statistical methods. They give the following as examples for these types of techniques: bootstrap methods, nonparametric regression, generalized additive models and classification and regression trees. They note that these methods differ from the classical methods in statistics because they substitute computer algorithms for the more traditional mathematical method of obtaining an answer. An important aspect of computational statistics is that the methods free the analyst from choosing methods mainly because of their mathematical tractability.

Volume 9 of the Handbook of Statistics: Computational Statistics [Rao, 1993] covers topics that illustrate the "... trend in modern statistics of basic methodology supported by the state-of-the-art computational and graphical facilities..." It includes chapters on computing, density estimation, Gibbs sampling, the bootstrap, the jackknife, nonparametric function estimation, statistical visualization, and others.

We mention the topics that can be considered part of computational statistics to help the reader understand the difference between these and the more traditional methods of statistics. Table 1.1 [Wegman, 1988] gives an excellent comparison of the two areas.

1.2 An Overview of the Book

Philosophy

The focus of this book is on methods of computational statistics and how to implement them. We leave out much of the theory, so the reader can concentrate on how the techniques may be applied. In many texts and journal articles, the theory obscures implementation issues, contributing to a loss of interest on the part of those needing to apply the theory. The reader should not misunderstand, though; the methods presented in this book are built on solid mathematical foundations. Therefore, at the end of each chapter, we
TABLE 1.1

<table>
<thead>
<tr>
<th>Traditional Statistics</th>
<th>Computational Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small to moderate sample size</td>
<td>Large to very large sample size</td>
</tr>
<tr>
<td>Independent, identically distributed data sets</td>
<td>Nonhomogeneous data sets</td>
</tr>
<tr>
<td>One or low dimensional</td>
<td>High dimensional</td>
</tr>
<tr>
<td>Manually computational</td>
<td>Computationally intensive</td>
</tr>
<tr>
<td>Mathematically tractable</td>
<td>Numerically tractable</td>
</tr>
<tr>
<td>Well focused questions</td>
<td>Imprecise questions</td>
</tr>
<tr>
<td>Strong unverifiable assumptions:</td>
<td>Weak or no assumptions:</td>
</tr>
<tr>
<td>Relationships (linearity, additivity)</td>
<td>Relationships (nonlinearity)</td>
</tr>
<tr>
<td>Error structures (normality)</td>
<td>Error structures (distribution free)</td>
</tr>
<tr>
<td>Statistical inference</td>
<td>Structural inference</td>
</tr>
<tr>
<td>Predominantly closed form algorithms</td>
<td>Iterative algorithms possible</td>
</tr>
<tr>
<td>Statistical optimality</td>
<td>Statistical robustness</td>
</tr>
</tbody>
</table>

include a section containing references that explain the theoretical concepts associated with the methods covered in that chapter.

What Is Covered

In this book, we cover some of the most commonly used techniques in computational statistics. While we cannot include all methods that might be a part of computational statistics, we try to present those that have been in use for several years.

Since the focus of this book is on the implementation of the methods, we include algorithmic descriptions of the procedures. We also provide examples that illustrate the use of the algorithms in data analysis. It is our hope that seeing how the techniques are implemented will help the reader understand the concepts and facilitate their use in data analysis.

Some background information is given in Chapters 2, 3, and 4 for those who might need a refresher in probability and statistics. In Chapter 2, we discuss some of the general concepts of probability theory, focusing on how they
will be used in later chapters of the book. Chapter 3 covers some of the basic ideas of statistics and sampling distributions. Since many of the methods in computational statistics are concerned with estimating distributions via simulation, this chapter is fundamental to the rest of the book. For the same reason, we present some techniques for generating random variables in Chapter 4.

Some of the methods in computational statistics enable the researcher to explore the data before other analyses are performed. These techniques are especially important with high dimensional data sets or when the questions to be answered using the data are not well focused. In Chapter 5, we present some graphical exploratory data analysis techniques that could fall into the category of traditional statistics (e.g., box plots, scatterplots). We include them in this text so statisticians can see how to implement them in MATLAB and to educate scientists and engineers as to their usage in exploratory data analysis. Other graphical methods in this chapter do fall into the category of computational statistics. Among these are isosurfaces, parallel coordinates, the grand tour and projection pursuit.

In Chapters 6 and 7, we present methods that come under the general heading of resampling. We first cover some of the general concepts in hypothesis testing and confidence intervals to help the reader better understand what follows. We then provide procedures for hypothesis testing using simulation, including a discussion on evaluating the performance of hypothesis tests. This is followed by the bootstrap method, where the data set is used as an estimate of the population and subsequent sampling is done from the sample. We show how to get bootstrap estimates of standard error, bias and confidence intervals. Chapter 7 continues with two closely related methods called jackknife and cross-validation.

One of the important applications of computational statistics is the estimation of probability density functions. Chapter 8 covers this topic, with an emphasis on the nonparametric approach. We show how to obtain estimates using probability density histograms, frequency polygons, averaged shifted histograms, kernel density estimates, finite mixtures and adaptive mixtures.

Chapter 9 uses some of the concepts from probability density estimation and cross-validation. In this chapter, we present some techniques for statistical pattern recognition. As before, we start with an introduction of the classical methods and then illustrate some of the techniques that can be considered part of computational statistics, such as classification trees and clustering.

In Chapter 10 we describe some of the algorithms for nonparametric regression and smoothing. One nonparametric technique is a tree-based method called regression trees. Another uses the kernel densities of Chapter 8. Finally, we discuss smoothing using loess and its variants.

An approach for simulating a distribution that has become widely used over the last several years is called Markov chain Monte Carlo. Chapter 11 covers this important topic and shows how it can be used to simulate a posterior distribution. Once we have the posterior distribution, we can use it to estimate statistics of interest (means, variances, etc.).
Chapter 1: Introduction

We conclude the book with a chapter on spatial statistics as a way of showing how some of the methods can be employed in the analysis of spatial data. We provide some background on the different types of spatial data analysis, but we concentrate on spatial point patterns only. We apply kernel density estimation, exploratory data analysis, and simulation-based hypothesis testing to the investigation of spatial point processes.

We also include several appendices to aid the reader. Appendix A contains a brief introduction to MATLAB, which should help readers understand the code in the examples and exercises. Appendix B is an index to notation, with definitions and references to where it is used in the text. Appendices C and D include some further information about projection pursuit and MATLAB source code that is too lengthy for the body of the text. In Appendices E and F, we provide a list of the functions that are contained in the MATLAB Statistics Toolbox and the Computational Statistics Toolbox, respectively. Finally, in Appendix G, we include a brief description of the data sets that are mentioned in the book.

A Word About Notation

The explanation of the algorithms in computational statistics (and the understanding of them!) depends a lot on notation. In most instances, we follow the notation that is used in the literature for the corresponding method. Rather than try to have unique symbols throughout the book, we think it is more important to be faithful to the convention to facilitate understanding of the theory and to make it easier for readers to make the connection between the theory and the text. Because of this, the same symbols might be used in several places.

In general, we try to stay with the convention that random variables are capital letters, whereas small letters refer to realizations of random variables. For example, X is a random variable, and x is an observed value of that random variable. When we use the term log, we are referring to the natural logarithm.

A symbol that is in bold refers to an array. Arrays can be row vectors, column vectors or matrices. Typically, a matrix is represented by a bold capital letter such as B, while a vector is denoted by a bold lowercase letter such as b. When we are using explicit matrix notation, then we specify the dimensions of the arrays. Otherwise, we do not hold to the convention that a vector always has to be in a column format. For example, we might represent a vector of observed random variables as \((x_1, x_2, x_3)\) or a vector of parameters as \((\mu, \sigma)\).
1.3 MATLAB Code

Along with the algorithmic explanation of the procedures, we include MATLAB commands to show how they are implemented. Any MATLAB commands, functions or data sets are in courier bold font. For example, `plot` denotes the MATLAB plotting function. The commands that are in the examples can be typed in at the command line to execute the examples. However, we note that due to typesetting considerations, we often have to continue a MATLAB command using the continuation punctuation (\ldots). However, users do not have to include that with their implementations of the algorithms. See Appendix A for more information on how this punctuation is used in MATLAB.

Since this is a book about computational statistics, we assume the reader has the MATLAB Statistics Toolbox. In Appendix E, we include a list of functions that are in the toolbox and try to note in the text what functions are part of the main MATLAB software package and what functions are available only in the Statistics Toolbox.

The choice of MATLAB for implementation of the methods is due to the following reasons:

- The commands, functions and arguments in MATLAB are not cryptic. It is important to have a programming language that is easy to understand and intuitive, since we include the programs to help teach the concepts.
- It is used extensively by scientists and engineers.
- Student versions are available.
- It is easy to write programs in MATLAB.
- The source code or M-files can be viewed, so users can learn about the algorithms and their implementation.
- User-written MATLAB programs are freely available.
- The graphics capabilities are excellent.

It is important to note that the MATLAB code given in the body of the book is for learning purposes. In many cases, it is not the most efficient way to program the algorithm. One of the purposes of including the MATLAB code is to help the reader understand the algorithms, especially how to implement them. So, we try to have the code match the procedures and to stay away from cryptic programming constructs. For example, we use `for` loops at times (when unnecessary!) to match the procedure. We make no claims that our code is the best way or the only way to program the algorithms.

In some cases, the MATLAB code is contained in an appendix, rather than in the corresponding chapter. These are applications where the MATLAB
program does not provide insights about the algorithms. For example, with
classification and regression trees, the code can be quite complicated in
places, so the functions are relegated to an appendix (Appendix D). Including
these in the body of the text would distract the reader from the important
ccepts being presented.

Computational Statistics Toolbox
The majority of the algorithms covered in this book are not available in
MATLAB. So, we provide functions that implement most of the procedures
that are given in the text. Note that these functions are a little different from
the MATLAB code provided in the examples. In most cases, the functions
allow the user to implement the algorithms for the general case. A list of the
functions and their purpose is given in Appendix F. We also give a summary
of the appropriate functions at the end of each chapter.

The MATLAB functions for the book are part of what we are calling the
Computational Statistics Toolbox. To make it easier to recognize these func-
tions, we put the letters 'cs' in front. The toolbox can be downloaded from

- http://lib.stat.cmu.edu
- http://www.infinityassociates.com

Information on installing the toolbox is given in the readme file and on the
website.

Internet Resources
One of the many strong points about MATLAB is the availability of functions
written by users, most of which are freely available on the internet. With each
chapter, we provide information about internet resources for MATLAB pro-
gams (and other languages) that pertain to the techniques covered in the
chapter.

The following are some internet sources for MATLAB code. Note that these
are not necessarily specific to statistics, but are for all areas of science and
engineering.

- The main website at The MathWorks, Inc. has code written by users
 and technicians of the company. The website for user contributed
 M-files is:
 http://www.mathworks.com/support/ftp/
 The website for M-files contributed by The MathWorks, Inc. is:
- Another excellent resource for MATLAB programs is
http://www.mathtools.net.

At this site, you can sign up to be notified of new submissions.

- The main website for user contributed statistics programs is StatLib at Carnegie Mellon University. They have a new section containing MATLAB code. The home page for StatLib is

http://lib.stat.cmu.edu

- We also provide the following internet sites that contain a list of MATLAB code available for purchase or download.

http://dmoz.org/Science/Math/Software/MATLAB/
http://directory.google.com/Top/Science/Math/Software/MATLAB/

1.4 Further Reading

To gain more insight on what is computational statistics, we refer the reader to the seminal paper by Wegman [1988]. Wegman discusses many of the differences between traditional and computational statistics. He also includes a discussion on what a graduate curriculum in computational statistics should consist of and contrasts this with the more traditional course work. A later paper by Efron and Tibshirani [1991] presents a summary of the new focus in statistical data analysis that came about with the advent of the computer age. Other papers in this area include Hoaglin and Andrews [1975] and Efron [1979]. Hoaglin and Andrews discuss the connection between computing and statistical theory and the importance of properly reporting the results from simulation experiments. Efron’s article presents a survey of computational statistics techniques (the jackknife, the bootstrap, error estimation in discriminant analysis, nonparametric methods, and more) for an audience with a mathematics background, but little knowledge of statistics. Chambers [1999] looks at the concepts underlying computing with data, including the challenges this presents and new directions for the future.

There are very few general books in the area of computational statistics. One is a compendium of articles edited by C. R. Rao [1993]. This is a fairly comprehensive overview of many topics pertaining to computational statistics. The new text by Gentle [2001] is an excellent resource in computational statistics for the student or researcher. A good reference for statistical computing is Thisted [1988].

For those who need a resource for learning MATLAB, we recommend a wonderful book by Hanselman and Littlefield [1998]. This gives a comprehensive overview of MATLAB Version 5 and has been updated for Version 6 [Hanselman and Littlefield, 2001]. These books have information about the many capabilities of MATLAB, how to write programs, graphics and GUIs,
and much more. For the beginning user of MATLAB, these are a good place to start.
Chapter 2

Probability Concepts

2.1 Introduction

A review of probability is covered here at the outset because it provides the foundation for what is to follow: computational statistics. Readers who understand probability concepts may safely skip over this chapter.

Probability is the mechanism by which we can manage the uncertainty that underlies all real world data and phenomena. It enables us to gauge our degree of belief and to quantify the lack of certitude that is inherent in the process that generates the data we are analyzing. For example:

- To understand and use statistical hypothesis testing, one needs knowledge of the sampling distribution of the test statistic.
- To evaluate the performance (e.g., standard error, bias, etc.) of an estimate, we must know its sampling distribution.
- To adequately simulate a real system, one needs to understand the probability distributions that correctly model the underlying processes.
- To build classifiers to predict what group an object belongs to based on a set of features, one can estimate the probability density function that describes the individual classes.

In this chapter, we provide a brief overview of probability concepts and distributions as they pertain to computational statistics. In Section 2.2, we define probability and discuss some of its properties. In Section 2.3, we cover conditional probability, independence and Bayes' Theorem. Expectations are defined in Section 2.4, and common distributions and their uses in modeling physical phenomena are discussed in Section 2.5. In Section 2.6, we summarize some MATLAB functions that implement the ideas from Chapter 2. Finally, in Section 2.7 we provide additional resources for the reader who requires a more theoretical treatment of probability.
2.2 Probability

Background

A random experiment is defined as a process or action whose outcome cannot be predicted with certainty and would likely change when the experiment is repeated. The variability in the outcomes might arise from many sources: slight errors in measurements, choosing different objects for testing, etc. The ability to model and analyze the outcomes from experiments is at the heart of statistics. Some examples of random experiments that arise in different disciplines are given below.

- **Engineering:** Data are collected on the number of failures of piston rings in the legs of steam-driven compressors. Engineers would be interested in determining the probability of piston failure in each leg and whether the failure varies among the compressors [Hand, et al., 1994].

- **Medicine:** The oral glucose tolerance test is a diagnostic tool for early diabetes mellitus. The results of the test are subject to variation because of different rates at which people absorb the glucose, and the variation is particularly noticeable in pregnant women. Scientists would be interested in analyzing and modeling the variation of glucose before and after pregnancy [Andrews and Herzberg, 1985].

- **Manufacturing:** Manufacturers of cement are interested in the tensile strength of their product. The strength depends on many factors, one of which is the length of time the cement is dried. An experiment is conducted where different batches of cement are tested for tensile strength after different drying times. Engineers would like to determine the relationship between drying time and tensile strength of the cement [Hand, et al., 1994].

- **Software Engineering:** Engineers measure the failure times in CPU seconds of a command and control software system. These data are used to obtain models to predict the reliability of the software system [Hand, et al., 1994].

The sample space is the set of all outcomes from an experiment. It is possible sometimes to list all outcomes in the sample space. This is especially true in the case of some discrete random variables. Examples of these sample spaces are:
• When observing piston ring failures, the sample space is \(\{1, 0\} \), where 1 represents a failure and 0 represents a non-failure.

• If we roll a six-sided die and count the number of dots on the face, then the sample space is \(\{1, 2, 3, 4, 5, 6\} \).

The outcomes from random experiments are often represented by an uppercase variable such as \(X \). This is called a random variable, and its value is subject to the uncertainty intrinsic to the experiment. Formally, a random variable is a real-valued function defined on the sample space. As we see in the remainder of the text, a random variable can take on different values according to a probability distribution. Using our examples of experiments from above, a random variable \(X \) might represent the failure time of a software system or the glucose level of a patient. The observed value of a random variable \(X \) is denoted by a lowercase \(x \). For instance, a random variable \(X \) might represent the number of failures of piston rings in a compressor, and \(x = 5 \) would indicate that we observed 5 piston ring failures.

Random variables can be discrete or continuous. A discrete random variable can take on values from a finite or countably infinite set of numbers. Examples of discrete random variables are the number of defective parts or the number of typographical errors on a page. A continuous random variable is one that can take on values from an interval of real numbers. Examples of continuous random variables are the inter-arrival times of planes at a runway, the average weight of tablets in a pharmaceutical production line or the average voltage of a power plant at different times.

We cannot list all outcomes from an experiment when we observe a continuous random variable, because there are an infinite number of possibilities. However, we could specify the interval of values that \(X \) can take on. For example, if the random variable \(X \) represents the tensile strength of cement, then the sample space might be \((0, \infty) \) kg/cm\(^2\).

An event is a subset of outcomes in the sample space. An event might be that a piston ring is defective or that the tensile strength of cement is in the range 40 to 50 kg/cm\(^2\). The probability of an event is usually expressed using the random variable notation illustrated below.

• Discrete Random Variables: Letting 1 represent a defective piston ring and letting 0 represent a good piston ring, then the probability of the event that a piston ring is defective would be written as

\[
P(X = 1).
\]

• Continuous Random Variables: Let \(X \) denote the tensile strength of cement. The probability that an observed tensile strength is in the range 40 to 50 kg/cm\(^2\) is expressed as

\[
P(40 \text{ kg/cm}^2 \leq X \leq 50 \text{ kg/cm}^2).
\]
Some events have a special property when they are considered together. Two events that cannot occur simultaneously or jointly are called **mutually exclusive events**. This means that the intersection of the two events is the empty set and the probability of the events occurring together is zero. For example, a piston ring cannot be both defective and good at the same time. So, the event of getting a defective part and the event of getting a good part are mutually exclusive events. The definition of mutually exclusive events can be extended to any number of events by considering all pairs of events. Every pair of events must be mutually exclusive for all of them to be mutually exclusive.

Probability

Probability is a measure of the likelihood that some event will occur. It is also a way to quantify or to gauge the likelihood that an observed measurement or random variable will take on values within some set or range of values. Probabilities always range between 0 and 1. A *probability distribution* of a random variable describes the probabilities associated with each possible value for the random variable.

We first briefly describe two somewhat classical methods for assigning probabilities: the *equal likelihood model* and the *relative frequency method*. When we have an experiment where each of n outcomes is equally likely, then we assign a probability mass of $1/n$ to each outcome. This is the equal likelihood model. Some experiments where this model can be used are flipping a fair coin, tossing an unloaded die or randomly selecting a card from a deck of cards.

When the equal likelihood assumption is not valid, then the relative frequency method can be used. With this technique, we conduct the experiment n times and record the outcome. The probability of event E is assigned by $P(E) = f/n$, where f denotes the number of experimental outcomes that satisfy event E.

Another way to find the desired probability that an event occurs is to use a *probability density function* when we have continuous random variables or a *probability mass function* in the case of discrete random variables. Section 2.5 contains several examples of probability density (mass) functions. In this text, $f(x)$ is used to represent the probability mass or density function for either discrete or continuous random variables, respectively. We now discuss how to find probabilities using these functions, first for the continuous case and then for discrete random variables.

To find the probability that a continuous random variable falls in a particular interval of real numbers, we have to calculate the appropriate area under the curve of $f(x)$. Thus, we have to evaluate the integral of $f(x)$ over the interval of random variables corresponding to the event of interest. This is represented by
Chapter 2: Probability Concepts

\[P(a \leq X \leq b) = \int_{a}^{b} f(x)dx. \]

(2.1)

The area under the curve of \(f(x) \) between \(a \) and \(b \) represents the probability that an observed value of the random variable \(X \) will assume a value between \(a \) and \(b \). This concept is illustrated in Figure 2.1 where the shaded area represents the desired probability.

FIGURE 2.1
The area under the curve of \(f(x) \) between -1 and 4 is the same as the probability that an observed value of the random variable will assume a value in the same interval.

It should be noted that a valid probability density function should be non-negative, and the total area under the curve must equal 1. If this is not the case, then the probabilities will not be properly restricted to the interval \([0, 1]\). This will be an important consideration in Chapter 8 where we discuss probability density estimation techniques.

The **cumulative distribution function** \(F(x) \) is defined as the probability that the random variable \(X \) assumes a value less than or equal to a given \(x \). This is calculated from the probability density function, as follows

\[F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t)dt. \]

(2.2)
It is obvious that the cumulative distribution function takes on values between 0 and 1, so $0 \leq F(x) \leq 1$. A probability density function, along with its associated cumulative distribution function are illustrated in Figure 2.2.

FIGURE 2.2
This shows the probability density function on the left with the associated cumulative distribution function on the right. Notice that the cumulative distribution function takes on values between 0 and 1.

For a discrete random variable X, that can take on values x_1, x_2, \ldots, the probability mass function is given by

$$f(x_i) = P(X = x_i); \quad i = 1, 2, \ldots, \quad (2.3)$$

and the cumulative distribution function is

$$F(a) = \sum_{x_i \leq a} f(x_i); \quad i = 1, 2, \ldots, \quad (2.4)$$
Chapter 2: Probability Concepts

Axioms of Probability

Probabilities follow certain axioms that can be useful in computational statistics. We let S represent the sample space of an experiment and E represent some event that is a subset of S.

AXIOM 1
The probability of event E must be between 0 and 1:

$$0 \leq P(E) \leq 1.$$

AXIOM 2

$$P(S) = 1.$$

AXIOM 3
For mutually exclusive events, E_1, E_2, \ldots, E_k,

$$P(E_1 \cup E_2 \cup \ldots \cup E_k) = \sum_{i=1}^{k} P(E_i).$$

Axiom 1 has been discussed before and simply states that a probability must be between 0 and 1. Axiom 2 says that an outcome from our experiment must occur, and the probability that the outcome is in the sample space is 1. Axiom 3 enables us to calculate the probability that at least one of the mutually exclusive events E_1, E_2, \ldots, E_k occurs by summing the individual probabilities.

2.3 Conditional Probability and Independence

Conditional Probability

Conditional probability is an important concept. It is used to define independent events and enables us to revise our degree of belief given that another event has occurred. Conditional probability arises in situations where we need to calculate a probability based on some partial information concerning the experiment.

The conditional probability of event E given event F is defined as follows:
CONDITIONAL PROBABILITY

\[P(E|F) = \frac{P(E \cap F)}{P(F)}; \quad P(F) > 0. \] (2.5)

Here \(P(E \cap F) \) represents the joint probability that both \(E \) and \(F \) occur together and \(P(F) \) is the probability that event \(F \) occurs. We can rearrange Equation 2.5 to get the following rule:

MULTIPLICATION RULE

\[P(E \cap F) = P(F)P(E|F). \] (2.6)

Independence

Often we can assume that the occurrence of one event does not affect whether or not some other event happens. For example, say a couple would like to have two children, and their first child is a boy. The gender of their second child does not depend on the gender of the first child. Thus, the fact that we know they have a boy already does not change the probability that the second child is a boy. Similarly, we can sometimes assume that the value we observe for a random variable is not affected by the observed value of other random variables.

These types of events and random variables are called independent. If events are independent, then knowing that one event has occurred does not change our degree of belief or the likelihood that the other event occurs. If random variables are independent, then the observed value of one random variable does not affect the observed value of another.

In general, the conditional probability \(P(E|F) \) is not equal to \(P(E) \). In these cases, the events are called dependent. Sometimes we can assume independence based on the situation or the experiment, which was the case with our example above. However, to show independence mathematically, we must use the following definition.

INDEPENDENT EVENTS

Two events \(E \) and \(F \) are said to be independent if and only if any of the following is true:

\[P(E \cap F) = P(E)P(F), \]
\[P(E) = P(E|F). \] (2.7)
Chapter 2: Probability Concepts

Note that if events E and F are independent, then the Multiplication Rule in Equation 2.6 becomes

$$P(E \cap F) = P(F)P(E),$$

which means that we simply multiply the individual probabilities for each event together. This can be extended to k events to give

$$P(E_1 \cap E_2 \cap \ldots \cap E_k) = \prod_{i=1}^{k} P(E_i), \quad (2.8)$$

where events E_i and E_j (for all i and j, $i \neq j$) are independent.

Bayes Theorem

Sometimes we start an analysis with an initial degree of belief that an event will occur. Later on, we might obtain some additional information about the event that would change our belief about the probability that the event will occur. The initial probability is called a \textit{prior probability}. Using the new information, we can update the prior probability using Bayes' Theorem to obtain the \textit{posterior probability}.

The experiment of recording piston ring failure in compressors is an example of where Bayes' Theorem might be used, and we derive Bayes' Theorem using this example. Suppose our piston rings are purchased from two manufacturers: 60% from manufacturer A and 40% from manufacturer B.

Let M_A denote the event that a part comes from manufacturer A, and M_B represent the event that a piston ring comes from manufacturer B. If we select a part at random from our supply of piston rings, we would assign probabilities to these events as follows:

$$P(M_A) = 0.6,$$

$$P(M_B) = 0.4.$$

These are our prior probabilities that the piston rings are from the individual manufacturers.

Say we are interested in knowing the probability that a piston ring that subsequently failed came from manufacturer A. This would be the posterior probability that it came from manufacturer A, given that the piston ring failed. The additional information we have about the piston ring is that it failed, and we use this to update our degree of belief that it came from manufacturer A.
Bayes' Theorem can be derived from the definition of conditional probability (Equation 2.5). Writing this in terms of our events, we are interested in the following probability:

\[P(M_A | F) = \frac{P(M_A \cap F)}{P(F)} , \tag{2.9} \]

where \(P(M_A | F) \) represents the posterior probability that the part came from manufacturer A, and \(F \) is the event that the piston ring failed. Using the Multiplication Rule (Equation 2.6), we can write the numerator of Equation 2.9 in terms of event \(F \) and our prior probability that the part came from manufacturer A, as follows

\[P(M_A | F) = \frac{P(M_A \cap F)}{P(F)} = \frac{P(M_A)P(F | M_A)}{P(F)} . \tag{2.10} \]

The next step is to find \(P(F) \). The only way that a piston ring will fail is if: 1) it failed and it came from manufacturer A or 2) it failed and it came from manufacturer B. Thus, using the third axiom of probability, we can write

\[P(F) = P(M_A \cap F) + P(M_B \cap F) . \]

Applying the Multiplication Rule as before, we have

\[P(F) = P(M_A)P(F | M_A) + P(M_B)P(F | M_B) . \tag{2.11} \]

Substituting this for \(P(F) \) in Equation 2.10, we write the posterior probability as

\[P(M_A | F) = \frac{P(M_A)P(F | M_A)}{P(M_A)P(F | M_A) + P(M_B)P(F | M_B)} . \tag{2.12} \]

Note that we need to find the probabilities \(P(F | M_A) \) and \(P(F | M_B) \). These are the probabilities that a piston ring will fail given it came from the corresponding manufacturer. These must be estimated in some way using available information (e.g., past failures). When we revisit Bayes' Theorem in the context of statistical pattern recognition (Chapter 9), these are the probabilities that are estimated to construct a certain type of classifier.

Equation 2.12 is Bayes' Theorem for a situation where only two outcomes are possible. In general, Bayes' Theorem can be written for any number of mutually exclusive events, \(E_1, \ldots, E_k \), whose union makes up the entire sample space. This is given below.
BAYES' THEOREM

\[P(E_i|F) = \frac{P(E_i)P(F|E_i)}{P(E_1)P(F|E_1) + \ldots + P(E_n)P(F|E_n)}. \quad (2.13) \]

2.4 Expectation

Expected values and variances are important concepts in statistics. They are used to describe distributions, to evaluate the performance of estimators, to obtain test statistics in hypothesis testing, and many other applications.

Mean and Variance

The mean or expected value of a random variable is defined using the probability density (mass) function. It provides a measure of central tendency of the distribution. If we observe many values of the random variable and take the average of them, we would expect that value to be close to the mean. The expected value is defined below for the discrete case.

EXPECTED VALUE - DISCRETE RANDOM VARIABLES

\[\mu = E[X] = \sum_{i=1}^{\infty} x_i f(x_i). \quad (2.14) \]

We see from the definition that the expected value is a sum of all possible values of the random variable where each one is weighted by the probability that \(X \) will take on that value.

The variance of a discrete random variable is given by the following definition.

VARIANCE - DISCRETE RANDOM VARIABLES

For \(\mu < \infty \),

\[\sigma^2 = V(X) = E[(X - \mu)^2] = \sum_{i=1}^{\infty} (x_i - \mu)^2 f(x_i). \quad (2.15) \]
From Equation 2.15, we see that the variance is the sum of the squared distances, each one weighted by the probability that \(X = x_j \). Variance is a measure of dispersion in the distribution. If a random variable has a large variance, then an observed value of the random variable is more likely to be far from the mean \(\mu \). The standard deviation \(\sigma \) is the square root of the variance.

The mean and variance for continuous random variables are defined similarly, with the summation replaced by an integral. The mean and variance of a continuous random variable are given below.

EXPECTED VALUE - CONTINUOUS RANDOM VARIABLES

\[
\mu = E[X] = \int x f(x) dx.
\]

VARIANCE - CONTINUOUS RANDOM VARIABLES

For \(\mu < \infty \),

\[
\sigma^2 = V(X) = E[(X - \mu)^2] = \int (x - \mu)^2 f(x) dx.
\]

We note that Equation 2.17 can also be written as

\[
V(X) = E[X^2] - \mu^2 = E[X^2] - (E[X])^2.
\]

Other expected values that are of interest in statistics are the moments of a random variable. These are the expectation of powers of the random variable. In general, we define the \(r \)-th moment as

\[
\mu'_r = E[X^r],
\]

and the \(r \)-th central moment as

\[
\mu_r = E[(X - \mu)^r].
\]

The mean corresponds to \(\mu'_1 \), and the variance is given by \(\mu_2 \).
Skewness

The third central moment μ_3 is often called a measure of asymmetry or skewness in the distribution. The uniform and the normal distribution are examples of symmetric distributions. The gamma and the exponential are examples of skewed or asymmetric distributions. The following ratio is called the coefficient of skewness, which is often used to measure this characteristic:

$$\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}}. \quad (2.20)$$

Distributions that are skewed to the left will have a negative coefficient of skewness, and distributions that are skewed to the right will have a positive value [Hogg and Craig, 1978]. The coefficient of skewness is zero for symmetric distributions. However, a coefficient of skewness equal to zero does not mean that the distribution must be symmetric.

Kurtosis

Skewness is one way to measure a type of departure from normality. Kurtosis measures a different type of departure from normality by indicating the extent of the peak (or the degree of flatness near its center) in a distribution. The coefficient of kurtosis is given by the following ratio:

$$\gamma_2 = \frac{\mu_4}{\mu_2^2}. \quad (2.21)$$

We see that this is the ratio of the fourth central moment divided by the square of the variance. If the distribution is normal, then this ratio is equal to 3. A ratio greater than 3 indicates more values in the neighborhood of the mean (is more peaked than the normal distribution). If the ratio is less than 3, then it is an indication that the curve is flatter than the normal.

Sometimes the coefficient of excess kurtosis is used as a measure of kurtosis. This is given by

$$\gamma_2' = \frac{\mu_4}{\mu_2^2} - 3. \quad (2.22)$$

In this case, distributions that are more peaked than the normal correspond to a positive value of γ_2', and those with a flatter top have a negative coefficient of excess kurtosis.
2.5 Common Distributions

In this section, we provide a review of some useful probability distributions and briefly describe some applications to modeling data. Most of these distributions are used in later chapters, so we take this opportunity to define them and to fix our notation. We first cover two important discrete distributions: the binomial and the Poisson. These are followed by several continuous distributions: the uniform, the normal, the exponential, the gamma, the chi-square, the Weibull, the beta and the multivariate normal.

Binomial

Let's say that we have an experiment, whose outcome can be labeled as a 'success' or a 'failure'. If we let $X = 1$ denote a successful outcome and $X = 0$ represent a failure, then we can write the probability mass function as

$$
\begin{align*}
 f(0) &= P(X = 0) = 1 - p, \\
 f(1) &= P(X = 1) = p,
\end{align*}
$$

where p represents the probability of a successful outcome. A random variable that follows the probability mass function in Equation 2.23 for $0 < p < 1$ is called a Bernoulli random variable.

Now suppose we repeat this experiment for n trials, where each trial is independent (the outcome from one trial does not influence the outcome of another) and results in a success with probability p. If X denotes the number of successes in these n trials, then X follows the binomial distribution with parameters (n, p). Examples of binomial distributions with different parameters are shown in Figure 2.3.

To calculate a binomial probability, we use the following formula:

$$
\begin{align*}
 f(x; n, p) &= P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}; \quad x = 0, 1, \ldots, n.
\end{align*}
$$

The mean and variance of a binomial distribution are given by

$$
E[X] = np,
$$

and

$$
V(X) = np(1 - p).
$$
Some examples where the results of an experiment can be modeled by a binomial random variable are:

- A drug has probability 0.90 of curing a disease. It is administered to 100 patients, where the outcome for each patient is either cured or not cured. If X is the number of patients cured, then X is a binomial random variable with parameters $(100, 0.90)$.

- The National Institute of Mental Health estimates that there is a 20% chance that an adult American suffers from a psychiatric disorder. Fifty adult Americans are randomly selected. If we let X represent the number who have a psychiatric disorder, then X takes on values according to the binomial distribution with parameters $(50, 0.20)$.

- A manufacturer of computer chips finds that on the average 5% are defective. To monitor the manufacturing process, they take a random sample of size 75. If the sample contains more than five defective chips, then the process is stopped. The binomial distribution with parameters $(75, 0.05)$ can be used to model the random variable X, where X represents the number of defective chips.
Example 2.1
Suppose there is a 20% chance that an adult American suffers from a psychiatric disorder. We randomly sample 25 adult Americans. If we let \(X \) represent the number of people who have a psychiatric disorder, then \(X \) is a binomial random variable with parameters \((25, 0.2)\). We are interested in the probability that at most 3 of the selected people have such a disorder. We can use the MATLAB Statistics Toolbox function \texttt{binocdf} to determine \(P(X \leq 3) \), as follows:

\[
\text{prob} = \text{binocdf}(3, 25, 0.2);
\]

We could also sum up the individual values of the probability mass function from \(X = 0 \) to \(X = 3 \):

\[
\text{prob2} = \text{sum(binopdf(0:3,25,0.2))};
\]

Both of these commands return a probability of 0.234. We now show how to generate the binomial distributions shown in Figure 2.3.

\[
\%
\text{Get the values for the domain, } x.
\% x = 0:6; \%
\text{Get the values of the probability mass function.}
\%
\text{First for } n = 6, \ p = 0.3:
\}
\text{pdf1} = \text{binopdf}(x,6,0.3); \%
\text{Now for } n = 6, \ p = 0.7:
\}
\text{pdf2} = \text{binopdf}(x,6,0.7);
\]

Now we have the values for the probability mass function (or the heights of the bars). The plots are obtained using the following code.

\[
\%
\text{Do the plots.}
\%
\text{subplot(1,2,1),bar(x,pdf1,1,'w')}\%
\text{title(' n = 6, \ p = 0.3')}\%
\text{xlabel('X'),ylabel('f(X)')}\%
\text{axis square}
\%
\text{subplot(1,2,2),bar(x,pdf2,1,'w')}\%
\text{title(' n = 6, \ p = 0.7')}\%
\text{xlabel('X'),ylabel('f(X)')}\%
\text{axis square}
\]

\[
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
The expected value and variance of a Poisson random variable are both \(\lambda \), thus,

\[
E[X] = \lambda,
\]

and

\[
V(X) = \lambda.
\]

The Poisson distribution can be used in many applications. Examples of situations where a discrete random variable might follow a Poisson distribution are:

- the number of typographical errors on a page,
- the number of vacancies in a company during a month, or
- the number of defects in a length of wire.

The Poisson distribution is often used to approximate the binomial. When \(n \) is large and \(p \) is small (so \(np \) is moderate), then the number of successes occurring can be approximated by the Poisson random variable with parameter \(\lambda = np \).

The Poisson distribution is also appropriate for some applications where events occur at points in time or space. We see it used in this context in Chapter 12, where we look at modeling spatial point patterns. Some other examples include the arrival of jobs at a business, the arrival of aircraft on a runway, and the breakdown of machines at a manufacturing plant. The number of events in these applications can be described by a Poisson process.

Let \(N(t), t \geq 0 \), represent the number of events that occur in the time interval \([0, t]\). For each interval \([0, t]\), \(N(t) \) is a random variable that can take on values \(0, 1, 2, \ldots \). If the following conditions are satisfied, then the counting process \([N(t), t \geq 0]\) is said to be a Poisson process with mean rate \(\lambda \) [Ross, 2000]:

1. \(N(0) = 0 \).
2. The process has independent increments.
3. The number \(N(t) \) of events in an interval of length \(t \) follows a Poisson distribution with mean \(\lambda t \). Thus, for \(s \geq 0, t \geq 0 \),

\[
P(N(t+s)-N(s) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}; \quad k = 0, 1, \ldots
\]

(2.26)

From the third condition, we know that the process has stationary increments. This means that the distribution of the number of events in an interval depends only on the length of the interval and not on the starting point. The
second condition specifies that the number of events in one interval does not affect the number of events in other intervals. The first condition states that the counting starts at time \(t = 0 \). The expected value of \(N(t) \) is given by

\[E[N(t)] = \lambda t. \]

Example 2.2

In preparing this text, we executed the spell check command, and the editor reviewed the manuscript for typographical errors. In spite of this, some mistakes might be present. Assume that the number of typographical errors per page follows the Poisson distribution with parameter \(\lambda = 0.25 \). We calculate the probability that a page will have at least two errors as follows:

\[
P(X \geq 2) = 1 - \{ P(X = 0) + P(X = 1) \} = 1 - e^{-0.25} - e^{-0.25} \cdot 0.25 = 0.0265.\]

We can get this probability using the MATLAB Statistics Toolbox function `poisscdf`. Note that \(P(X = 0) + P(X = 1) \) is the Poisson cumulative distribution function for \(a = 1 \) (see Equation 2.4), which is why we use 1 as the argument to `poisscdf`.

```matlab
prob = 1 - poisscdf(1, 0.25);
```

Example 2.3

Suppose that accidents at a certain intersection occur in a manner that satisfies the conditions for a Poisson process with a rate of 2 per week (\(\lambda = 2 \)). What is the probability that at most 3 accidents will occur during the next 2 weeks? Using Equation 2.26, we have

\[
P(N(2) \leq 3) = \sum_{k=0}^{3} P(N(2) = k).
\]

Expanding this out yields

\[
P(N(2) \leq 3) = e^{-4} + 4e^{-4} + \frac{4^2}{2!}e^{-4} + \frac{4^3}{3!}e^{-4} = 0.4335.
\]

As before, we can use the `poisscdf` function with parameter given by \(\lambda t = 2 \cdot 2 \).

```matlab
prob = poisscdf(3, 2*2);
```
Uniform

Perhaps one of the most important distributions is the uniform distribution for continuous random variables. One reason is that the uniform (0, 1) distribution is used as the basis for simulating most random variables as we discuss in Chapter 4.

A random variable that is uniformly distributed over the interval \((a, b)\) follows the probability density function given by

\[
f(x; a, b) = \frac{1}{b-a}; \quad a < x < b. \tag{2.27}\]

The parameters for the uniform are the interval endpoints, \(a\) and \(b\). The mean and variance of a uniform random variable are given by

\[
E[X] = \frac{a + b}{2},
\]

and

\[
V(X) = \frac{(b-a)^2}{12}.
\]

The cumulative distribution function for a uniform random variable is

\[
F(x) = \begin{cases}
0; & x \leq a \\
\frac{x-a}{b-a}; & a < x < b \\
1; & x \geq b.
\end{cases} \tag{2.28}
\]

Example 2.4

In this example, we illustrate the uniform probability density function over the interval \((0, 10)\), along with the corresponding cumulative distribution function. The MATLAB Statistics Toolbox functions \texttt{unifpdf} and \texttt{unifcdf} are used to get the desired functions over the interval.

```matlab
% First get the domain over which we will evaluate the functions.
x = -1:.1:11;
% Now get the probability density function values at x.
pdf = unifpdf(x,0,10);
% Now get the cdf.
cdf = unifcdf(x,0,10);
```
Plots of the functions are provided in Figure 2.4, where the probability density function is shown in the left plot and the cumulative distribution on the right. These plots are constructed using the following MATLAB commands.

```matlab
% Do the plots.
subplot(1,2,1), plot(x,pdf)
title('PDF')
xlabel('X'), ylabel('f(X)')
axis([-1 11 0 0.2])
axis square
subplot(1,2,2), plot(x,cdf)
title('CDF')
xlabel('X'), ylabel('F(X)')
axis([-1 11 0 1.1])
axis square
```

FIGURE 2.4
On the left is a plot of the probability density function for the uniform $(0, 10)$. Note that the height of the curve is given by $1/(b-a) = 1/10 = 0.10$. The corresponding cumulative distribution function is shown on the right.
Normal

A well known distribution in statistics and engineering is the normal distribution. Also called the Gaussian distribution, it has a continuous probability density function given by

\[f(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}, \quad (2.29) \]

where \(-\infty < x < \infty; \quad -\infty < \mu < \infty; \quad \sigma^2 > 0\). The normal distribution is completely determined by its parameters \((\mu \text{ and } \sigma^2)\), which are also the expected value and variance for a normal random variable. The notation \(X \sim N(\mu, \sigma^2)\) is used to indicate that a random variable \(X\) is normally distributed with mean \(\mu\) and variance \(\sigma^2\). Several normal distributions with different parameters are shown in Figure 2.5.

Some special properties of the normal distribution are given here.

- The value of the probability density function approaches zero as \(x\) approaches positive and negative infinity.
- The probability density function is centered at the mean \(\mu\), and the maximum value of the function occurs at \(x = \mu\).
- The probability density function for the normal distribution is symmetric about the mean \(\mu\).

The special case of a standard normal random variable is one whose mean is zero \((\mu = 0)\), and whose standard deviation is one \((\sigma = 1)\). If \(X\) is normally distributed, then

\[Z = \frac{X - \mu}{\sigma} \quad (2.30) \]

is a standard normal random variable.

Traditionally, the cumulative distribution function of a standard normal random variable is denoted by

\[\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp \left\{ -\frac{y^2}{2} \right\} dy. \quad (2.31) \]

The cumulative distribution function for a standard normal random variable can be calculated using the error function, denoted by \(erf\). The relationship between these functions is given by
FIGURE 2.5
Examples of probability density functions for normally distributed random variables. Note that as the variance increases, the height of the probability density function at the mean decreases.

\[\Phi(z) = \frac{1}{2} \text{erf} \left(\frac{z}{\sqrt{2}} \right) + \frac{1}{2}. \]

(2.32)

The error function can be calculated in MATLAB using \texttt{erf(x)}. The MATLAB Statistics Toolbox has a function called \texttt{normcdf(x,mu,sigma)} that will calculate the cumulative distribution function for values in \(x\). Its use is illustrated in the example given below.

Example 2.5
Similar to the uniform distribution, the functions \texttt{normpdf} and \texttt{normcdf} are available in the MATLAB Statistics Toolbox for calculating the probability density function and cumulative distribution function for the normal. There is another special function called \texttt{normspec} that determines the probability that a random variable \(X\) assumes a value between two limits, where \(X\) is normally distributed with mean \(\mu\) and standard deviation \(\sigma\). This function also plots the normal density, where the area between the specified limits is shaded. The syntax is shown below.
% Set up the parameters for the normal distribution.
mu = 5;
sigma = 2;
% Set up the upper and lower limits. These are in
% the two element vector 'specs'.
specs = [2, 8];
prob = normspec(specs, mu, sigma);

The resulting plot is shown in Figure 2.6. Note that the default title and axes
labels are shown, but these can be changed easily using the title, xlabel, and ylabel functions. You can also obtain tail probabilities by using
-Inf as the first element of specs to designate no lower limit or Inf as the
second element to indicate no upper limit.

\[
\text{Probability Between Limits is 0.99990}
\]

\[
\text{Density}
\]

\[
\text{Critical Value}
\]

\[
\text{FIGURE 2.6}
\]
This shows the output from the function normspec. Note that it shades the area between
the lower and upper limits that are specified as input arguments.

Exponential

The exponential distribution can be used to model the amount of time until a
specific event occurs or to model the time between independent events. Some
examples where an exponential distribution could be used as the model are:
• the time until the computer locks up,
• the time between arrivals of telephone calls, or
• the time until a part fails.

The exponential probability density function with parameter λ is

$$f(x; \lambda) = \lambda e^{-\lambda x}; \quad x \geq 0; \quad \lambda > 0. \quad (2.33)$$

The mean and variance of an exponential random variable are given by the following:

$$E[X] = \frac{1}{\lambda},$$

and

$$V(X) = \frac{1}{\lambda^2}.$$
The cumulative distribution function of an exponential random variable is given by

\[
F(x) = \begin{cases}
0; & x < 0 \\
1 - e^{-\lambda x}; & x \geq 0.
\end{cases}
\]
(2.34)

The exponential distribution is the only continuous distribution that has the memoryless property. This property describes the fact that the remaining lifetime of an object (whose lifetime follows an exponential distribution) does not depend on the amount of time it has already lived. This property is represented by the following equality, where \(s \geq 0 \) and \(t \geq 0 \):

\[
P(X > s + t | X > s) = P(X > t).
\]

In words, this means that the probability that the object will operate for time \(s + t \), given it has already operated for time \(s \), is simply the probability that it operates for time \(t \).

When the exponential is used to represent interarrival times, then the parameter \(\lambda \) is a rate with units of arrivals per time period. When the exponential is used to model the time until a failure occurs, then \(\lambda \) is the failure rate. Several examples of the exponential distribution are shown in Figure 2.7.

Example 2.6

The time between arrivals of vehicles at an intersection follows an exponential distribution with a mean of 12 seconds. What is the probability that the time between arrivals is 10 seconds or less? We are given the average interarrival time, so \(\lambda = 1/12 \). The required probability is obtained from Equation 2.34 as follows

\[
P(X \leq 10) = 1 - e^{-(1/12)10} = 0.57.
\]

You can calculate this using the MATLAB Statistics Toolbox function `expocdf(x, 1/\lambda)`. Note that this MATLAB function is based on a different definition of the exponential probability density function, which is given by

\[
f(x; \mu) = \frac{1}{\mu} e^{-\frac{x}{\mu}}; \quad x \geq 0; \quad \mu > 0.
\]
(2.35)
In the Computational Statistics Toolbox, we include a function called `csexpec(x, λ)` that calculates the exponential cumulative distribution function using Equation 2.34.

Gamma

The gamma probability density function with parameters $\lambda > 0$ and $t > 0$ is

$$f(x; \lambda, t) = \frac{\lambda^t e^{-\lambda x} (\lambda x)^{t-1}}{\Gamma(t)}; \quad x \geq 0,$$

where t is a shape parameter, and λ is the scale parameter. The gamma function $\Gamma(t)$ is defined as

$$\Gamma(t) = \int_0^\infty e^{-y} y^{t-1} dy.$$

For integer values of t, Equation 2.37 becomes

$$\Gamma(t) = (t - 1)! .$$

Note that for $t = 1$, the gamma density is the same as the exponential. When t is a positive integer, the gamma distribution can be used to model the amount of time one has to wait until t events have occurred, if the inter-arrival times are exponentially distributed.

The mean and variance of a gamma random variable are

$$E[X] = \frac{t}{\lambda},$$

and

$$V(X) = \frac{t}{\lambda^2}.$$
Chapter 2: Probability Concepts

\[F(x; \lambda, t) = \begin{cases} 0; & x \leq 0 \\ \frac{1}{\Gamma(t)} \int_0^{\lambda x} y^{t-1} e^{-y} dy; & x > 0. \end{cases} \] (2.39)

Equation 2.39 can be evaluated easily in MATLAB using the \texttt{gammainc}(\lambda x, t) function, where the above notation is used for the arguments.

\textbf{Example 2.7}

We plot the gamma probability density function for \(\lambda = t = 1 \) (this should look like the exponential), \(\lambda = t = 2 \), and \(\lambda = t = 3 \). You can use the MATLAB Statistics Toolbox function \texttt{gampdf}(x,t,1/\lambda) or the function \texttt{csgammmp}(x,t,\lambda).

\begin{verbatim}
 x = 0:.1:3;
 y1 = gampdf(x,1,1/1);
 y2 = gampdf(x,2,1/2);
 y3 = gampdf(x,3,1/3);
 plot(x,y1,'r',x,y2,'g',x,y3,'b')
 title('Gamma Distribution')
 xlabel('x')
 ylabel('f(x)')
\end{verbatim}

The resulting curves are shown in Figure 2.8.

\textbf{Chi-Square}

A gamma distribution where \(\lambda = 0.5 \) and \(t = v/2 \), with \(v \) a positive integer, is called a chi-square distribution (denoted as \(\chi^2_v \)) with \(v \) degrees of freedom. The chi-square distribution is used to derive the distribution of the sample variance and is important for goodness-of-fit tests in statistical analysis [Mood, Graybill, and Boes, 1974].

The probability density function for a chi-square random variable with \(v \) degrees of freedom is

\[f(x; v) = \frac{1}{\Gamma(v/2)} \left(\frac{1}{2}\right)^{v/2} x^{v/2-1} e^{-\frac{1}{2}x}; \quad x \geq 0. \] (2.40)
We show three examples of the gamma probability density function. We see that when $\lambda = t = 1$, we have the same probability density function as the exponential with parameter $\lambda = 1$.

The mean and variance of a chi-square random variable can be obtained from the gamma distribution. These are given by

$$E[X] = \nu,$$

and

$$V(X) = 2\nu.$$

Weibull

The Weibull distribution has many applications in engineering. In particular, it is used in reliability analysis. It can be used to model the distribution of the amount of time it takes for objects to fail. For the special case where $\nu = 0$ and $\beta = 1$, the Weibull reduces to the exponential with $\lambda = 1/\alpha$.

The Weibull density for $\alpha > 0$ and $\beta > 0$ is given by
Chapter 2: Probability Concepts

\[f(x; \nu, \alpha, \beta) = \left(\frac{\beta}{\alpha} \right)^{\beta - 1} \left(\frac{x - \nu}{\alpha} \right)^{\beta - 1} \exp\left(-\left(\frac{x - \nu}{\alpha} \right)^{\beta} \right) ; \quad x > \nu, \quad (2.41) \]

and the cumulative distribution is

\[F(x; \nu, \alpha, \beta) = \begin{cases} 0; & x \leq \nu \\ 1 - e^{-\left(\frac{x - \nu}{\alpha} \right)^{\beta}}; & x > \nu. \end{cases} \quad (2.42) \]

The location parameter is denoted by \(\nu \), and the scale parameter is given by \(\alpha \). The shape of the Weibull distribution is governed by the parameter \(\beta \).

The mean and variance [Banks, et al., 2001] of a random variable from a Weibull distribution are given by

\[E[X] = \nu + \alpha \Gamma(1/\beta + 1), \]

and

\[V(X) = \alpha^2 \left\{ \Gamma(2/\beta + 1) - \left[\Gamma(1/\beta + 1) \right]^2 \right\}. \]

Example 2.8

Suppose the time to failure of piston rings for stream-driven compressors can be modeled by the Weibull distribution with a location parameter of zero, \(\beta = 1/3 \), and \(\alpha = 500 \). We can find the mean time to failure using the expected value of a Weibull random variable, as follows

\[E[X] = \nu + \alpha \Gamma(1/\beta + 1) = 500 \times \Gamma(3 + 1) = 3000 \text{ hours}. \]

Let's say we want to know the probability that a piston ring will fail before 2000 hours. We can calculate this probability using

\[F(2000; 0, 500, 1/3) = 1 - \exp\left(-\left(\frac{2000}{500} \right)^{1/3} \right) = 0.796. \]

You can use the MATLAB Statistics Toolbox function for applications where the location parameter is zero (\(\nu = 0 \)). This function is called
weibcdf (for the cumulative distribution function), and the input arguments are: \((x, \alpha, \beta)\). The reason for the different parameters is that MATLAB uses an alternate definition for the Weibull probability density function given by

\[
f(x;\alpha, b) = abx^{b-1}e^{-ax^b}; \quad x > 0.
\]
(2.43)

Comparing this with Equation 2.41, we can see that \(v = 0\), \(a = \alpha^{-b}\) and \(b = \beta\). You can also use the function **cweibcdf**\((x, v, \alpha, \beta)\) to evaluate the cumulative distribution function for a Weibull.

Beta

The beta distribution is very flexible because it covers a range of different shapes depending on the values of the parameters. It can be used to model a random variable that takes on values over a bounded interval and assumes one of the shapes governed by the parameters. A random variable has a beta distribution with parameters \(\alpha > 0\) and \(\beta > 0\) if its probability density function is given by

\[
f(x;\alpha, \beta) = \frac{1}{B(\alpha, \beta)}x^{\alpha-1}(1-x)^{\beta-1}; \quad 0 < x < 1,
\]
(2.44)

where

\[
B(\alpha, \beta) = \int_0^1 x^{\alpha-1}(1-x)^{\beta-1}dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.
\]
(2.45)

The function \(B(\alpha, \beta)\) can be calculated in MATLAB using the **beta** \((\alpha,\beta)\) function. The mean and variance of a beta random variable are

\[
E[X] = \frac{\alpha}{\alpha + \beta},
\]

and

\[
V(X) = \frac{\alpha\beta}{(\alpha + \beta)(\alpha + \beta + 1)}.
\]

The cumulative distribution function for a beta random variable is given by integrating the beta probability density function as follows
\[F(x; \alpha, \beta) = \int_0^x \frac{1}{B(\alpha, \beta)} y^{\alpha-1}(1-y)^{\beta-1} \, dy. \] \hspace{1cm} (2.46)

The integral in Equation 2.46 is called the incomplete beta function. This can be calculated in MATLAB using the function `betainc(x, alpha, beta)`.

Example 2.9

We use the following MATLAB code to plot the beta density over the interval (0,1). We let \(\alpha = \beta = 0.5 \) and \(\alpha = \beta = 3 \).

```matlab
% First get the domain over which to evaluate
% the density function.
x = 0.01:.01:.99;
% Now get the values for the density function.
y1 = betapdf(x, 0.5, 0.5);
y2 = betapdf(x, 3, 3);
% Plot the results.
plot(x, y1, 'r', x, y2, 'g')
title('Beta Distribution')
xlabel('x')
ylabel('f(x)')
```

The resulting curves are shown in Figure 2.9. You can use the MATLAB Statistics Toolbox function `betapdf(x, \alpha, \beta)` as we did in the example, or the function `csbetap(x, \alpha, \beta)`.

\[\blacksquare \]

Multivariate Normal

So far, we have discussed several univariate distributions for discrete and continuous random variables. In this section, we describe one of the important and most commonly used multivariate densities: the multivariate normal distribution. This distribution is used throughout the rest of the text. Some examples of where we use it are in exploratory data analysis, in probability density estimation, and in statistical pattern recognition.

The probability density function for a general multivariate normal density for \(d \) dimensions is given by

\[
f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu)\right\},
\] \hspace{1cm} (2.47)

where \(x \) is a \(d \)-component column vector, \(\mu \) is the \(d \times 1 \) column vector of means, and \(\Sigma \) is the \(d \times d \) covariance matrix. The superscript \(T \) represents the
transpose of an array, and the notation $||$ denotes the determinant of a matrix.

The mean and covariance are calculated using the following formulas:

$$\mu = E[x],$$ \hspace{1cm} (2.48)

and

$$\Sigma = E[(x - \mu)(x - \mu)^T],$$ \hspace{1cm} (2.49)

where the expected value of an array is given by the expected values of its components. Thus, if we let X_i represent the i-th component of x and μ_i the i-th component of μ, then the elements of Equation 2.48 can be written as

$$\mu_i = E[X_i].$$

If σ_{ij} represents the ij-th element of Σ, then the elements of the covariance matrix (Equation 2.49) are given by

$$\sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)].$$
The covariance matrix is symmetric \((\Sigma^T = \Sigma)\) positive definite (all eigenvalues of \(\Sigma\) are greater than zero) for most applications of interest to statisticians and engineers.

We illustrate some properties of the multivariate normal by looking at the bivariate \((d = 2)\) case. The probability density function for a bivariate normal is represented by a bell-shaped surface. The center of the surface is determined by the mean \(\mu\) and the shape of the surface is determined by the covariance \(\Sigma\). If the covariance matrix is diagonal (all of the off-diagonal elements are zero), and the diagonal elements are equal, then the shape is circular. If the diagonal elements are not equal, then we get an ellipse with the major axis vertical or horizontal. If the covariance matrix is not diagonal, then the shape is elliptical with the axes at an angle. Some of these possibilities are illustrated in the next example.

Example 2.10

We first provide the following MATLAB function to calculate the multivariate normal probability density function and illustrate its use in the bivariate case. The function is called `csevalnorm`, and it takes input arguments \(x, \mu, \text{cov mat}\). The input argument \(x\) is a matrix containing the points in the domain where the function is to be evaluated, \(\mu\) is a \(d\) dimensional row vector, and \(\text{cov mat}\) is the \(d \times d\) covariance matrix.

```matlab
function prob = csevalnorm(x, mu, cov_mat);
    [n,d] = size(x);
    % center the data points
    x = x - ones(n,1)*mu;
    a = (2*pi)^(d/2)*sqrt(det(cov_mat));
    arg = diag(x*inv(cov_mat)*x);
    prob = exp((-0.5)*arg);
    prob = prob/a;
```

We now call this function for a bivariate normal centered at zero and covariance matrix equal to the identity matrix. The density surface for this case is shown in Figure 2.10.

```matlab
% Get the mean and covariance.
mu = zeros(1,2);
cov_mat = eye(2);  % Identity matrix
% Get the domain.
% Should range (-4,4) in both directions.
[x,y] = meshgrid(-4:.2:4,-4:.2:4);
% Reshape into the proper format for the function.
X = [x(:),y(:)];
Z = csevalnorm(X,mu,cov_mat);
% Now reshape the matrix for plotting.
z = reshape(Z,size(x));
subplot(1,2,1) % plot the surface
```
FIGURE 2.10
This figure shows a standard bivariate normal probability density function that is centered at the origin. The covariance matrix is given by the identity matrix. Notice that the shape of the surface looks circular. The plot on the right is for a viewpoint looking down on the surface.

```
surf(x,y,z), axis square, axis tight
title('BIVARIATE STANDARD NORMAL')
```

Next, we plot the surface for a bivariate normal centered at the origin with non-zero off-diagonal elements in the covariance matrix. Note the elliptical shape of the surface shown in Figure 2.11.

FIGURE 2.11
This shows a bivariate normal density where the covariance matrix has non-zero off-diagonal elements. Note that the surface has an elliptical shape. The plot on the right is for a viewpoint looking down on the surface.
The probability that a point \(x = (x_1, x_2)^T \) will assume a value in a region \(R \) can be found by integrating the bivariate probability density function over the region. Any plane that cuts the surface parallel to the \(x_1-x_2 \) plane intersects in an elliptic (or circular) curve, yielding a curve of constant density. Any plane perpendicular to the \(x_1-x_2 \) plane cuts the surface in a normal curve. This property indicates that in each dimension, the multivariate normal is a univariate normal distribution. This is discussed further in Chapter 5.

2.6 MATLAB Code

The MATLAB Statistics Toolbox has many functions for the more common distributions. It has functions for finding the value of the probability density (mass) function and the value of the cumulative distribution function. The reader is cautioned to remember that the definitions of the distributions (exponential, gamma, and Weibull) differ from what we describe in the text. For example, the exponential and the gamma distributions are parameterized differently in the MATLAB Statistics Toolbox. For a complete list of what is available in the toolbox for calculating probability density (mass) functions or cumulative distribution functions, see Appendix E.

The Computational Statistics Toolbox contains functions for several of the distributions, as defined in this chapter. In general, those functions that end in \(\text{p} \) correspond to the probability density (mass) function, and those ending with a \(\text{c} \) calculate the cumulative distribution function. Table 2.1 provides a summary of the functions.

We note that a different function for evaluating the multivariate normal probability density function is available for download at
TABLE 2.1
List of Functions from Chapter 2 Included in the
Computational Statistics Toolbox

<table>
<thead>
<tr>
<th>Distribution</th>
<th>MATLAB Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>csbetap, csbetac</td>
</tr>
<tr>
<td>Binomial</td>
<td>csbinop, csbinoc</td>
</tr>
<tr>
<td>Chi-square</td>
<td>cschip, cschic</td>
</tr>
<tr>
<td>Exponential</td>
<td>csexpop, csexpoc</td>
</tr>
<tr>
<td>Gamma</td>
<td>csgammp, csgammc</td>
</tr>
<tr>
<td>Normal - univariate</td>
<td>csnormp, csnormc</td>
</tr>
<tr>
<td>Normal - multivariate</td>
<td>csevalnorm</td>
</tr>
<tr>
<td>Poisson</td>
<td>cspoisp, cspoisc</td>
</tr>
<tr>
<td>Continuous Uniform</td>
<td>csunifp, csunifc</td>
</tr>
<tr>
<td>Weibull</td>
<td>csweibp, csweibc</td>
</tr>
</tbody>
</table>

under the stats directory. This function can be substituted for csevalnorm.

2.7 Further Reading
There are many excellent books on probability theory at the undergraduate and graduate levels. Ross [1994; 1997; 2000] is the author of several books on probability theory and simulation. These texts contain many examples and are appropriate for advanced undergraduate students in statistics, engineering and science. Rohatgi [1976] provides a solid theoretical introduction to probability theory. This text can be used by advanced undergraduate and beginning graduate students. It has recently been updated with many new examples and special topics [Rohatgi and Saleh, 2000]. For those who want to learn about probability, but do not want to be overwhelmed with the theory, then we recommend Durrett [1994].
At the graduate level, there is a book by Billingsley [1995] on probability and measure theory. He uses probability to motivate measure theory and then uses measure theory to generate more probability concepts. Another good reference is a text on probability and real analysis by Ash [1972]. This is suitable for graduate students in mathematics and statistics. For a book that can be used by graduate students in mathematics, statistics and engineering, see Port [1994]. This text provides a comprehensive treatment of the subject and can also be used as a reference by professional data analysts. Finally, Breiman [1992] provides an overview of probability theory that is accessible to statisticians and engineers.
Exercises

2.1. Write a function using MATLAB's functions for numerical integration such as `quad` or `quadl` (MATLAB 6) that will find \(P(X \leq x) \) when the random variable is exponentially distributed with parameter \(\lambda \). See `help` for information on how to use these functions.

2.2. Verify that the exponential probability density function with parameter \(\lambda \) integrates to 1. Use the MATLAB functions `quad` or `quadl` (MATLAB 6). See `help` for information on how to use these functions.

2.3. Radar and missile detection systems warn of enemy attacks. Suppose that a radar detection system has a probability 0.95 of detecting a missile attack.

a. What is the probability that one detection system will detect an attack? What distribution did you use?

b. Suppose three detection systems are located together in the same area and the operation of each system is independent of the others. What is the probability that at least one of the systems will detect the attack? What distribution did you use in this case?

2.4. When a random variable is equally likely to be either positive or negative, then the Laplacian or the double exponential distribution can be used to model it. The Laplacian probability density function for \(\lambda > 0 \) is given by

\[
f(x) = \frac{1}{2\lambda} e^{-|x|}; \quad -\infty < x < \infty.
\]

a. Derive the cumulative distribution function for the Laplacian.

b. Write a MATLAB function that will evaluate the Laplacian probability density function for given values in the domain.

c. Write a MATLAB function that will evaluate the Laplacian cumulative distribution function.

d. Plot the probability density function when \(\lambda = 1 \).

2.5. Suppose \(X \) follows the exponential distribution with parameter \(\lambda \). Show that for \(s \geq 0 \) and \(t \geq 0 \),

\[
P(X > s + t | X > s) = P(X > t).
\]

2.6. The lifetime in years of a flat panel display is a random variable with the exponential probability density function given by
Chapter 2: Probability Concepts

\[f(x; 0.1) = 0.1 e^{-0.1x}. \]

a. What is the mean lifetime of the flat panel display?
b. What is the probability that the display fails within the first two years?
c. Given that the display has been operating for one year, what is the probability that it will fail within the next year?

2.7. The time to failure for a widget follows a Weibull distribution, with \(\nu = 0, \beta = 1/2, \) and \(\alpha = 750 \) hours.
 a. What is the mean time to failure of the widget?
b. What percentage of the widgets will fail by 2500 hours of operation? That is, what is the probability that a widget will fail within 2500 hours?

2.8. Let's say the probability of having a boy is 0.52. Using the Multiplication Rule, find the probability that a family's first and second children are boys. What is the probability that the first child is a boy and the second child is a girl?

2.9. Repeat Example 2.1 for \(n = 6 \) and \(p = 0.5 \). What is the shape of the distribution?

2.10. Recall that in our piston ring example, \(P(M_a) = 0.6 \) and \(P(M_b) = 0.4 \). From prior experience with the two manufacturers, we know that 2% of the parts supplied by manufacturer A are likely to fail and 6% of the parts supplied by manufacturer B are likely to fail. Thus, \(P(F|M_a) = 0.02 \) and \(P(F|M_b) = 0.06 \). If we observe a piston ring failure, what is the probability that it came from manufacturer A?

2.11. Using the functions \texttt{fminbnd} or \texttt{fmin} (available in the standard MATLAB package), find the value for \(x \) where the maximum of the \(N(3, 1) \) probability density occurs. Note that you have to find the minimum of \(-f(x)\) to find the maximum of \(f(x) \) using these functions. Refer to the help files on these functions for more information on how to use them.

2.12. Using \texttt{normpdf} or \texttt{csnormpdf}, find the value of the probability density for \(N(0, 1) \) at \(\pm \infty \). Use a small (large) value of \(x \) for \(-\infty \) (\(\infty \)).

2.13. Verify Equation 2.38 using the MATLAB functions \texttt{factorial} and \texttt{gamma}.

2.14. Find the height of the curve for a normal probability density function at \(x = \mu \), where \(\sigma = 0.5, 1, 2 \). What happens to the height of the curve as \(\sigma \) gets larger? Does the height change for different values of \(\mu \)?

2.15. Write a function that calculates the Bayes’ posterior probability given a vector of conditional probabilities and a vector of prior probabilities.
2.16. Compare the Poisson approximation to the actual binomial probability \(P(X = 4) \), using \(n = 9 \) and \(p = 0.1, 0.2, ..., 0.9 \).

2.17. Using the function `normspec`, find the probability that the random variable defined in Example 2.5 assumes a value that is less than 3. What is the probability that the same random variable assumes a value that is greater than 5? Find these probabilities again using the function `normcdf`.

2.18. Find the probability for the Weibull random variable of Example 2.8 using the MATLAB Statistics Toolbox function `weibcdf` or the Computational Statistics Toolbox function `cweibc`.

2.19. The MATLAB Statistics Toolbox has a GUI demo called `disttool`. First view the `help` file on `disttool`. Then run the demo. Examine the probability density (mass) and cumulative distribution functions for the distributions discussed in the chapter.
Chapter 3

Sampling Concepts

3.1 Introduction

In this chapter, we cover the concepts associated with random sampling and
the sampling distribution of statistics. These notions are fundamental to com-
putational statistics and are needed to understand the topics covered in the
rest of the book. As with Chapter 2, those readers who have a basic under-
standing of these ideas may safely move on to more advanced topics.

In Section 3.2, we discuss the terminology and concepts associated with
random sampling and sampling distributions. Section 3.3 contains a brief dis-
cussion of the Central Limit Theorem. In Section 3.4, we describe some meth-
ods for deriving estimators (maximum likelihood and the method of
moments) and introduce criteria for evaluating their performance. Section 3.5
covers the empirical distribution function and how it is used to estimate
quantiles. Finally, we conclude with a section on the MATLAB functions that
are available for calculating the statistics described in this chapter and a sec-
tion on further readings.

3.2 Sampling Terminology and Concepts

In Chapter 2, we introduced the idea of a random experiment. We typically
perform an experiment where we collect data that will provide information
on the phenomena of interest. Using these data, we draw conclusions that are
usually beyond the scope of our particular experiment. The researcher gen-
eralizes from that experiment to the class of all similar experiments. This is
the heart of inferential statistics. The problem with this sort of generalization
is that we cannot be absolutely certain about our conclusions. However, by

51
using statistical techniques, we can measure and manage the degree of uncertainty in our results.

Inferential statistics is a collection of techniques and methods that enable researchers to observe a subset of the objects of interest and using the information obtained from these observations make statements or inferences about the entire population of objects. Some of these methods include the estimation of population parameters, statistical hypothesis testing, and probability density estimation.

The **target population** is defined as the entire collection of objects or individuals about which we need some information. The target population must be well defined in terms of what constitutes membership in the population (e.g., income level, geographic area, etc.) and what characteristics of the population we are measuring (e.g., height, IQ, number of failures, etc.).

The following are some examples of populations, where we refer back to those described at the beginning of Chapter 2.

- For the piston ring example, our population is all piston rings contained in the legs of steam-driven compressors. We would be observing the time to failure for each piston ring.
- In the glucose example, our population might be all pregnant women, and we would be measuring the glucose levels.
- For cement manufacturing, our population would be batches of cement, where we measure the tensile strength and the number of days the cement is cured.
- In the software engineering example, our population consists of all executions of a particular command and control software system, and we observe the failure time of the system in seconds.

In most cases, it is impossible or unrealistic to observe the entire population. For example, some populations have members that do not exist yet (e.g., future batches of cement) or the population is too large (e.g., all pregnant women). So researchers measure only a part of the target population, called a **sample**. If we are going to make inferences about the population using the information obtained from a sample, then it is important that the sample be representative of the population. This can usually be accomplished by selecting a **simple random sample**, where all possible samples are equally likely to be selected.

A random sample of size n is said to be **independent and identically distributed** (iid) when the random variables X_1, X_2, \ldots, X_n each have a common probability density (mass) function given by $f(x)$. Additionally, when they are both independent and identically distributed (iid), the joint probability density (mass) function is given by

\[f(x_1, \ldots, x_n) = f(x_1) \times \cdots \times f(x_n). \]
which is simply the product of the individual densities (or mass functions) evaluated at each sample point.

There are two types of simple random sampling: sampling with replacement and sampling without replacement. When we sample with replacement, we select an object, observe the characteristic we are interested in, and return the object to the population. In this case, an object can be selected for the sample more than once. When the sampling is done without replacement, objects can be selected at most one time. These concepts will be used in Chapters 6 and 7 where the bootstrap and other resampling methods are discussed.

Alternative sampling methods exist. In some situations, these methods are more practical and offer better random samples than simple random sampling. One such method, called stratified random sampling, divides the population into levels, and then a simple random sample is taken from each level. Usually, the sampling is done in such a way that the number sampled from each level is proportional to the number of objects of that level that are in the population. Other sampling methods include cluster sampling and systematic random sampling. For more information on these and others, see the book by Levy and Lemeshow [1999].

Sometimes the goal of inferential statistics is to use the sample to estimate or make some statements about a population parameter. Recall from Chapter 2 that a parameter is a descriptive measure for a population or a distribution of random variables. For example, population parameters that might be of interest include the mean (μ), the standard deviation (σ), quantiles, proportions, correlation coefficients, etc.

A statistic is a function of the observed random variables obtained in a random sample and does not contain any unknown population parameters. Often the statistic is used for the following purposes:

- as a point estimate for a population parameter,
- to obtain a confidence interval estimate for a parameter, or
- as a test statistic in hypothesis testing.

Before we discuss some of the common methods for deriving statistics, we present some of the statistics that will be encountered in the remainder of the text. In most cases, we assume that we have a random sample, \(X_1, \ldots, X_n\), of independent, identically (iid) distributed random variables.

Sample Mean and Sample Variance

A familiar statistic is the sample mean given by
\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i. \tag{3.1} \]

To calculate this in MATLAB, one can use the function called `mean`. If the argument to this function is a matrix, then it provides a vector of means, each one corresponding to the mean of a column. One can find the mean along any dimension (dim) of multi-dimensional arrays using the syntax: `mean(x, dim)`.

Another statistic that we will see again is the sample variance, calculated from

\[S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n(n-1)} \left(n \sum_{i=1}^{n} X_i^2 - \left(\sum_{i=1}^{n} X_i \right)^2 \right). \tag{3.2} \]

The sample standard deviation is given by the square root of the variance (Equation 3.2) and is denoted by \(S \). These statistics can be calculated in MATLAB using the functions `std(x)` and `var(x)`, where \(x \) is an array containing the sample values. As with the function `mean`, these can have matrices or multi-dimensional arrays as input arguments.

Sample Moments

The sample moments can be used to estimate the population moments described in Chapter 2. The \(r \)-th sample moment about zero is given by

\[M_r = \frac{1}{n} \sum_{i=1}^{n} X_i^r. \tag{3.3} \]

Note that the sample mean is obtained when \(r = 1 \). The \(r \)-th sample moments about the sample mean are statistics that estimate the population central moments and can be found using the following

\[M_r = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^r. \tag{3.4} \]

We can use Equation 3.4 to obtain estimates for the coefficient of skewness \(\gamma_1 \) and the coefficient of kurtosis \(\gamma_2 \). Recall that these are given by
Chapter 3: Sampling Concepts

\[
\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}},
\]

(3.5)

and

\[
\gamma_2 = \frac{\mu_4}{\mu_2^2}.
\]

(3.6)

Substituting the sample moments for the population moments in Equations 3.5 and 3.6, we have

\[
\hat{\gamma}_1 = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2\right)^{3/2}},
\]

(3.7)

and

\[
\hat{\gamma}_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^4}{\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2\right)^2}.
\]

(3.8)

We are using the 'hat' notation to denote an estimate. Thus, \(\hat{\gamma}_1\) is an estimate for \(\gamma_1\). The following example shows how to use MATLAB to obtain the sample coefficient of skewness and sample coefficient of kurtosis.

Example 3.1

In this example, we will generate a random sample that is uniformly distributed over the interval (0, 1). We would expect this sample to have a coefficient of skewness close to zero because it is a symmetric distribution. We would expect the kurtosis to be different from 3, because the random sample is not generated from a normal distribution.

```matlab
% Generate a random sample from the uniform distribution.
% n = 200;
x = rand(1,200);
% Find the mean of the sample.
```
mu = mean(x);
% Find the numerator and denominator for gamma_1.
num = (1/n)*sum((x-mu).^3);
den = (1/n)*sum((x-mu).^2);
gaml = num/den^(3/2);

This results in a coefficient of skewness of \(\text{gaml} = -0.0542 \), which is not too far from zero. Now we find the kurtosis using the following MATLAB commands:

% Find the kurtosis.
num = (1/n)*sum((x-mu).^4);
den = (1/n)*sum((x-mu).^2);
gam2 = num/den^2;

This gives a kurtosis of \(\text{gam2} = 1.8766 \), which is not close to 3, as expected.

We note that these statistics might not be the best to use in terms of bias (see Section 3.4). However, they will prove to be useful as examples in Chapters 6 and 7, where we look at bootstrap methods for estimating the bias in a statistic. The MATLAB Statistics Toolbox function called `skewness` returns the coefficient of skewness for a random sample. The function `kurtosis` calculates the sample coefficient of kurtosis (not the coefficient of excess kurtosis).

Covariance

In the definitions given below (Equations 3.9 and 3.10), we assume that all expectations exist. The covariance of two random variables \(X \) and \(Y \), with joint probability density function \(f(x, y) \), is defined as

\[
\text{Cov}(X, Y) = \sigma_{X,Y} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)].
\]

(3.9)

The correlation coefficient of \(X \) and \(Y \) is given by

\[
\text{Corr}(X, Y) = \rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y},
\]

(3.10)

where \(\sigma_X > 0 \) and \(\sigma_Y > 0 \).

The correlation is a measure of the linear relationship between two random variables. If the joint distribution of two variables has a correlation coefficient, then \(-1 \leq \rho_{X,Y} \leq 1\). When \(\rho_{X,Y} = 1 \), then \(X \) and \(Y \) are perfectly positively correlated. This means that the possible values for \(X \) and \(Y \) lie on a line with positive slope. On the other hand, when \(\rho_{X,Y} = -1 \), then the situation is the opposite: \(X \) and \(Y \) are perfectly negatively correlated. If \(X \) and \(Y \) are
independent, then $\rho_{X,Y} = 0$. Note that the converse of this statement does not necessarily hold.

There are statistics that can be used to estimate these quantities. Let's say we have a random sample of size n denoted as $(X_1, Y_1), \ldots, (X_n, Y_n)$. The sample covariance is typically calculated using the following statistic

$$
\hat{\sigma}_{X,Y} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).
$$

(3.11)

This is the definition used in the MATLAB function `cov`. In some instances, the empirical covariance is used [Efron and Tibshirani, 1993]. This is similar to Equation 3.11, except that we divide by n instead of $n - 1$. The sample correlation coefficient for two variables is given by

$$
\hat{\rho}_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\left(\sum_{i=1}^{n} (X_i - \bar{X})^2\right)^{1/2}\left(\sum_{i=1}^{n} (Y_i - \bar{Y})^2\right)^{1/2}}.
$$

(3.12)

In the next example, we investigate the commands available in MATLAB that return the statistics given in Equations 3.11 and 3.12. It should be noted that the quantity in Equation 3.12 is also bounded below by -1 and above by 1.

Example 3.2

In this example, we show how to use the MATLAB `cov` function to find the covariance between two variables and the `corrcoef` function to find the correlation coefficient. Both of these functions are available in the standard MATLAB language. We use the `cement` data [Hand, et al., 1994], which were analyzed by Hald [1952], to illustrate the basic syntax of these functions. The relationship between the two variables is nonlinear, so Hald looked at the log of the tensile strength as a function of the reciprocal of the drying time. When the `cement` data are loaded, we get a vector x representing the drying times and a vector y that contains the tensile strength. A scatterplot of the transformed data is shown in Figure 3.1.

```matlab
% First load the data.
load cement
% Now get the transformations.
xr = 1./x;
yr = log(y);
% Now get a scatterplot of the data to see if
% the relationship is linear.
```
plot(xr,logy,'x')
axis([0 1.1 2.4 41])
xlabel('Reciprocal of Drying Time')
ylabel('Log of Tensile Strength')

We now show how to get the covariance matrix and the correlation coefficient for these two variables.

% Now get the covariance and
% the correlation coefficient.
cmat = cov(xr,logy);
cormat = corrcoef(xr,logy);

The results are:

\[
\begin{pmatrix}
0.1020 & -0.1169 \\
-0.1169 & 0.1393
\end{pmatrix}
\]

\[
\begin{pmatrix}
1.0000 & -0.9803 \\
-0.9803 & 1.0000
\end{pmatrix}
\]

Note that the sample correlation coefficient (Equation 3.12) is given by the off-diagonal element of \(\text{cormat} \), \(\hat{\rho} = -0.9803 \). We see that the variables are negatively correlated, which is what we expect from Figure 3.1 (the log of the tensile strength decreases with increasing reciprocal of drying time).

3.3 Sampling Distributions

It was stated in the previous section that we sometimes use a statistic calculated from a random sample as a point estimate of a population parameter. For example, we might use \(\bar{X} \) to estimate \(\mu \) or use \(S \) to estimate \(\sigma \). Since we are using a sample and not observing the entire population, there will be some error in our estimate. In other words, it is unlikely that the statistic will equal the parameter. To manage the uncertainty and error in our estimate, we must know the sampling distribution for the statistic. The sampling distribution is the underlying probability distribution for a statistic. To understand the remainder of the text, it is important to remember that a statistic is a random variable.

The sampling distributions for many common statistics are known. For example, if our random variable is from the normal distribution, then we know how the sample mean is distributed. Once we know the sampling distribution of our statistic, we can perform statistical hypothesis tests and calculate confidence intervals. If we do not know the distribution of our statistic,
Figure 3.1
This scatterplot shows the observed drying times and corresponding tensile strength of the cement. Since the relationship is nonlinear, the variables are transformed as shown here. A linear relationship seems to be a reasonable model for these data.

Then we must use Monte Carlo simulation techniques or bootstrap methods to estimate the sampling distribution (see Chapter 6).

To illustrate the concept of a sampling distribution, we discuss the sampling distribution for \bar{X}, where the random variable X follows a distribution given by the probability density function $f(x)$. It turns out that the distribution for the sample mean can be found using the Central Limit Theorem.

Central Limit Theorem
Let $f(x)$ represent a probability density with finite variance σ^2 and mean μ. Also, let \bar{X} be the sample mean for a random sample of size n drawn from this distribution. For large n, the distribution of \bar{X} is approximately normally distributed with mean μ and variance given by σ^2/n.

The Central Limit Theorem states that as the sample size gets large, the distribution of the sample mean approaches the normal distribution regardless of how the random variable X is distributed. However, if we are sampling from a normal population, then the distribution of the sample mean is exactly normally distributed with mean μ and variance σ^2/n.
This information is important, because we can use it to determine how much error there is in using \(\bar{X} \) as an estimate of the population mean \(\mu \). We can also perform statistical hypothesis tests using \(\bar{X} \) as a test statistic and can calculate confidence intervals for \(\mu \). In this book, we are mainly concerned with computational (rather than theoretical) methods for finding sampling distributions of statistics (e.g., Monte Carlo simulation or resampling). The sampling distribution of \(\bar{X} \) is used to illustrate the concepts covered in remaining chapters.

3.4 Parameter Estimation

One of the first tasks a statistician or an engineer undertakes when faced with data is to try to summarize or describe the data in some manner. Some of the statistics (sample mean, sample variance, coefficient of skewness, etc.) we covered in Section 3.2 can be used as descriptive measures for our sample. In this section, we look at methods to derive and to evaluate estimates of population parameters.

There are several methods available for obtaining parameter estimates. These include the method of moments, maximum likelihood estimation, Bayes estimators, minimax estimation, Pitman estimators, interval estimates, robust estimation, and many others. In this book, we discuss the maximum likelihood method and the method of moments for deriving estimates for population parameters. These somewhat classical techniques are included as illustrative examples only and are not meant to reflect the state of the art in this area. Many useful (and computationally intensive) methods are not covered here, but references are provided in Section 3.7. However, we do present some alternative methods for calculating interval estimates using Monte Carlo simulation and resampling methods (see Chapters 6 and 7).

Recall that a sample is drawn from a population that is distributed according to some function whose characteristics are governed by certain parameters. For example, our sample might come from a population that is normally distributed with parameters \(\mu \) and \(\sigma^2 \). Or, it might be from a population that is exponentially distributed with parameter \(\lambda \). The goal is to use the sample to estimate the corresponding population parameters. If the sample is representative of the population, then a function of the sample should provide a useful estimate of the parameters.

Before we undertake our discussion of maximum likelihood, we need to define what an estimator is. Typically, population parameters can take on values from a subset of the real line. For example, the population mean can be any real number, \(-\infty < \mu < \infty \), and the population standard deviation can be any positive real number, \(\sigma > 0 \). The set of all possible values for a parameter \(\theta \) is called the parameter space. The data space is defined as the set of all possible values of the random sample of size \(n \). The estimate is calculated from
the sample data as a function of the random sample. An estimator is a function or mapping from the data space to the parameter space and is denoted as

\[T = t(X_1, \ldots, X_n). \]

Since an estimator is calculated using the sample alone, it is a statistic. Furthermore, if we have a random sample, then an estimator is also a random variable. This means that the value of the estimator varies from one sample to another based on its sampling distribution. In order to assess the usefulness of our estimator, we need to have some criteria to measure the performance. We discuss four criteria used to assess estimators: bias, mean squared error, efficiency, and standard error. In this discussion, we only present the definitional aspects of these criteria.

Bias

The bias in an estimator gives a measure of how much error we have, on average, in our estimate when we use \(T \) to estimate our parameter \(\theta \). The bias is defined as

\[\text{bias}(T) = E[T] - \theta. \]

If the estimator is unbiased, then the expected value of our estimator equals the true parameter value, so \(E[T] = \theta \).

To determine the expected value in Equation 3.14, we must know the distribution of the statistic \(T \). In these situations, the bias can be determined analytically. When the distribution of the statistic is not known, then we can use methods such as the jackknife and the bootstrap (see Chapters 6 and 7) to estimate the bias of \(T \).

Mean Squared Error

Let \(\theta \) denote the parameter we are estimating and \(T \) denote our estimate, then the mean squared error (MSE) of the estimator is defined as

\[\text{MSE}(T) = E[(\hat{T} - \theta)^2]. \]

Thus, the MSE is the expected value of the squared error. We can write this in more useful quantities such as the bias and variance of \(T \). (The reader will see this again in Chapter 8 in the context of probability density estimation.) If we expand the expected value on the right hand side of Equation 3.15, then we have
\[\text{MSE}(T) = E[(T^2 - 2T \theta + \theta^2)] = E[T^2] - 2\theta E[T] + \theta^2. \quad (3.16) \]

By adding and subtracting \((E[T])^2\) to the right hand side of Equation 3.16, we have the following

\[\text{MSE}(T) = E[T^2] - (E[T])^2 + (E[T])^2 - 2\theta E[T] + \theta^2. \quad (3.17) \]

The first two terms of Equation 3.17 are the variance of \(T\), and the last three terms equal the squared bias of our estimator. Thus, we can write the mean squared error as

\[
\text{MSE}(T) = E[T^2] - (E[T])^2 + (E[T] - \theta)^2
= V(T) + \{\text{bias}(T)\}^2. \quad (3.18)
\]

Since the mean squared error is based on the variance and the squared bias, the error will be small when the variance and the bias are both small. When \(T\) is unbiased, then the mean squared error is equal to the variance only. The concepts of bias and variance are important for assessing the performance of any estimator.

Relative Efficiency

Another measure we can use to compare estimators is called efficiency, which is defined using the MSE. For example, suppose we have two estimators \(T_1 = t_1(X_1, ..., X_n)\) and \(T_2 = t_2(X_1, ..., X_n)\) for the same parameter. If the MSE of one estimator is less than the other (e.g., \(\text{MSE}(T_1) < \text{MSE}(T_2)\)), then \(T_1\) is said to be more efficient than \(T_2\).

The **relative efficiency** of \(T_1\) to \(T_2\) is given by

\[
\text{eff}(T_1, T_2) = \frac{\text{MSE}(T_2)}{\text{MSE}(T_1)}.
\quad (3.19)
\]

If this ratio is greater than one, then \(T_1\) is a more efficient estimator of the parameter.

Standard Error

We can get a measure of the precision of our estimator by calculating the standard error. The **standard error** of an estimator (or a statistic) is defined as the standard deviation of its sampling distribution:

\[
SE(T) = \sqrt{V(T)} = \sigma_T.
\]
To illustrate this concept, let's use the sample mean as an example. We know that the variance of the estimator is

$$V(\bar{X}) = \frac{1}{n} \sigma^2,$$

for large n. So, the standard error is given by

$$SE(\bar{X}) = \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}.$$ \hspace{1cm} (3.20)

If the standard deviation σ for the underlying population is unknown, then we can substitute an estimate for the parameter. In this case, we call it the estimated standard error:

$$\hat{SE}(\bar{X}) = \hat{\sigma}_{\bar{X}} = \frac{S}{\sqrt{n}}.$$ \hspace{1cm} (3.21)

Note that the estimate in Equation 3.21 is also a random variable and has a probability distribution associated with it.

If the bias in an estimator is small, then the variance of the estimator is approximately equal to the MSE, $V(T) = MSE(T)$. Thus, we can also use the square root of the MSE as an estimate of the standard error.

Maximum Likelihood Estimation

A maximum likelihood estimator is that value of the parameter (or parameters) that maximizes the likelihood function of the sample. The likelihood function of a random sample of size n from density (mass) function $f(x; \theta)$ is the joint probability density (mass) function, denoted by

$$L(\theta; x_1, ..., x_n) = f(x_1, ..., x_n; \theta).$$ \hspace{1cm} (3.22)

Equation 3.22 provides the likelihood that the random variables take on a particular value $x_1, ..., x_n$. Note that the likelihood function L is a function of the unknown parameter θ, and that we allow θ to represent a vector of parameters.

If we have a random sample (independent, identically distributed random variables), then we can write the likelihood function as

$$L(\theta) = L(\theta; x_1, ..., x_n) = f(x_1; \theta) \times ... \times f(x_n; \theta),$$ \hspace{1cm} (3.23)
which is the product of the individual density functions evaluated at each x_i, or sample point.

In most cases, to find the value $\hat{\theta}$ that maximizes the likelihood function, we take the derivative of L, set it equal to 0 and solve for θ. Thus, we solve the following likelihood equation

$$
\frac{d}{d\theta} L(\theta) = 0.
$$

(3.24)

It can be shown that the likelihood function, $L(\theta)$, and logarithm of the likelihood function, $\ln L(\theta)$, have their maxima at the same value of θ. It is sometimes easier to find the maximum of $\ln L(\theta)$, especially when working with an exponential function. However, keep in mind that a solution to the above equation does not imply that it is a maximum; it could be a minimum. It is important to ensure this is the case before using the result as a maximum likelihood estimator.

When a distribution has more than one parameter, then the likelihood function is a function of all parameters that pertain to the distribution. In these situations, the maximum likelihood estimates are obtained by taking the partial derivatives of the likelihood function (or $\ln L(\theta)$), setting them all equal to zero, and solving the system of equations. The resulting estimators are called the joint maximum likelihood estimators. We see an example of this below, where we derive the maximum likelihood estimators for μ and σ^2 for the normal distribution.

Example 3.3

In this example, we derive the maximum likelihood estimators for the parameters of the normal distribution. We start off with the likelihood function for a random sample of size n given by

$$
L(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) = \left(\frac{1}{2\pi\sigma}\right)^{n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right).
$$

Since this has the exponential function in it, we will take the logarithm to obtain

$$
\ln[L(\theta)] = \ln\left(\left(\frac{1}{2\pi\sigma}\right)^{n/2}\right) + \ln\left[\exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right)\right].
$$

This simplifies to
\[\ln[L(\theta)] = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2, \] (3.25)

with \(\sigma > 0 \) and \(-\infty < \mu < \infty\). The next step is to take the partial derivative of Equation 3.25 with respect to \(\mu \) and \(\sigma^2 \). These derivatives are

\[\frac{\partial}{\partial \mu} \ln L = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu), \] (3.26)

and

\[\frac{\partial}{\partial \sigma^2} \ln L = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \mu)^2. \] (3.27)

We then set Equations 3.26 and 3.27 equal to zero and solve for \(\mu \) and \(\sigma^2 \). Solving the first equation for \(\mu \), we get the familiar sample mean for the estimator.

\[\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0, \]

\[\sum_{i=1}^{n} x_i = n\mu, \]

\[\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i. \]

Substituting \(\hat{\mu} = \bar{x} \) into Equation 3.27, setting it equal to zero, and solving for the variance, we get

\[-\frac{n}{2\sigma^4} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 0 \]

\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2. \] (3.28)
These are the sample moments about the sample mean, and it can be verified that these solutions jointly maximize the likelihood function [Lindgren, 1993].

We know that the $E[\bar{X}] = \mu$ [Mood, Graybill and Boes, 1974], so the sample mean is an unbiased estimator for the population mean. However, that is not the case for the maximum likelihood estimate for the variance. It can be shown [Hogg and Craig, 1978] that

$$E[\hat{\sigma}^2] = \frac{(n-1)\sigma^2}{n},$$

so we know (from Equation 3.14) that the maximum likelihood estimate, $\hat{\sigma}^2$, for the variance is biased. If we want to obtain an unbiased estimator for the variance, we simply multiply our maximum likelihood estimator by $n/(n-1)$. This yields the familiar statistic for the sample variance given by

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

Method of Moments

In some cases, it is difficult finding the maximum of the likelihood function. For example, the gamma distribution has the unknown parameter t that is used in the gamma function, $\Gamma(t)$. This makes it hard to take derivatives and solve the equations for the unknown parameters. The method of moments is one way to approach this problem.

In general, we write the unknown population parameters in terms of the population moments. We then replace the population moments with the corresponding sample moments. We illustrate these concepts in the next example, where we find estimates for the parameters of the gamma distribution.

Example 3.4

The gamma distribution has two parameters, t and λ. Recall that the mean and variance are given by t/λ and t/λ^2, respectively. Writing these in terms of the population moments, we have

$$E[X] = \frac{t}{\lambda}, \quad (3.29)$$

and
\[V(X) = E[X^2] - (E[X])^2 = \frac{t}{\lambda^2}. \] (3.30)

The next step is to solve Equations 3.29 and 3.30 for \(t \) and \(\lambda \). From Equation 3.29, we have \(t = \lambda E[X] \), and substituting this in the second equation yields

\[E[X^2] - (E[X])^2 = \frac{\lambda E[X]}{\lambda^2}. \] (3.31)

Rearranging Equation 3.31 gives the following expression for \(\lambda \)

\[\lambda = \frac{E[X]}{E[X^2] - (E[X])^2}. \] (3.32)

We can now obtain the parameter \(t \) in terms of the population moments (substitute Equation 3.32 for \(\lambda \) in Equation 3.29) as

\[t = \frac{(E[X])^2}{E[X^2] - (E[X])^2}. \] (3.33)

To get our estimates, we substitute the sample moments for \(E[X] \) and \(E[X^2] \) in Equations 3.32 and 3.33. This yields

\[\hat{t} = \frac{\bar{X}^2}{\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2}, \] (3.34)

and

\[\hat{\lambda} = \frac{\bar{X}}{\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2}. \] (3.35)

In Table 3.1, we provide some suggested point estimates for several of the distributions covered in Chapter 2. This table also contains the names of functions to calculate the estimators. In Section 3.6, we discuss the MATLAB code available in the Statistics Toolbox for calculating maximum likelihood estimates of distribution parameters. The reader is cautioned that the estimators
discussed in this chapter are not necessarily the best in terms of bias, variance, etc.

TABLE 3.1

Suggested Point Estimators for Parameters

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Suggested Estimator</th>
<th>MATLAB Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>(\hat{p} = \frac{X}{n})</td>
<td>cebinpar</td>
</tr>
<tr>
<td>Note: (X) is the number of successes in (n) trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exponential</td>
<td>(\hat{\lambda} = \frac{1}{X})</td>
<td>csexpar</td>
</tr>
<tr>
<td>Gamma</td>
<td>(\hat{\lambda} = \frac{X^2}{\left(\frac{1}{n} \sum X_i^2 - X^2\right)})</td>
<td>cgampar</td>
</tr>
<tr>
<td></td>
<td>(\hat{\lambda} = \frac{X}{\left(\frac{1}{n} \sum X_i^2 - X^2\right)})</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>(\hat{\mu} = X) (\hat{\sigma}^2 = S^2)</td>
<td>mean var</td>
</tr>
<tr>
<td>Multivariate Normal</td>
<td>(\hat{\mu}i = \frac{1}{n} \sum{i=1}^{n} X_{ij})</td>
<td>mean cov</td>
</tr>
<tr>
<td></td>
<td>(\hat{\Sigma}_{ij} = \frac{n \sum X_i X_j - \sum X_i \sum X_j}{n(n-1)})</td>
<td></td>
</tr>
<tr>
<td>Poisson</td>
<td>(\hat{\lambda} = X)</td>
<td>cspoiapar</td>
</tr>
</tbody>
</table>

3.5 Empirical Distribution Function

Recall from Chapter 2 that the cumulative distribution function is given by

\[
F(x) = P(X \leq x) = \int_{-\infty}^{x} f(t)dt
\]

(3.36)
for a continuous random variable and by

\[F(a) = \sum_{x_i \leq a} f(x_i) \]

(3.37)

for a discrete random variable. In this section, we examine the sample analog of the cumulative distribution function called the empirical distribution function. When it is not suitable to assume a distribution for the random variable, then we can use the empirical distribution function as an estimate of the underlying distribution. One can call this a nonparametric estimate of the distribution function, because we are not assuming a specific parametric form for the distribution that generates the random phenomena. In a parametric setting, we would assume a particular distribution generated the sample and estimate the cumulative distribution function by estimating the appropriate parameters.

The empirical distribution function is based on the order statistics. The order statistics for a sample are obtained by putting the data in ascending order. Thus, for a random sample of size \(n \), the order statistics are defined as

\[X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}, \]

with \(X_{(i)} \) denoting the \(i \)-th order statistic. The order statistics for a random sample can be calculated easily in MATLAB using the `sort` function.

The empirical distribution function \(\hat{F}_n(x) \) is defined as the number of data points less than or equal to \(x \) (\(\#(X_i \leq x) \)) divided by the sample size \(n \). It can be expressed in terms of the order statistics as follows

\[
\hat{F}_n(x) = \begin{cases}
0; & x < X_{(1)} \\
\frac{j}{n}; & X_{(j)} \leq x < X_{(j+1)} \\
1; & x \geq X_{(n)}.
\end{cases}
\]

(3.38)

Figure 3.2 illustrates these concepts. We show the empirical cumulative distribution function for a standard normal and include the theoretical distribution function to verify the results. In the following section, we describe a descriptive measure for a population called a quantile, along with its corresponding estimate. Quantiles are introduced here, because they are based on the cumulative distribution function.

Quantiles

Quantiles have a fundamental role in statistics. For example, they can be used as a measure of central tendency and dispersion, they provide the critical val-
values in hypothesis testing (see Chapter 6), and they are used in exploratory data analysis for assessing distributions (see Chapter 5).

The quantile q_p of a random variable (or equivalently of its distribution) is defined as the smallest number q such that the cumulative distribution function is greater than or equal to some p, where $0 < p < 1$. This can be calculated for a continuous random variable with density function $f(x)$ by solving

$$ p = \int_{-\infty}^{q} f(x) \, dx \quad (3.39) $$

for q_p, or by using the inverse of the cumulative distribution function,

$$ q_p = F^{-1}(p). \quad (3.40) $$

Stating this another way, the p-th quantile of a random variable X is the value q_p such that

$$ F(q_p) = P(X \leq q_p) = p \quad (3.41) $$

for $0 < p < 1$.

Some well known examples of quantiles are the quartiles. These are denoted by $q_{0.25}$, $q_{0.5}$, and $q_{0.75}$. In essence, these divide the distribution into four equal (in terms of probability or area under the curve) segments. The second quartile is also called the median and satisfies
\[0.5 = \int_{-\infty}^{q_{0.5}} f(x) \, dx. \]

(3.42)

We can get a measure of the dispersion of the random variable by looking at the **interquartile range** (IQR) given by

\[\text{IQR} = q_{0.75} - q_{0.25}. \]

(3.43)

One way to obtain an estimate of the quantiles is based on the empirical distribution function. If we let \(X_{(1)}, X_{(2)}, \ldots, X_{(n)} \) denote the order statistics for a random sample of size \(n \), then \(X_{(j)} \) is an estimate of the \((j - 0.5)/n\) quantile [Banks, 2001; Cleveland, 1993]:

\[X_{(j)} = F^{-1}\left(\frac{j-0.5}{n}\right). \]

(3.44)

We are not limited to a value of 0.5 in Equation 3.44. In general, we can estimate the \(p \)-th quantile using the following

\[\hat{q}_p = X_{(i)}; \quad \frac{i-1}{n} < p \leq \frac{i}{n}; \quad j = 1, \ldots, n. \]

(3.45)

As already stated, Equation 3.45 is not the only way to estimate quantiles. For more information on other methods, see Kotz and Johnson [Vol. 7, 1986]. The analyst should exercise caution when calculating quartiles (or other quantiles) using computer packages. Statistical software packages define them differently [Frigge, Hoaglin, and Iglewicz, 1989], so these statistics might vary depending on the formulas that are used.

Example 3.5

In this example, we will show one way to determine the sample quartiles. The second sample quartile \(\hat{q}_{0.5} \) is the sample median of the data set. We can calculate this using the function **median**. We could calculate the first quartile \(\hat{q}_{0.25} \) as the median of the ordered data that are at the median or below. The third quartile \(\hat{q}_{0.75} \) would be calculated as the median of the data that are at \(\hat{q}_{0.5} \) or above. The following MATLAB code illustrates these concepts.

```matlab
x = sort(rand(1,100));
% Find the median of the lower half - first quartile.
q1 = median(x(1:50));
% Find the median.
q2 = median(x);
```
% Find the median of the upper half - third quartile.
q3 = median(x(51:100));

The quartiles obtained from this random sample are:

q1 = 0.29, q2 = 0.53, q3 = 0.79

The theoretical quartiles for the uniform distribution are \(q_{0.25} = 0.25, \)
\(q_{0.5} = 0.5, \) and \(q_{0.75} = 0.75. \) So we see that the estimates seem reasonable.

Equation 3.44 provides one way to estimate the quantiles from a random sample. In some situations, we might need to determine an estimate of a quantile that does not correspond to \((j - 0.5)/n. \) For instance, this is the case when we are constructing q-q plots (see Chapter 5), and the sample sizes differ. We can use interpolation to find estimates of quantiles that are not represented by Equation 3.44.

Example 3.5
The MATLAB function \texttt{interpl} (in the standard package) returns the interpolated value \(Y_j \) at a given \(X_i, \) based on some observed values \(X_{obs} \) and \(Y_{obs}. \) The general syntax is

\[
yint = \text{interpl}(xobs, yobs, xint);
\]

In our case, the argument of \(F^{-1} \) in Equation 3.44 represents the observed values \(X_{obs}, \) and the order statistics \(X_{(j)} \) correspond to the \(Y_{obs}. \) The MATLAB code for this procedure is shown below.

\[
\begin{align*}
\texttt{x} &= \text{randn}(500,1); \\
\texttt{xs} &= \text{sort}(x); \\
\texttt{p} &= [0.25, 0.5, 0.75]; \\
\texttt{qhat} &= \text{interpl}(\texttt{phat}, \texttt{xs}, \texttt{p});
\end{align*}
\]

The resulting estimates are

\[
\begin{align*}
\texttt{qhat} &= -0.6928 \quad 0.0574 \quad 0.6453.
\end{align*}
\]

The reader is asked to explore this further in the exercises.
3.6 MATLAB Code

The MATLAB Statistics Toolbox has functions for calculating the maximum likelihood estimates for most of the common distributions, including the gamma and the Weibull distributions. It is important to remember that the parameters estimated for some of the distributions (e.g., exponential and gamma) are different from those defined in Chapters 2 and 3. We refer the reader to Appendix E for a complete list of the functions appropriate to this chapter. Table 3.2 provides a partial list of MATLAB functions for calculating statistics. We also provide some functions for statistics with the Computational Statistics Toolbox. These are summarized in Table 3.3.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>MATLAB Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>These functions are available in the standard MATLAB package.</td>
<td><code>mean</code> <code>var</code> <code>std</code> <code>cov</code> <code>median</code> <code>corrcoef</code> <code>max</code>, <code>min</code> <code>sort</code></td>
</tr>
<tr>
<td>These functions for calculating descriptive statistics are available in the MATLAB Statistics Toolbox.</td>
<td><code>harmmean</code> <code>iqr</code> <code>kurtosis</code> <code>mad</code> <code>moment</code> <code>prctile</code> <code>range</code> <code>skewness</code> <code>trimmean</code></td>
</tr>
<tr>
<td>These MATLAB Statistics Toolbox functions provide the maximum likelihood estimates for distributions.</td>
<td><code>betafit</code> <code>binofit</code> <code>expfit</code> <code>gamfit</code> <code>normfit</code> <code>poissfit</code> <code>weibfit</code> <code>unifit</code> <code>mle</code></td>
</tr>
</tbody>
</table>
TABLE 3.3
List of Functions from Chapter 3 Included in the Computational Statistics Toolbox

<table>
<thead>
<tr>
<th>Purpose</th>
<th>MATLAB Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>These functions are used to obtain parameter estimates for a distribution.</td>
<td>csbinpar</td>
</tr>
<tr>
<td></td>
<td>csexpar</td>
</tr>
<tr>
<td></td>
<td>csgeampar</td>
</tr>
<tr>
<td></td>
<td>cspoipar</td>
</tr>
<tr>
<td></td>
<td>csunipar</td>
</tr>
<tr>
<td>These functions return the quantiles.</td>
<td>csbinoq</td>
</tr>
<tr>
<td></td>
<td>csexpoq</td>
</tr>
<tr>
<td></td>
<td>csunifq</td>
</tr>
<tr>
<td></td>
<td>csweibq</td>
</tr>
<tr>
<td></td>
<td>csnormq</td>
</tr>
<tr>
<td></td>
<td>csquantiles</td>
</tr>
<tr>
<td>Other descriptive statistics</td>
<td>csmomentc</td>
</tr>
<tr>
<td></td>
<td>cs skewness</td>
</tr>
<tr>
<td></td>
<td>cs kurtoosis</td>
</tr>
<tr>
<td></td>
<td>cs moment</td>
</tr>
<tr>
<td></td>
<td>cs ecdf</td>
</tr>
</tbody>
</table>

3.7 Further Reading

Many books discuss sampling distributions and parameter estimation. These topics are covered at an undergraduate level in most introductory statistics books for engineers or non-statisticians. For the advanced undergraduate and beginning graduate student, we recommend the text on mathematical statistics by Hogg and Craig [1978]. Another excellent introductory book on mathematical statistics that contains many applications and examples is written by Mood, Graybill and Boes [1974]. Other texts at this same level include Bain and Engelhardt [1992], Bickel and Doksum [2001], and Lindgren [1993]. For the reader interested in the theory of point estimation on a more advanced graduate level, the book by Lehmann and Casella [1998] and Lehmann [1994] are classics.

Most of the texts already mentioned include descriptions of other methods (Bayes methods, minimax methods, Pitman estimators, etc.) for estimating parameters. For an introduction to robust estimation methods, see the books by Wilcox [1997], Launer and Wilkinson [1979], Huber [1981], or Rousseeuw and Leroy [1987] or see the survey paper by Hogg [1974]. Finally, the text by
Keating, Mason and Sen [1993] provides an introduction to Pitman’s measure of closeness as a way to assess the performance of competing estimators.
Exercises

3.1. Generate 500 random samples from the standard normal distribution for sample sizes of \(n = 2, 15, \) and 45. At each sample size, calculate the sample mean for all 500 samples. How are the means distributed as \(n \) gets large? Look at a histogram of the sample means to help answer this question. What is the mean and variance of the sample means for each \(n \)? Is this what you would expect from the Central Limit Theorem? Here is some MATLAB code to get you started.

For each \(n \):

\[
\begin{align*}
\% \text{ Generate 500 random samples of size } n: \\
x &= \text{randn}(n, 500); \\
\% \text{ Get the mean of each sample:} \\
xbar &= \text{mean}(x); \\
\% \text{ Do a histogram with superimposed normal density.} \\
\% \text{ This function is in the MATLAB Statistics Toolbox.} \\
\% \text{ If you do not have this, then just use the} \\
\% \text{ function hist instead of histfit.} \\
\text{histfit}(xbar);
\end{align*}
\]

3.2. Repeat problem 3.1 for random samples drawn from a uniform distribution. Use the MATLAB function \texttt{rand} to get the samples.

3.3. We have two unbiased estimators \(T_1 \) and \(T_2 \) of the parameter \(\theta \). The variances of the estimators are given by \(V(T_2) = 8 \) and \(V(T_1) = 4 \). What is the MSE of the estimators? Which estimator is better and why? What is the relative efficiency of the two estimators?

3.4. Repeat Example 3.1 using different sample sizes. What happens to the coefficient of skewness and kurtosis as the sample size gets large?

3.5. Repeat Example 3.1 using samples generated from a standard normal distribution. You can use the MATLAB function \texttt{randn} to generate your samples. What happens to the coefficient of skewness and kurtosis as the sample size gets large?

3.6. Generate a random sample that is uniformly distributed over the interval \((0, 1)\). Plot the empirical distribution function over the interval \((-0.5, 1.5)\). There is also a function in the Statistics Toolbox called \texttt{cdfplot} that will do this.

3.7. Generate a random sample of size 100 from a normal distribution with mean 10 and variance of 2 (use \texttt{randn(1,100)*sqrt(2)+10}). Plot the empirical cumulative distribution function. What is the value of the empirical distribution function evaluated at a point less than
the smallest observation in your random sample? What is the value of the empirical cumulative distribution function evaluated at a point that is greater than the largest observation in your random sample?

3.8. Generate a random sample of size 100 from a normal distribution. What are the estimated quartiles?

3.9. Generate a random sample of size 100 from a uniform distribution (use the MATLAB function rand to generate the samples). What are the sample quantiles for \(p = 0.33, 0.40, 0.63, 0.90 \)? Is this what you would expect from theory?

3.10. Write a MATLAB function that will return the sample quartiles based on the general definition given for sample quantiles (Equation 3.44).

3.11. Repeat Examples 3.5 and 3.6 for larger sample sizes. Do your estimates for the quartiles get closer to the theoretical values?

3.12. Derive the median for an exponential random variable.

3.13. Calculate the quartiles for the exponential distribution.

3.14. Compare the values obtained for the estimated quartiles in Example 3.6 with the theoretical quantities. You can find the theoretical quantities using norminv. Increase the sample size to \(n = 1000 \). Does your estimate get better?

3.15. Another measure of skewness, called the **quartile coefficient of skewness**, for a sample is given by

\[
\hat{\gamma}_1 = \frac{\hat{q}_{0.75} - 2\hat{q}_{0.5} + \hat{q}_{0.25}}{\hat{q}_{0.75} - \hat{q}_{0.25}}
\]

Write a MATLAB function that returns this statistic.

3.16. Investigate the bias in the maximum likelihood estimate of the variance that is given in Equation 3.28. Generate a random sample from the standard normal distribution. You can use the randn function that is available in the standard MATLAB package. Calculate \(\hat{\sigma}^2 \) using Equation 3.28 and record the value in a vector. Repeat this process (generate a random sample from the standard normal distribution, estimate the variance, save the value) many times. Once you are done with this procedure, you should have many estimates for the variance. Take the mean of these estimates to get an estimate of the expected value of \(\hat{\sigma}^2 \). How does this compare with the known value of \(\sigma^2 = 1 \)? Does this indicate that the maximum likelihood estimate for the variance is biased? What is the estimated bias from this procedure?
Chapter 4
Generating Random Variables

4.1 Introduction

Many of the methods in computational statistics require the ability to generate random variables from known probability distributions. This is at the heart of Monte Carlo simulation for statistical inference (Chapter 6), bootstrap and resampling methods (Chapters 6 and 7), Markov chain Monte Carlo techniques (Chapter 11), and the analysis of spatial point processes (Chapter 12). In addition, we use simulated random variables to explain many other topics in this book, such as exploratory data analysis (Chapter 5), density estimation (Chapter 8), and statistical pattern recognition (Chapter 9).

There are many excellent books available that discuss techniques for generating random variables and the underlying theory; references will be provided in the last section. Our purpose in covering this topic is to give the reader the tools they need to generate the types of random variables that often arise in practice and to provide examples illustrating the methods. We first discuss general techniques for generating random variables, such as the inverse transformation and acceptance-rejection methods. We then provide algorithms and MATLAB code for generating random variables for some useful distributions.

4.2 General Techniques for Generating Random Variables

Uniform Random Numbers

Most methods for generating random variables start with random numbers that are uniformly distributed on the interval $(0, 1)$. We will denote these random variables by the letter U. With the advent of computers, we now have
the ability to generate uniform random variables very easily. However, we have to caution the reader that the numbers generated by computers are really pseudorandom because they are generated using a deterministic algorithm. The techniques used to generate uniform random variables have been widely studied in the literature, and it has been shown that some generators have serious flaws [Gentle, 1998].

The basic MATLAB program has a function rand for generating uniform random variables. There are several optional arguments, and we take a moment to discuss them because they will be useful in simulation. The function rand with no arguments returns a single instance of the random variable \(U \). To get an \(m \times n \) array of uniform variates, you can use the syntax \(\text{rand}(m,n) \). A note of caution: if you use \(\text{rand}(n) \), then you get an \(n \times n \) matrix.

The sequence of random numbers that is generated in MATLAB depends on the seed or the state of the generator. The state is reset to the default when it starts up, so the same sequences of random variables are generated whenever you start MATLAB. This can sometimes be an advantage in situations where we would like to obtain a specific random sample, as we illustrate in the next example. If you call the function using \(\text{rand('state',0)} \), then MATLAB resets the generator to the initial state. If you want to specify another state, then use the syntax \(\text{rand('state',j)} \) to set the generator to the \(j \)-th state. You can obtain the current state using \(S = \text{rand('state')} \), where \(S \) is a 35 element vector. To reset the state to this one, use \(\text{rand('state',S)} \).

It should be noted that random numbers that are uniformly distributed over an interval \(a \) to \(b \) may be generated by a simple transformation, as follows

\[
X = (b - a) \cdot U + a .
\]

(4.1)

Example 4.1

In this example, we illustrate the use of MATLAB's function `rand`.

```matlab
% Obtain a vector of uniform random variables in (0,1).
x = rand(1,1000);
% Do a histogram to plot.
% First get the height of the bars.
[N,X] = hist(x,15);
% Use the bar function to plot.
bar(X,N,1,'w')
title('Histogram of Uniform Random Variables')
xlabel('X')
ylabel('Frequency')
```

The resulting histogram is shown in Figure 4.1. In some situations, the analyst might need to reproduce results from a simulation, say to verify a con-
FIGURE 4.1
This figure shows a histogram of a random sample from the uniform distribution on the interval (0, 1).

clusion or to illustrate an interesting sample. To accomplish this, the state of
the uniform random number generator should be specified at each iteration
of the loop. This is accomplished in MATLAB as shown below.

% Generate 3 random samples of size 5.
x = zeros(3,5); % Allocate the memory.
for i = 1:3
 rand('state',i) % set the state
 x(i,:) = rand(1,5);
end

The three sets of random variables are

0.9528 0.7041 0.9539 0.5982 0.8407
0.8752 0.3179 0.2732 0.6765 0.0712
0.5162 0.2252 0.1837 0.2163 0.4272

We can easily recover the five random variables generated in the second sam-
ple by setting the state of the random number generator, as follows

rand('state',2)
x = rand(1,5);
From this, we get
\[
x_t = 0.8752 \quad 0.3179 \quad 0.2732 \quad 0.6765 \quad 0.0712
\]
which is the same as before.

Inverse Transform Method

The inverse transform method can be used to generate random variables from a continuous distribution. It uses the fact that the cumulative distribution function \(F \) is uniform \((0, 1)\) [Ross, 1997]:

\[
U = F(X).
\]
(4.2)

If \(U \) is a uniform \((0, 1)\) random variable, then we can obtain the desired random variable \(X \) from the following relationship:

\[
X = F^{-1}(U).
\]
(4.3)

We see an example of how to use the inverse transform method when we discuss generating random variables from the exponential distribution (see Example 4.6). The general procedure for the inverse transformation method is outlined here.

PROCEDURE - INVERSE TRANSFORM METHOD (CONTINUOUS)

1. Derive the expression for the inverse distribution function \(F^{-1}(U) \).
2. Generate a uniform random number \(U \).
3. Obtain the desired \(X \) from \(X = F^{-1}(U) \).

This same technique can be adapted to the discrete case [Banks, 2001]. Say we would like to generate a discrete random variable \(X \) that has a probability mass function given by

\[
P(X = x_i) = p_i; \quad x_0 < x_1 < x_2 < \ldots; \quad \sum_{i} p_i = 1.
\]
(4.4)

We get the random variables by generating a random number \(U \) and then deliver the random number \(X \) according to the following:

\[
X = x_i, \quad \text{if} \quad F(x_{i-1}) < U \leq F(x_i).
\]
(4.5)
We illustrate this procedure using a simple example.

Example 4.2
We would like to simulate a discrete random variable X that has probability mass function given by

$$
P(X = 0) = 0.3,
P(X = 1) = 0.2,
P(X = 2) = 0.5.
$$

The cumulative distribution function is

$$
F(x) = \begin{cases}
0; & x < 0 \\
0.3; & 0 \leq x < 1 \\
0.5; & 1 \leq x < 2 \\
1.0; & 2 \leq x.
\end{cases}
$$

We generate random variables for X according to the following scheme

$$
X = \begin{cases}
0; & U \leq 0.3 \\
1; & 0.3 < U \leq 0.5 \\
2; & 0.5 < U \leq 1.
\end{cases}
$$

This is easily implemented in MATLAB and is left as an exercise. The procedure is illustrated in Figure 4.2, for the situation where a uniform random variable 0.73 was generated. Note that this would return the variate $x = 2$.

We now outline the algorithmic technique for this procedure. This will be useful when we describe a method for generating Poisson random variables.

PROCEDURE - INVERSE TRANSFORM (DISCRETE)

1. Define a probability mass function for x_i, $i = 1, \ldots, k$. Note that k could grow infinitely.
2. Generate a uniform random number U.
3. If $U \leq p_0$ deliver $X = x_0$
4. else if $U \leq p_0 + p_1$ deliver $X = x_1$
5. else if $U \leq p_0 + p_1 + p_2$ deliver $X = x_2$

6. ... else if \(U \leq p_0 + \ldots + p_k \) deliver \(X = x_k \).

Example 4.3

We repeat the previous example using this new procedure and implement it in MATLAB. We first generate 100 variates from the desired probability mass function.

```matlab
% Set up storage space for the variables.
X = zeros(1,100);
% These are the x's in the domain.
x = 0:2;
% These are the probability masses.
pr = [0.3 0.2 0.5];
% Generate 100 rv's from the desired distribution.
for i = 1:100
    u = rand; % Generate the U.
    if u <= pr(1)
        X(i) = x(1);
    elseif u <= sum(pr(1:2)) % It has to be between 0.3 and 0.5.
        X(i) = x(2);
```
else
 \(X(i) = x(3); \) % It has to be between 0.5 and 1.
end
end

One way to verify that our random variables are from the desired distribution is to look at the relative frequency of each \(x \).

\[
\begin{align*}
\hat{P}(x = x_0) &= 0.26 \\
\hat{P}(x = x_1) &= 0.21 \\
\hat{P}(x = x_2) &= 0.53.
\end{align*}
\]

These values are reasonable when compared with the desired probability mass values.

\[\Box\]

Acceptance-Rejection Method

In some cases, we might have a simple method for generating a random variable from one density, say \(g(y) \), instead of the density we are seeking. We can use this density to generate from the desired continuous density \(f(x) \). We first generate a random number \(Y \) from \(g(y) \) and accept the value with a probability proportional to the ratio \(f(Y)/(g(Y)) \).

If we define \(c \) as a constant that satisfies

\[
\frac{f(y)}{g(y)} \leq c; \quad \text{for all } y,
\]

then we can generate the desired variates using the procedure outlined below. The constant \(c \) is needed because we might have to adjust the height of \(g(y) \) to ensure that it is above \(f(y) \). We generate points from \(cg(y) \), and those points that are inside the curve \(f(y) \) are accepted as belonging to the desired density. Those that are outside are rejected. It is best to keep the number of rejected variates small for maximum efficiency.
PROCEDURE - ACCEPTANCE-REJECTION METHOD (CONTINUOUS)

1. Choose a density \(g(y) \) that is easy to sample from.
2. Find a constant \(c \) such that Equation 4.6 is satisfied.
3. Generate a random number \(Y \) from the density \(g(y) \).
4. Generate a uniform random number \(U \).
5. If

\[
U \leq \frac{f(Y)}{cg(Y)},
\]

then accept \(X = Y \), else go to step 3.

Example 4.4

We shall illustrate the acceptance-rejection method by generating random variables from the beta distribution with parameters \(\alpha = 2 \) and \(\beta = 1 \) [Ross, 1997]. This yields the following probability density function

\[
f(x) = 2x; \quad 0 < x < 1.
\] (4.7)

Since the domain of this density is 0 to 1, we use the uniform distribution for our \(g(y) \). We must find a constant that we can use to inflate the uniform so it is above the desired beta density. This constant is given by the maximum value of the density function, and from Equation 4.7, we see that \(c = 2 \). For more complicated functions, techniques from calculus or the MATLAB function \texttt{fminsearch} may be used. The following MATLAB code generates 100 random variates from the desired distribution. We save both the accepted and the rejected variates for display purposes only.

\[
c = 2; \quad \% \text{ constant}
\]
\[
n = 100; \quad \% \text{ Generate 100 random variables.}
\]
\[
\text{x} = \text{zeros}(1,n); \quad \% \text{ random variates}
\]
\[
\text{xy} = \text{zeros}(1,n); \quad \% \text{ corresponding y values}
\]
\[
\text{rej} = \text{zeros}(1,n); \quad \% \text{ rejected variates}
\]
\[
\text{rejy} = \text{zeros}(1,n); \quad \% \text{ corresponding y values}
\]
\[
\text{irv} = 1;
\]
\[
\text{irej} = 1;
\]
\[
\text{while irv} \leq n
\]
\[
\text{y} = \text{rand}(1); \quad \% \text{ random number from } g(y)
\]
\[
\text{u} = \text{rand}(1); \quad \% \text{ random number for comparison}
\]
\[
\text{if } u \leq 2*y/c;
\]
\[
\text{x}(\text{irv}) = y;
\]
\[
\text{xy}(\text{irv}) = u*c;
\]
\begin{verbatim}
irv = irv + 1
else
 rej(irej) = y;
 rejoy(irej) = u*c; % really comparing u*c<2*y
 irej = irej + 1
end
end
\end{verbatim}

In Figure 4.3, we show the accepted and rejected random variates that were generated in this process. Note that the accepted variates are those that are less than \(f(x) \).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4_3}
\caption{Figure 4.3}
\end{figure}

This shows the points that were accepted ('o') as being generated by \(f(x) = 2x \) and those points that were rejected ('*'). The curve represents \(f(x) \), so we see that the accepted variates are the ones below the curve.

We can easily adapt this method to generate random variables from a discrete distribution. Here we have a method for simulating a random variable with a probability mass function \(q_i = P(Y = i) \), and we would like to obtain a random variable \(X \) having a probability mass function \(p_j = P(X = i) \). As in the continuous case, we generate a random variable \(Y \) from \(q_i \) and accept this value with probability \(p_j / (c q_j) \).
PROCEDURE - REJECTION METHOD (DISCRETE)

1. Choose a probability mass function \(q_i \) that is easy to sample from.
2. Find a constant \(c \) such that \(p_Y < c q_Y \).
3. Generate a random number \(Y \) from the density \(q_i \).
4. Generate a uniform random number \(U \).
5. If

\[
U \leq \frac{p_Y}{c q_Y},
\]

then deliver \(X = Y \), else go to step 3.

Example 4.5
In this example, we use the discrete form of the acceptance-rejection method to generate random variables according to the probability mass function defined as follows

\[
\begin{align*}
P(X = 1) &= 0.15, \\
P(X = 2) &= 0.22, \\
P(X = 3) &= 0.33, \\
P(X = 4) &= 0.10, \\
P(X = 5) &= 0.20.
\end{align*}
\]

We let \(q_Y \) be the discrete uniform distribution on \(1, \ldots, 5 \), where the probability mass function is given by

\[
q_Y = \frac{1}{5}; \quad y = 1, \ldots, 5.
\]

We describe a method for generating random variables from the discrete uniform distribution in a later section. The value for \(c \) is obtained as the maximum value of \(p_y / q_y \), which is 1.65. This quantity is obtained by taking the maximum \(p_Y \), which is \(P(X = 3) = 0.33 \), and dividing by \(1/5 \):

\[
\frac{\max(p_Y)}{1/5} = 0.33 \times 5 = 1.65.
\]

The steps for generating the variates are:
1. Generate a variate Y from the discrete uniform density on $1, \ldots, 5$. (One could use the MATLAB Statistics Toolbox function \texttt{unidrnd} or \texttt{csdunrnd}.)

2. Generate a uniform random number U.

3. If

$$ U \leq \frac{p_Y}{cq_Y} = \frac{p_Y}{1.65 \cdot 1/5} = \frac{p_Y}{0.33}, $$

then deliver $X = Y$, else return to step 1.

The implementation of this example in MATLAB is left as an exercise.

4.3 Generating Continuous Random Variables

Normal Distribution

The main MATLAB program has a function that will generate numbers from the standard normal distribution, so we do not discuss any techniques for generating random variables from the normal distribution. For the reader who is interested in how normal random variates can be generated, most of the references provided in Section 4.6 contain this information.

The MATLAB function for generating standard normal random variables is called \texttt{randn}, and its functionality is similar to the function \texttt{rand} that was discussed in the previous section. As with the uniform random variable U, we can obtain a normal random variable X with mean μ and variance σ^2 by means of a transformation. Letting Z represent a standard normal random variable (possibly generated from \texttt{randn}), we get the desired X from the relationship

$$ X = Z \cdot \sigma + \mu. \quad (4.8) $$

Exponential Distribution

The inverse transform method can be used to generate random variables from the exponential distribution and serves as an example of this procedure. The distribution function for an exponential random variable with parameter λ is given by
\[F(x) = 1 - e^{-\lambda x}; \quad 0 < x < \infty. \]

(4.9)

Letting

\[u = F(x) = 1 - e^{-\lambda x}, \]

(4.10)

we can solve for \(x \), as follows

\[
\begin{align*}
 u &= 1 - e^{-\lambda x} \\
 e^{-\lambda x} &= 1 - u \\
 -\lambda x &= \log(1 - u) \\
 x &= \frac{-1}{\lambda} \log(1 - u).
\end{align*}
\]

By making note of the fact that \(1 - u \) is also uniformly distributed over the interval \((0,1)\), we can generate exponential random variables with parameter \(\lambda \) using the transformation

\[X = \frac{-1}{\lambda} \log(U). \]

(4.11)

Example 4.6

The following MATLAB code will generate exponential random variables for a given \(\lambda \).

```matlab
% Set up the parameters.
lam = 2;
n = 1000;
% Generate the random variables.
uni = rand(1,n);
X = -log(uni)/lam;
```

We can generate a set of random variables and plot them to verify that the function does yield exponentially distributed random variables. We plot a histogram of the results along with the theoretical probability density function in Figure 4.4. The MATLAB code given below shows how we did this.

```matlab
% Get the values to draw the theoretical curve.
x = 0:.1:5;
% This is a function in the Statistics Toolbox.
y = exppdf(x,1/2);
% Get the information for the histogram.
[N,h] = hist(X,10);
% Change bar heights to make it correspond to
```
% the theoretical density - see Chapter 5.
N = N/(h(2)-h(1))/n;
% Do the plots.
bar(h,N,1,'w')
hold on
plot(x,y)
hold off
xlabel('X')
ylabel('f(x) - Exponential')

FIGURE 4.4
This shows a probability density histogram of the random variables generated in
Example 4.6. We also superimpose the curve corresponding to the theoretical probability
density function with $\lambda = 2$. The histogram and the curve match quite well.

Gamma

In this section, we present an algorithm for generating a gamma random variable with parameters (t, λ), where t is an integer. Recall that it has the following distribution function
\[F(x) = \int_0^x \frac{y^{t-1}}{(t-1)!} dy. \] (4.12)

The inverse transform method cannot be used in this case, because a simple closed form solution for its inverse is not possible. It can be shown [Ross, 1997] that the sum of \(t \) independent exponentials with the same parameter \(\lambda \) is a gamma random variable with parameters \(t \) and \(\lambda \). This leads to the following transformation based on \(t \) uniform random numbers,

\[X = -\frac{1}{\lambda} \log U_1, \ldots, -\frac{1}{\lambda} \log U_t. \] (4.13)

We can simplify this and compute only one logarithm by using a familiar relationship of logarithms. This yields the following

\[X = -\frac{1}{\lambda} \log(U_1 \times \cdots \times U_t) = -\frac{1}{\lambda} \log \left(\prod_{i=1}^t U_i \right). \] (4.14)

Example 4.7

The MATLAB code given below implements the algorithm described above for generating gamma random variables, when the parameter \(t \) is an integer.

```matlab
n = 1000;
t = 3;
lam = 2;
% Generate the uniforms needed. Each column
% contains the t uniforms for a realization of a
% gamma random variable.
U = rand(t,n);
% Transform according to Equation 4.13.
% See Example 4.8 for an illustration of Equation 4.14.
logU = -log(U)/lam;
X = sum(logU);
```

To see whether the implementation of the algorithm is correct, we plot them in a probability density histogram.

```matlab
% Now do the histogram.
[N,h] = hist(X,10);
% Change bar heights.
N = N/(h(2)-h(1))/n;
% Now get the theoretical probability density.
% This is a function in the Statistics Toolbox.
x = 0:.1:6;
```
\[y = \text{gampdf}(x, t, 1/\text{lam}); \]
\[\text{bar}(h, N, 1, 'w') \]
\[\text{hold on} \]
\[\text{plot}(x, y, 'k') \]
\[\text{hold off} \]

The histogram and the corresponding theoretical probability density function are shown in Figure 4.5.

\[\square \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4_5}
\caption{This shows the probability density histogram for a set of gamma random variables with \(t = 3 \) and \(\lambda = 2 \).}
\end{figure}

Chi-Square

A chi-square random variable with \(v \) degrees of freedom is a special case of the gamma distribution, where \(\lambda = 1/2 \), \(t = v/2 \) and \(v \) is a positive integer. This can be generated using the gamma distribution method described above with one change. We have to make this change, because the method we presented for generating gamma random variables is for integer \(t \), which works for even values of \(v \).

When \(v \) is even, say \(2k \), we can obtain a chi-square random variable from
\[X = -2\log \left(\prod_{i=1}^{k} U_i \right). \] \hspace{1cm} (4.15)

When \(v \) is odd, say \(2k + 1 \), we can use the fact that the chi-square distribution with \(v \) degrees of freedom is the sum of \(v \) squared independent standard normals [Ross, 1997]. We obtain the required random variable by first simulating a chi-square with \(2k \) degrees of freedom and adding a squared standard normal variate \(Z \), as follows

\[X = Z^2 - 2\log \left(\prod_{i=1}^{k} U_i \right). \] \hspace{1cm} (4.16)

Example 4.8

In this example, we provide a function that will generate chi-square random variables.

```matlab
% function X = cschirnd(nu)
% This function will return n chi-square
% random variables with degrees of freedom nu.

function X = cschirnd(nu)
% Generate the uniforms needed.
r = rem(nu,2);
k = floor(nu/2);
if r == 0  \% then even degrees of freedom
    U = rand(k,n);
    if k == 1
        X = -2*log(prod(U));
    else
        X = -2*log(U);
    end
else  \% odd degrees of freedom
    U = rand(k,n);
    Z = randn(1,n);
    if k == 1
        X = Z.^2-2*2*log(prod(U));
    else
        X = Z.^2-2*2*log(U);
    end
end
```

The use of this function to generate random variables is left as an exercise.

\[\square \]
The chi-square distribution is useful in situations where we need to systematically investigate the behavior of a statistic by changing the skewness of the distribution. As the degrees of freedom for a chi-square increases, the distribution changes from being right skewed to one approaching normality and symmetry.

Beta

The beta distribution is useful in simulations because it covers a wide range of distribution shapes, depending on the values of the parameters α and β. These shapes include skewed, uniform, approximately normal, and a bimodal distribution with an interior dip.

First, we describe a simple approach for generating beta random variables with parameters α and β, when both are integers [Rubinstein, 1981; Gentle, 1998]. It is known [David, 1981] that the k-th order statistic of n uniform (0,1) variates is distributed according to a beta distribution with parameters k and $n - k + 1$. This means that we can generate random variables from the beta distribution using the following procedure.

PROCEDURE - BETA RANDOM VARIABLES (INTEGER PARAMETERS)

1. Generate $\alpha + \beta - 1$ uniform random numbers: $U_1, \ldots, U_{\alpha + \beta - 1}$
2. Deliver $X = U_{(\alpha)}$ which is the α-th order statistic.

One simple way to generate random variates from the beta distribution is to use the following result from Rubinstein [1981]. If Y_1 and Y_2 are independent random variables, where Y_1 has a gamma distribution with parameters α and 1, and Y_2 follows a gamma distribution with parameters β and 1, then

$$X = \frac{Y_1}{Y_1 + Y_2}$$ \hspace{1cm} (4.17)

is from a beta distribution with parameters α and β. This is the method that is used in the MATLAB Statistics Toolbox function *betrand* that generates random variates from the beta distribution. We illustrate the use of *betrand* in the following example.

Example 4.9

We use this example to illustrate the use of the MATLAB Statistics Toolbox function that generates beta random variables. In general, most of these toolbox functions for generating random variables use the following general syntax:

```matlab
rvs = pdfrnd(par1, par2, nrow, ncol);
```
Here, \texttt{pdf} refers to the type of distribution (see Table 4.1, on page 106). The first several arguments represent the appropriate parameters of the distribution, so the number of them might change. The last two arguments denote the number of rows and the number of columns in the array of random variables that are returned by the function. We use the function \texttt{betarnd} to generate random variables from two beta distributions with different parameters α and β. First we look at the case where $\alpha = 3$ and $\beta = 3$. So, to generate $n = 500$ beta random variables (that are returned in a row vector), we use the following commands:

\begin{verbatim}
 % Let a = 3, b = 3
 n = 500;
 a = 3;
 b = 3;
 rvs = betarnd(a,b,1,n);
\end{verbatim}

We can construct a histogram of the random variables and compare it to the corresponding beta probability density function. This is easily accomplished in MATLAB as shown below.

\begin{verbatim}
 % Now do the histogram.
 [N,h] = hist(rvs,10);
 % Change bar heights.
 N = N/(h(2)-h(1))/n;
 % Now get the theoretical probability density.
 x = 0:.05:1;
 y = betapdf(x,a,b);
 plot(x,y)
 axis equal
 bar(h,N,1,'w')
 hold on
 plot(x,y,'k')
 hold off
\end{verbatim}

The result is shown in the left plot of Figure 4.6. Notice that this density looks approximately bell-shaped. The beta density on the right has parameters $\alpha = 0.5$ and $\beta = 0.5$. We see that this curve has a dip in the middle with modes on either end. The reader is asked to construct this plot in the exercises.

\begin{itemize}
 \item \ \Box
\end{itemize}

\textbf{Multivariate Normal}

In the following chapters, we will have many applications where we need to generate multivariate random variables in order to study the algorithms of computational statistics as they apply to multivariate distributions. Thus, we need some methods for generating multivariate random variables. The easi-
FIGURE 4.6
This figure shows two histograms created from random variables generated from the beta distribution. The beta distribution on the left has parameters $\alpha = 3$ and $\beta = 3$, while the one on the right has parameters $\alpha = 0.5$ and $\beta = 0.5$.

est distribution of this type to generate is the multivariate normal. We cover other methods for generating random variables from more general multivariate distributions in Chapter 11.

The method is similar to the one used to generate random variables from a univariate normal distribution. One starts with a d-dimensional vector of standard normal random numbers. These can be transformed to the desired distribution using

$$
\mathbf{x} = \mathbf{R}^T \mathbf{z} + \mu .
$$

Here \mathbf{z} is a $d \times 1$ vector of standard normal random numbers, μ is a $d \times 1$ vector representing the mean, and \mathbf{R} is a $d \times d$ matrix such that $\mathbf{R}^T \mathbf{R} = \Sigma$. The matrix \mathbf{R} can be obtained in several ways, one of which is the Cholesky factorization of the covariance matrix Σ. This is the method we illustrate below. Another possibility is to factor the matrix using singular value decomposition, which will be shown in the examples provided in Chapter 5.
Example 4.10

The function \texttt{csmvrnd} generates multivariate normal random variables using the Cholesky factorization. Note that we are transposing the transformation given in Equation 4.18, yielding the following

\[X = ZR + \mu^T, \]

where \(X \) is an \(n \times d \) matrix of \(d \)-dimensional random variables and \(Z \) is an \(n \times d \) matrix of standard normal random variables.

```matlab
% function X = csmvrnd(mu,covm,n);
% This function will return n multivariate random
% normal variables with d-dimensional mean mu and
% covariance matrix covm. Note that the covariance
% matrix must be positive definite (all eigenvalues
% are greater than zero), and the mean
% vector is a column.

function X = csmvrnd(mu,covm,n)
d = length(mu);
% Get Cholesky factorization of covariance.
R = chol(covm);
% Generate the standard normal random variables.
Z = randn(n,d);
X = Z*R + ones(n,1)*mu';
```

We illustrate its use by generating some multivariate normal random variables with \(\mu^T = (-2,3) \) and covariance

\[
\Sigma = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}.
\]

```matlab
% Generate the multivariate random normal variables.
mu = [-2;3];
covm = [1 0.7 ; 0.7 1];
X = csmvrnd(mu,covm,500);
```

To check the results, we plot the random variables in a scatterplot in Figure 4.7. We can also calculate the sample mean and sample covariance matrix to compare with what we used as input arguments to \texttt{csmvrnd}. By typing \texttt{mean(X)} at the command line, we get

-2.0629 2.9394

Similarly, entering \texttt{corrcosf(X)} at the command line yields
1.0000 0.6957
0.6957 1.0000

We see that these values for the sample statistics correspond to the desired mean and covariance. We note that you could also use the \texttt{cov} function to compare the variances.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{scatter_plot.png}
\caption{This shows the scatter plot of the random variables generated using the function \texttt{csmvrd}.}
\end{figure}

\textbf{Generating Variates on a Sphere}

In some applications, we would like to generate d-dimensional random variables that are distributed on the surface of the unit hypersphere S^d, $d = 2, \ldots$. Note that when $d = 2$ the surface is a circle, and for $d = 3$ the surface is a sphere. We will be using this technique in Chapter 5, where we present an algorithm for exploratory data analysis using projection pursuit. The easiest method is to generate d standard normal random variables and then to scale them such that the magnitude of the vector is one. This is illustrated in the following example.
Example 4.11
The following function `cssphrnd` generates random variables on a \(d \)-dimensional unit sphere. We illustrate its use by generating random variables that are on the unit circle \(S^2 \).

```matlab
% function X = cssphrnd(n,d);
% This function will generate n d-dimensional
% random variates that are distributed on the
% unit d-dimensional sphere. d >= 2

function X = cssphrnd(n,d)
    if d < 2
        error('ERROR - d must be greater than 1. ')
    break
    end
    tmp = randn(d,n);
    % Find the magnitude of each column.
    % Square each element, add and take the square root.
    mag = sqrt(sum(tmp.^2));
    % Make a diagonal matrix of them - inverses.
    dm = diag(1./mag);
    % Multiply to scale properly.
    % Transpose so X contains the observations.
    X = (tmp*dm)';
```

We can use this function to generate a set of random variables for \(d = 2 \) and plot the result in Figure 4.8.

```matlab
X = cssphrnd(500,2);
plot(X(:,1),X(:,2),'x')
axis equal
xlabel('X_1'), ylabel('X_2')
```

4.4 Generating Discrete Random Variables

Binomial

A binomial random variable with parameters \(n \) and \(p \) represents the number of successes in \(n \) independent trials. We can obtain a binomial random vari-
Example 4.12

We implement this algorithm for generating binomial random variables in the function `csbinrnd`.

```matlab
function X = csbinrnd(n,p,N)
    % This function will generate N binomial
    % random variables with parameters n and p.
    X = zeros(1,N);
    % Generate the uniform random numbers:
    % N variates of n trials.
    U = rand(N,n);
    % Loop over the rows, finding the number
    % less than p
    for i = 1:N
        ind = find(U(i,:) <= p);
        X(i) = length(ind);
    end
```
end

We use this function to generate a set of random variables that are distributed according to the binomial distribution with parameters \(n = 6 \) and \(p = 0.5 \). The histogram of the random variables is shown in Figure 4.9. Before moving on, we offer the following more efficient way to generate binomial random variables in MATLAB:

\[
X = \text{sum(rand(n,N) <= p)};
\]

\(\square \)

FIGURE 4.9
This is the histogram for the binomial random variables generated in Example 4.12. The parameters for the binomial are \(n = 6 \) and \(p = 0.5 \).

Poisson

We use the inverse transform method for discrete random variables as described in Ross [1997] to generate variates from the Poisson distribution. We need the following recursive relationship between successive Poisson probabilities

\[
p_{i+1} = P(X = i) = \frac{\lambda}{i + 1} p_i; \quad i \geq 0.
\]
This leads to the following algorithm.

PROCEDURE - GENERATING POISSON RANDOM VARIABLES

1. Generate a uniform random number \(U \).
2. Initialize the quantities: \(i = 0, \ p_0 = e^{-\lambda}, \) and \(F_0 = p_0. \)
3. If \(U \leq F_i, \) then deliver \(X = i. \) Return to step 1.
4. Else increment the values: \(p_{i+1} = \lambda p_i / (i + 1), \ i = i + 1, \) and \(F_{i+1} = F_i + p_{i+1}. \)
5. Return to step 3.

This algorithm could be made more efficient when \(\lambda \) is large. The interested reader is referred to Ross [1997] for more details.

Example 4.13
The following shows how to implement the procedure for generating Poisson random variables in MATLAB.

```matlab
% function X = cspoirnd(lam,n)
% This function will generate Poisson
% random variables with parameter lambda.
% The reference for this is Ross, 1997, page 50.

function x = cspoirnd(lam,n)
    x = zeros(1,n);
    j = 1;
    while j <= n
        flag = 1;
        % initialize quantities
        u = rand(1);
        i = 0;
        p = exp(-lam);
        F = p;
        while flag % generate the variate needed
            if u <= F % then accept
                x(j) = i;
                flag = 0;
                j = j+1;
            else % move to next probability
                p = lam*p/(i+1);
                i = i+1;
                F = F + p;
            end
        end
    end
```
We can use this to generate a set of Poisson random variables with $\lambda = 0.5$, and show a histogram of the data in Figure 4.10.

```matlab
% Set the parameter for the Poisson.
lam = .5;
N = 500; % Sample size
x = cspoirnd(lam,N);
edges = 0:max(x);
f = histc(x,edges);
bar(edges,f/N,1,'w')
```

As an additional check to ensure that our algorithm is working correctly, we can determine the observed relative frequency of each value of the random variable X and compare that to the corresponding theoretical values.

```matlab
% Determine the observed relative frequencies.
% These are the estimated values.
relf = zeros(1,max(x)+1);
for i = 0:max(x)
    relf(i+1) = length(find(x==i))/N;
end
% Use the Statistics Toolbox function to get the
% theoretical values.
y = poisspdf(0:4,.5);
```

When we print these to the MATLAB command window, we have the following

```matlab
% These are the estimated values.
relf = 0.5860  0.3080  0.0840  0.0200  0.0020
% These are the theoretical values.
y = 0.6065  0.3033  0.0758  0.0126  0.0016
```

Discrete Uniform

When we implement some of the Monte Carlo methods in Chapter 6 (such as the bootstrap), we will need the ability to generate numbers that follow the discrete uniform distribution. This is a distribution where X takes on values in the set \{1, 2, ..., N\}, and the probability that X equals any of the numbers is $1/N$. This distribution can be used to randomly sample from a group of N objects.

We can generate from the discrete uniform distribution using the following transform
Chapter 4: Generating Random Variables

\[X = \lceil NU \rceil, \]

where the function \(\lceil y \rceil, y \geq 0 \) means to round up the argument \(y \). The next example shows how to implement this in MATLAB.

Example 4.14
The method for generating discrete uniform is implemented in the function `csdunrnd`, given below.

```matlab
% function X = csdunrnd(N,n)
% This function will generate random variables
% from the discrete uniform distribution. It picks
% numbers uniformly between 1 and N.

function X = csdunrnd(N,n)
X = ceil(N*rand(1,n));
```

To verify that we are generating the right random variables, we can look at the observed relative frequencies. Each should have relative frequency of \(1/N \). This is shown below where \(N = 5 \) and the sample size is 500.

```matlab
N = 5;
n = 500;
x = csdunrnd(N,n);
```
% Determine the estimated relative frequencies.
relf = zeros(1,N);
for i = 1:N
 relf(i) = length(find(x==i))/n;
end

Printing out the observed relative frequencies, we have

\[
\text{relf} = 0.1820 \quad 0.2080 \quad 0.2040 \quad 0.1900 \quad 0.2160
\]

which is close to the theoretical value of \(1/N = 1/5 = 0.2\).

4.5 MATLAB Code

The MATLAB Statistics Toolbox has functions that will generate random variables from all of the distributions discussed in Section 2.6. As we explained in that section, the analyst must keep in mind that probability distributions are often defined differently, so caution should be exercised when using any software package. Table 4.1 provides a partial list of the MATLAB functions that are available for random number generation. A complete list can be found in Appendix E. As before, the reader should note that the \texttt{gamrnd}, \texttt{weibrnd}, and \texttt{exprnd} functions use the alternative definition for the given distribution (see 24).

<table>
<thead>
<tr>
<th>Distribution</th>
<th>MATLAB Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>\texttt{betarnd}</td>
</tr>
<tr>
<td>Binomial</td>
<td>\texttt{binornd}</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>\texttt{chi2rnd}</td>
</tr>
<tr>
<td>Discrete Uniform</td>
<td>\texttt{unidrnd}</td>
</tr>
<tr>
<td>Exponential</td>
<td>\texttt{exprnd}</td>
</tr>
<tr>
<td>Gamma</td>
<td>\texttt{gammrnd}</td>
</tr>
<tr>
<td>Normal</td>
<td>\texttt{normrnd}</td>
</tr>
<tr>
<td>Poisson</td>
<td>\texttt{poissrnd}</td>
</tr>
<tr>
<td>Continuous Uniform</td>
<td>\texttt{unifrnd}</td>
</tr>
<tr>
<td>Weibull</td>
<td>\texttt{weibrnd}</td>
</tr>
</tbody>
</table>
Another function that might prove useful in implementing computational statistics methods is called \texttt{randperm}. This is provided with the standard MATLAB software package, and it generates random permutations of the integers 1 to \(n \). The result can be used to permute the elements of a vector. For example, to permute the elements of a vector \(x \) of size \(n \), use the following MATLAB statements:

\begin{verbatim}
% Get the permuted indices.
ind = randperm(n);
% Now re-order based on the permuted indices.
xperm = x(ind);
\end{verbatim}

We also provide some functions in the Computational Statistics Toolbox for generating random variables. These are outlined in Table 4.2. Note that these generate random variables using the distributions as defined in Chapter 2.

\begin{table}[!ht]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Distribution} & \textbf{MATLAB Function} \\
\hline
Beta & \texttt{csbetarnd} \\
Binomial & \texttt{csbinrnd} \\
Chi-Square & \texttt{cschirnd} \\
Discrete Uniform & \texttt{csdunrnd} \\
Exponential & \texttt{csexprnd} \\
Gamma & \texttt{csgamrnd} \\
Multivariate Normal & \texttt{csmvrnd} \\
Poisson & \texttt{cspoirnd} \\
Points on a sphere & \texttt{cssphrnd} \\
\hline
\end{tabular}
\caption{List of Functions from Chapter 4 Included in the Computational Statistics Toolbox}
\end{table}

\section{4.6 Further Reading}

In this text we do not attempt to assess the computational efficiency of the methods for generating random variables. If the statistician or engineer is performing extensive Monte Carlo simulations, then the time it takes to generate random samples becomes important. In these situations, the reader is encouraged to consult Gentle [1998] or Rubinstein [1981] for efficient algorithms. Our goal is to provide methods that are easily implemented using MATLAB or other software, in case the data analyst must write his own functions for generating random variables from non-standard distributions.
There has been considerable research into methods for random number generation, and we refer the reader to the sources mentioned below for more information on the theoretical foundations. The book by Ross [1997] is an excellent resource and is suitable for advanced undergraduate students. He addresses simulation in general and includes a discussion of discrete event simulation and Markov chain Monte Carlo methods. Another text that covers the topic of random number generation and Monte Carlo simulation is Gentle [1998]. This book includes an extensive discussion of uniform random number generation and covers more advanced topics such as Gibbs sampling. Two other resources on random number generation are Rubinstein [1981] and Kalos and Whitlock [1986]. For a description of methods for generating random variables from more general multivariate distributions, see Johnson [1987]. The article by Deng and Lin [2000] offers improvements on some of the standard uniform random number generators.

A recent article in the MATLAB News & Notes [Spring, 2001] describes the method employed in MATLAB for obtaining normally distributed random variables. The algorithm that MATLAB uses for generating uniform random numbers is described in a similar newsletter article and is available for download at:

Exercises

4.1. Repeat Example 4.3 using larger sample sizes. What happens to the estimated probability mass function (i.e., the relative frequencies from the random samples) as the sample size gets bigger?

4.2. Write the MATLAB code to implement Example 4.5. Generate 500 random variables from this distribution and construct a histogram (hist function) to verify your code.

4.3. Using the algorithm implemented in Example 4.3, write a MATLAB function that will take any probability mass function (i.e., a vector of probabilities) and return the desired number of random variables generated according to that probability function.

4.4. Write a MATLAB function that will return random numbers that are uniformly distributed over the interval \((a, b)\).

4.5. Write a MATLAB function that will return random numbers from the normal distribution with mean \(\mu\) and variance \(\sigma^2\). The user should be able to set values for the mean and variance as input arguments.

4.6. Write a function that will generate chi-square random variables with \(v\) degrees of freedom by generating \(v\) standard normals, squaring them and then adding them up. This uses the fact that

\[X = Z_1^2 + \ldots + Z_v^2 \]

is chi-square with \(v\) degrees of freedom. Generate some random variables and plot in a histogram. The degrees of freedom should be an input argument set by the user.

4.7. An alternative method for generating beta random variables is described in Rubinstein [1981]. Generate two variates \(Y_1 = U_1^{1/\alpha}\) and \(Y_2 = U_2^{1/\beta}\), where the \(U_i\) are from the uniform distribution. If \(Y_1 + Y_2 \leq 1\), then

\[X = \frac{Y_1}{Y_1 + Y_2} \]

is from a beta distribution with parameters \(\alpha\) and \(\beta\). Implement this algorithm.

4.8. Run Example 4.4 and generate 1000 random variables. Determine the number of variates that were rejected and the total number generated to obtain the random sample. What percentage were rejected? How efficient was it?
4.9. Run Example 4.4 and generate 500 random variables. Plot a histogram of the variates. Does it match the probability density function shown in Figure 4.3?

4.10. Implement Example 4.5 in MATLAB. Generate 100 random variables. What is the relative frequency of each value of the random variable \(1, \ldots, 5\)? Does this match the probability mass function?

4.11. Generate four sets of random variables with \(v = 2, 5, 15, 20\), using the function \texttt{cschirnd}. Create histograms for each sample. How does the shape of the distribution depend on the degrees of freedom \(v\)?

4.12. Repeat Example 4.13 for larger sample sizes. Is the agreement better between the observed relative frequencies and the theoretical values?

4.13. Generate 1000 binomial random variables for \(n = 5\) and \(p = 0.3, 0.5, 0.8\). In each case, determine the observed relative frequencies and the corresponding theoretical probabilities. How is the agreement between them?

4.14. The MATLAB Statistics Toolbox has a GUI called \texttt{randtool}. This is an interactive demo that generates random variables from distributions that are available in the toolbox. The user can change parameter values and see the results via a histogram. There are options to change the sample size and to output the results. To start the GUI, simply type \texttt{randtool} at the command line. Run the function and experiment with the distributions that are discussed in the text (normal, exponential, gamma, beta, etc.).

4.15. The plot on the right in Figure 4.6 shows a histogram of beta random variables with parameters \(\alpha = \beta = 0.5\). Construct a similar plot using the information in Example 4.9.
Chapter 5

Exploratory Data Analysis

5.1 Introduction

Exploratory data analysis (EDA) is quantitative detective work according to John Tukey [1977]. EDA is the philosophy that data should first be explored without assumptions about probabilistic models, error distributions, number of groups, relationships between the variables, etc. for the purpose of discovering what they can tell us about the phenomena we are investigating. The goal of EDA is to explore the data to reveal patterns and features that will help the analyst better understand, analyze and model the data. With the advent of powerful desktop computers and high resolution graphics capabilities, these methods and techniques are within the reach of every statistician, engineer and data analyst.

EDA is a collection of techniques for revealing information about the data and methods for visualizing them to see what they can tell us about the underlying process that generated it. In most situations, exploratory data analysis should precede confirmatory analysis (e.g., hypothesis testing, ANOVA, etc.) to ensure that the analysis is appropriate for the data set. Some examples and goals of EDA are given below to help motivate the reader.

- If we have a time series, then we would plot the values over time to look for patterns such as trends, seasonal effects or change points. In Chapter 11, we have an example of a time series that shows evidence of a change point in a Poisson process.

- We have observations that relate two characteristics or variables, and we are interested in how they are related. Is there a linear or a nonlinear relationship? Are there patterns that can provide insight into the process that relates the variables? We will see examples of this application in Chapters 7 and 10.

- We need to provide some summary statistics that describe the data set. We should look for outliers or aberrant observations that might contaminate the results. If EDA indicates extreme observations are
in the data set, then robust statistical methods might be more appropriate. In Chapter 10, we illustrate an example where a graphical look at the data indicates the presence of outliers, so we use a robust method of nonparametric regression.

- We have a random sample that will be used to develop a model. This model will be included in our simulation of a process (e.g., simulating a physical process such as a queue). We can use EDA techniques to help us determine how the data might be distributed and what model might be appropriate.

In this chapter, we will be discussing graphical EDA and how these techniques can be used to gain information and insights about the data. Some experts include techniques such as smoothing, probability density estimation, clustering and principal component analysis in exploratory data analysis. We agree that these can be part of EDA, but we do not cover them in this chapter. Smoothing techniques are discussed in Chapter 10 where we present methods for nonparametric regression. Techniques for probability density estimation are presented in Chapter 8, but we do discuss simple histograms in this chapter. Methods for clustering are described in Chapter 9. Principal component analysis is not covered in this book, because the subject is discussed in many linear algebra texts [Strang, 1988; Jackson, 1991].

It is likely that some of the visualization methods in this chapter are familiar to statisticians, data analysts and engineers. As we stated in Chapter 1, one of the goals of this book is to promote the use of MATLAB for statistical analysis. Some readers might not be familiar with the extensive graphics capabilities of MATLAB, so we endeavor to describe the most useful ones for data analysis. In Section 5.2, we consider techniques for visualizing univariate data. These include such methods as stem-and-leaf plots, box plots, histograms, and quantile plots. We turn our attention to techniques for visualizing bivariate data in Section 5.3 and include a description of surface plots, scatterplots and bivariate histograms. Section 5.4 offers several methods for viewing multi-dimensional data, such as slices, isosurfaces, star plots, parallel coordinates, Andrews curves, projection pursuit, and the grand tour.

5.2 Exploring Univariate Data

Two important goals of EDA are: 1) to determine a reasonable model for the process that generated the data, and 2) to locate possible outliers in the sample. For example, we might be interested in finding out whether the distribution that generated the data is symmetric or skewed. We might also like to know whether it has one mode or many modes. The univariate visualization techniques presented here will help us answer questions such as these.
Chapter 5: Exploratory Data Analysis

Histograms

A **histogram** is a way to graphically represent the frequency distribution of a data set. Histograms are a good way to

- summarize a data set to understand general characteristics of the distribution such as shape, spread or location,
- suggest possible probabilistic models, or
- determine unusual behavior.

In this chapter, we look only at the simple, basic histogram. Variants and extensions of the histogram are discussed in Chapter 8.

A **frequency histogram** is obtained by creating a set of bins or intervals that cover the range of the data set. It is important that these bins do not overlap and that they have equal width. We then count the number of observations that fall into each bin. To visualize this, we plot the frequency as the height of a bar, with the width of the bar representing the width of the bin. The histogram is determined by two parameters, the bin width and the starting point of the first bin. We discuss these issues in greater detail in Chapter 8. **Relative frequency histograms** are obtained by representing the height of the bin by the relative frequency of the observations that fall into the bin.

The basic MATLAB package has a function for calculating and plotting a univariate histogram. This function is illustrated in the example given below.

Example 5.1

In this example, we look at a histogram of the data in **forearm**. These data [Hand, et al., 1994; Pearson and Lee, 1903] consist of 140 measurements of the length in inches of the forearm of adult males. We can obtain a simple histogram in MATLAB using these commands:

```matlab
load forearm
subplot(1,2,1)
% The hist function optionally returns the
% bin centers and frequencies.
[n,x] = hist(forearm);
% Plot and use the argument of width=1
% to produce bars that touch.
bar(x,n,1);
axis square
title('Frequency Histogram')
% Now create a relative frequency histogram.
% Divide each box by the total number of points.
subplot(1,2,2)
bar(x,n/140,1)
title('Relative Frequency Histogram')
axis square
```
These plots are shown in Figure 5.1. Notice that the shapes of the histograms are the same in both types of histograms, but the vertical axis is different. From the shape of the histograms, it seems reasonable to assume that the data are normally distributed.

![Frequency Histogram and Relative Frequency Histogram](image)

FIGURE 5.1
On the left is a frequency histogram of the *forearm* data, and on the right is the relative frequency histogram. These indicate that the distribution is unimodal and that the normal distribution is a reasonable model.

One problem with using a frequency or relative frequency histogram is that they do not represent meaningful probability densities, because they do not integrate to one. This can be seen by superimposing a corresponding normal distribution over the relative frequency histogram as shown in Figure 5.2.

A *density histogram* is a histogram that has been normalized so it will integrate to one. That means that if we add up the *areas* represented by the bars, then they should add up to one. A density histogram is given by the following equation

\[
\hat{f}(x) = \frac{v_k}{nh} \quad x \text{ in } B_k, \tag{5.1}
\]

where \(B_k \) denotes the \(k \)-th bin, \(v_k \) represents the number of data points that fall into the \(k \)-th bin and \(h \) represents the width of the bins. In the following
FIGURE 5.2
This shows a relative frequency histogram of the forearm data. Superimposed on the histogram is the normal probability density function using parameters estimated from the data. Note that the curve is higher than the histogram, indicating that the histogram is not a valid probability density function.

example, we reproduce the histogram of Figure 5.2 using the density histogram.

Example 5.2
Here we explore the forearm data using a density histogram. Assuming a normal distribution and estimating the parameters from the data, we can superimpose a smooth curve that represents an estimated density for the normal distribution.

```plaintext
% Get parameter estimates for the normal distribution.
mu = mean(forearm);
v = var(forearm);
% Obtain normal pdf based on parameter estimates.
xp = linspace(min(forearm), max(forearm));
yp = normpdf(xp, mu, v);
% Get the information needed for a histogram.
[nu, x] = hist(forearm);
% Get the widths of the bins.
h = x(2) - x(1);
```
\% Plot as density histogram - Equation 5.1.
bar(x,nu/(140*h),1)
hold on
plot(xp,yp)
xlabel('Length (inches)')
title('Density Histogram and Density Estimate')
hold off

The results are shown in Figure 5.3. Note that the assumption of normality for the data is not unreasonable. The estimated density function and the density histogram match up quite well.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{density_histogram}
\caption{Density histogram for the \texttt{forearm} data. The curve represents a normal probability density function with parameters given by the sample mean and sample variance of the data. From this we see that the normal distribution is a reasonable probabilistic model.}
\end{figure}

Stem-and-Leaf

Stem-and-leaf plots were introduced by Tukey [1977] as a way of displaying data in a structured list. Presenting data in a table or an ordered list does not readily convey information about how the data are distributed, as is the case with histograms.
If we have data where each observation consists of at least two digits, then we can construct a stem-and-leaf diagram. To display these, we separate each measurement into two parts: the stem and the leaf. The stems are comprised of the leading digit or digits, and the remaining digit makes up the leaf. For example, if we had the number 75, then the stem is the 7, and the leaf is the 5. If the number is 203, then the stem is 20 and the leaf is 3.

The stems are listed to the left of a vertical line with all of the leaves corresponding to that stem listed to the right. If the data contain decimal places, then they can be rounded for easier display. An alternative is to move the decimal place to specify the appropriate leaf unit. We provide a function with the text that will construct stem-and-leaf plots, and its use is illustrated in the next example.

Example 5.3
The heights of 32 Tibetan skulls [Hand, et al. 1994; Morant, 1923] measured in millimeters is given in the file tibetan. These data comprise two groups of skulls collected in Tibet. One group of 17 skulls comes from graves in Sikkim and nearby areas of Tibet and the other 15 skulls come from a battlefield in Lhasa. The original data contain five measurements, but for this example, we only use the fourth measurement. This is the upper face height, and we round to the nearest millimeter. We use the function csstemleaf that is provided with the text.

```matlab
cload tibetan
% This loads up all 5 measurements of the skulls.
% We use the fourth characteristic to illustrate
% the stem-and-leaf plot. We first round them.
x = round(tibetan(:,4));
csstemleaf(x)
title('Height (mm) of Tibetan Skulls')
```

The resulting stem-and-leaf is shown in Figure 5.4. From this plot, we see there is not much evidence that there are two groups of skulls, if we look only at the characteristic of upper face height. We will explore these data further in Chapter 9, where we apply pattern recognition methods to the problem.

It is possible that we do not see much evidence for two groups of skulls because there are too few stems. EDA is an iterative process, where the analyst should try several visualization methods in search of patterns and information in the data. An alternative approach is to plot more than one line per stem. The function csstemleaf has an optional argument that allows the user to specify two lines per stem. The default value is one line per stem, as we saw in Example 5.3. When we plot two lines per stem, leaves that correspond to the digits 0 through 4 are plotted on the first line and those that have digits 5 through 9 are shown on the second line. A stem-and-leaf with two lines per stem for the Tibetan skull data is shown in Figure 5.5. In practice,
Height (mm) of Tibetan Skulls

6 | 2355689
7 | 00111223444566777899
8 | 0123

FIGURE 5.4
This shows the stem-and-leaf plot for the upper face height of 32 Tibetan skulls. The data have been rounded to the nearest millimeter.

Height (mm) of Tibetan Skulls

6 | 23
6 | 55689
7 | 00111223444
7 | 566777899
8 | 0123
8 |

FIGURE 5.5
This shows a stem-and-leaf plot for the upper face height of 32 Tibetan skulls where we now have two lines per stem. Note that we see approximately the same information (a unimodal distribution) as in Figure 5.4.
one could plot a stem-and-leaf with one and with two lines per stem as a way of discovering more about the data. The stem-and-leaf is useful in that it approximates the shape of the density, and it also provides a listing of the data. One can usually recover the original data set from the stem-and-leaf (if it has not been rounded), unlike the histogram. A disadvantage of the stem-and-leaf plot is that it is not useful for large data sets, while a histogram is very effective in reducing and displaying massive data sets.

Quantile-Based Plots - Continuous Distributions

If we need to compare two distributions, then we can use the quantile plot to visually compare them. This is also applicable when we want to compare a distribution and a sample or to compare two samples. In comparing the distributions or samples, we are interested in knowing how they are shifted relative to each other. In essence, we want to know if they are distributed in the same way. This is important when we are trying to determine the distribution that generated our data, possibly with the goal of using that information to generate data for Monte Carlo simulation. Another application where this is useful is in checking model assumptions, such as normality, before we conduct our analysis.

In this part, we discuss several versions of quantile-based plots. These include quantile-quantile plots (q-q plots) and quantile plots (sometimes called a probability plot). Quantile plots for discrete data are discussed next. The quantile plot is used to compare a sample with a theoretical distribution. Typically, a q-q plot (sometimes called an empirical quantile plot) is used to determine whether two random samples are generated by the same distribution. It should be noted that the q-q plot can also be used to compare a random sample with a theoretical distribution by generating a sample from the theoretical distribution as the second sample.

Q-Q Plot

The q-q plot was originally proposed by Wilk and Gnanadesikan [1968] to visually compare two distributions by graphing the quantiles of one versus the quantiles of the other. Say we have two data sets consisting of univariate measurements. We denote the order statistics for the first data set by

\[x_{(1)}, x_{(2)}, \ldots, x_{(n)} . \]

Let the order statistics for the second data set be

\[y_{(1)}, y_{(2)}, \ldots, y_{(m)} , \]

with \(m \leq n \).
We look first at the case where the sizes of the data sets are equal, so \(m = n \). In this case, we plot as points the sample quantiles of one data set versus the other data set. This is illustrated in Example 5.4. If the data sets come from the same distribution, then we would expect the points to approximately follow a straight line.

A major strength of the quantile-based plots is that they do not require the two samples (or the sample and theoretical distribution) to have the same location and scale parameter. If the distributions are the same, but differ in location or scale, then we would still expect the quantile-based plot to produce a straight line.

Example 5.4

We will generate two sets of normal random variables and construct a q-q plot. As expected, the q-q plot (Figure 5.6) follows a straight line, indicating that the samples come from the same distribution.

```matlab
% Generate the random variables.
x = randn(1,75);
y = randn(1,75);
% Find the order statistics.
xs = sort(x);
y = sort(y);
% Now construct the q-q plot.
plot(xs,ys,'o')
xlabel('X - Standard Normal')
ylabel('Y - Standard Normal')
axis equal
```

If we repeat the above MATLAB commands using a data set generated from an exponential distribution and one that is generated from the standard normal, then we have the plot shown in Figure 5.7. Note that the points in this q-q plot do not follow a straight line, leading us to conclude that the data are not generated from the same distribution.

We now look at the case where the sample sizes are not equal. Without loss of generality, we assume that \(m < n \). To obtain the q-q plot, we graph the \(y(i) \), \(i = 1, \ldots, m \) against the \((i - 0.5)/m\) quantile of the other data set. Note that this definition is not unique [Cleveland, 1993]. The \((i - 0.5)/m\) quantiles of the \(x \) data are usually obtained via interpolation, and we show in the next example how to use the function `csquantiles` to get the desired plot.

Users should be aware that q-q plots provide a rough idea of how similar the distribution is between two random samples. If the sample sizes are small, then a lot of variation is expected, so comparisons might be suspect. To help aid the visual comparison, some q-q plots include a reference line. These are lines that are estimated using the first and third quartiles \((q_{0.25}, q_{0.75})\) of each data set and extending the line to cover the range of the data. The
MATLAB Statistics Toolbox provides a function called `qqplot` that displays this type of plot. We show below how to add the reference line.

Example 5.5

This example shows how to do a q-q plot when the samples do not have the same number of points. We use the function `csquantiles` to get the required sample quantiles from the data set that has the larger sample size. We then plot these versus the order statistics of the other sample, as we did in the previous examples. Note that we add a reference line based on the first and third quartiles of each data set, using the function `polyfit` (see Chapter 7 for more information on this function).

```matlab
% Generate the random variables.
m = 50;
n = 75;
x = randn(1,n);
y = randn(1,m);
% Find the order statistics for y.
yq = sort(y);
% Now find the associated quantiles using the x.
% Probabilities for quantiles:
p = ((1:m) - 0.5)/m;
```
This is a q-q plot where one random sample is generated from the exponential distribution and one is generated by a standard normal distribution. Note that the points do not follow a straight line, indicating that the distributions that generated the random variables are not the same.

```matlab
xs = csquantiles(x,p);
% Construct the plot.
plot(xs,ys,'ko')
% Get the reference line.
% Use the 1st and 3rd quartiles of each set to
% get a line.
yq = csquantiles(y,[0.25,0.75]);
xq = csquantiles(x,[0.25,0.75]);
[pol, s] = polyfit(xq,yq,1);
% Add the line to the figure.
yhat = polyval(pol,xs);
hold on
plot(xs,yhat,'k')
xlabel('Sample Quantiles - X'),
ylabel('Sorted Y Values')
hold off
```

From Figure 5.8, the assumption that each data set is generated according to the same distribution seems reasonable.

☐
FIGURE 5.8
Here we show the q-q plot of Example 5.5. In this example, we also show the reference line estimated from the first and third quartiles. The q-q plot shows that the data do seem to come from the same distribution.

Quantile Plots

A quantile plot or probability plot is one where the theoretical quantiles are plotted against the order statistics for the sample. Thus, on one axis we plot the $x_{(i)}$, and on the other axis we plot

$$F^{-1}\left(\frac{i - 0.5}{n}\right),$$

where $F^{-1}(\cdot)$ denotes the inverse of the cumulative distribution function for the hypothesized distribution. As before, the 0.5 in the above argument can be different [Cleveland, 1993]. A well-known example of a quantile plot is the normal probability plot, where the ordered sample versus the quantiles of the normal distribution are plotted.

The MATLAB Statistics Toolbox has two functions for obtaining quantile plots. One is called normplot, and it produces a normal probability plot. So, if one would like to assess the assumption that a data set comes from a normal distribution, then this is the one to use. There is also a function for constructing a quantile plot that compares a data set to the Weibull distribution. This is called weibplot. For quantile plots with other theoretical distribu-
tions, one can use the MATLAB code given below, substituting the appropriate function to get the theoretical quantiles.

Example 5.6
This example illustrates how you can display a quantile plot in MATLAB. We first generate a random sample from the standard normal distribution as our data set. The sorted sample is an estimate of the \((i - 0.5)/n\) quantile, so we next calculate these probabilities and get the corresponding theoretical quantiles. Finally, we use the function `norminv` from the Statistics Toolbox to get the theoretical quantiles for the normal distribution. The resulting quantile plot is shown in Figure 5.9.

```matlab
% Generate a random sample from a standard normal.
x = randn(1,100);
% Get the probabilities.
prob = ((1:100)-0.5)/100;
% Now get the theoretical quantiles.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus
% the sorted data.
plot(sort(x),qp,'ko')
xlabel('Sorted Data')
ylabel('Standard Normal Quantiles')
```

To further illustrate these concepts, let's see what happens when we generate a random sample from a uniform \((0, 1)\) distribution and check it against the normal distribution. The MATLAB code is given below, and the quantile plot is shown in Figure 5.10. As expected, the points do not lie on a line, and we see that the data are not from a normal distribution.

```matlab
% Generate a random sample from a
% uniform distribution.
x = rand(1,100);
% Get the probabilities.
prob = ((1:100)-0.5)/100;
% Now get the theoretical quantiles.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus
% the sorted data.
plot(sort(x),qp,'ko')
ylabel('Standard Normal Quantiles')
xlabel('Sorted Data')
```
FIGURE 5.9
This is a quantile plot or normal probability plot of a random sample generated from a standard normal distribution. Note that the points approximately follow a straight line, indicating that the normal distribution is a reasonable model for the sample.

FIGURE 5.10
Here we have a quantile plot where the sample is generated from a uniform distribution, and the theoretical quantiles are from the normal distribution. The shape of the curve verifies that the sample is not from a normal distribution.
Quantile Plots - Discrete Distributions

Previously, we discussed quantile plots that are primarily used for continuous data. We would like to have a similar technique for graphically comparing the shapes of discrete distributions. Hoaglin and Tukey [1985] developed several plots to accomplish this. We present two of them here: the Poissonness plot and the binomialness plot. These will enable us to search for evidence that our discrete data follow a Poisson or a binomial distribution. They also serve to highlight which points might be incompatible with the model.

Poissonness Plot

Typically, discrete data are whole number values that are often obtained by counting the number of times something occurs. For example, these might be the number of traffic fatalities, the number of school-age children in a household, the number of defects on a hard drive, or the number of errors in a computer program. We sometimes have the data in the form of a frequency distribution that lists the possible count values (e.g., 0, 1, 2, ...) and the number of observations that are equal to the count values.

The counts will be denoted as k, with $k = 0, 1, ..., L$. We will assume that L is the maximum observed value for our discrete variable or counts in the data set and that we are interested in all counts between 0 and L. Thus, the total number of observations in the sample is

$$N = \sum_{k=0}^{L} n_k,$$

where n_k represents the number of observations that are equal to the count k.

A basic Poissonness plot is constructed by plotting the count values k on the horizontal axis and

$$\varphi(n_k) = \ln(k!n_k/N)$$

(5.2)

on the vertical axis. These are plotted as symbols, similar to the quantile plot. If a Poisson distribution is a reasonable model for the data, then this should follow a straight line. Systematic curvature in the plot would indicate that these data are not consistent with a Poisson distribution. The values for $\varphi(n_k)$ tend to have more variability when n_k is small, so Hoaglin and Tukey [1985] suggest plotting a special symbol or a '1' to highlight these points.

Example 5.7

This example is taken from Hoaglin and Tukey [1985]. In the late 1700's, Alexander Hamilton, John Jay and James Madison wrote a series of 77 essays under the title of The Federalist. These appeared in the newspapers under a
Quantile Plots - Discrete Distributions

Previously, we discussed quantile plots that are primarily used for continuous data. We would like to have a similar technique for graphically comparing the shapes of discrete distributions. Hoaglin and Tukey [1985] developed several plots to accomplish this. We present two of them here: the Poissonness plot and the binomialness plot. These will enable us to search for evidence that our discrete data follow a Poisson or a binomial distribution. They also serve to highlight which points might be incompatible with the model.

Poissonness Plot

Typically, discrete data are whole number values that are often obtained by counting the number of times something occurs. For example, these might be the number of traffic fatalities, the number of school-age children in a household, the number of defects on a hard drive, or the number of errors in a computer program. We sometimes have the data in the form of a frequency distribution that lists the possible count values (e.g., 0.1, 2, ...) and the number of observations that are equal to the count values.

The counts will be denoted as k, with $k = 0, 1, ..., L$. We will assume that L is the maximum observed value for our discrete variable or counts in the data set and that we are interested in all counts between 0 and L. Thus, the total number of observations in the sample is

$$N = \sum_{k=0}^{L} n_k,$$

where n_k represents the number of observations that are equal to the count k.

A basic Poissonness plot is constructed by plotting the count values k on the horizontal axis and

$$\Phi(n_k) = \ln(k!n_k/N)$$

(5.2)
on the vertical axis. These are plotted as symbols, similar to the quantile plot. If a Poisson distribution is a reasonable model for the data, then this should follow a straight line. Systematic curvature in the plot would indicate that these data are not consistent with a Poisson distribution. The values for $\Phi(n_k)$ tend to have more variability when n_k is small, so Hoaglin and Tukey [1985] suggest plotting a special symbol or a '1' to highlight these points.

Example 5.7

This example is taken from Hoaglin and Tukey [1985]. In the late 1700's, Alexander Hamilton, John Jay and James Madison wrote a series of 77 essays under the title of The Federalist. These appeared in the newspapers under a
Quantile Plots - Discrete Distributions

Previously, we discussed quantile plots that are primarily used for continuous data. We would like to have a similar technique for graphically comparing the shapes of discrete distributions. Hoaglin and Tukey [1985] developed several plots to accomplish this. We present two of them here: the Poissonness plot and the binomialness plot. These will enable us to search for evidence that our discrete data follow a Poisson or a binomial distribution. They also serve to highlight which points might be incompatible with the model.

Poissonness Plot

Typically, discrete data are whole number values that are often obtained by counting the number of times something occurs. For example, these might be the number of traffic fatalities, the number of school-age children in a household, the number of defects on a hard drive, or the number of errors in a computer program. We sometimes have the data in the form of a frequency distribution that lists the possible count values (e.g., 0, 1, 2, ...) and the number of observations that are equal to the count values.

The counts will be denoted as \(k \), with \(k = 0, 1, ..., L \). We will assume that \(L \) is the maximum observed value for our discrete variable or counts in the data set and that we are interested in all counts between 0 and \(L \). Thus, the

of the significance of the differences between the values. If the notches do not overlap, then there is evidence that the medians are significantly different. The length of the whisker is easily adjusted using optional input arguments to boxplot. For more information on this function and to find out what other options are available, type help boxplot at the MATLAB command line.

Example 5.10

In this example, we first generate random variables from a uniform distribution on the interval \((0, 1)\), a standard normal distribution, and an exponential distribution. We will then display the box plots corresponding to each sample using the MATLAB function boxplot.

\[
\begin{align*}
&\text{Generate a sample from the uniform distribution.} \\
&\text{xunif} = \text{rand}(100,1); \\
&\text{Generate sample from the standard normal.} \\
&\text{xnorm} = \text{randn}(100,1); \\
&\text{Generate a sample from the exponential distribution.}
\end{align*}
\]
% NOTE: this function is from the Statistics Toolbox.
\[xexp = exprnd(1,100,1); \]
\[boxplot([xunif,xnorm,xexp],1) \]

It can be seen in Figure 5.15 that the box plot readily conveys the shape of the distribution. A symmetric distribution will have whiskers with approximately equal lengths, and the two sides of the box will also be approximately equal. This would be the case for the uniform or normal distribution. A skewed distribution will have one side of the box and whisker longer than the other. This is seen in Figure 5.15 for the exponential distribution. If the interquartile range is small, then the data in the middle are packed around the median. Conversely, if it is large, then the middle 50% of the data are widely dispersed.
FIGURE 5.14
An example of a box plot with possible outliers shown as points.

% NOTE: this function is from the Statistics Toolbox.
xexp = exprnd(1,100,1);
boxplot([xunif,xnorm,xexp],1)

It can be seen in Figure 5.15 that the box plot readily conveys the shape of the distribution. A symmetric distribution will have whiskers with approximately equal lengths, and the two sides of the box will also be approximately equal. This would be the case for the uniform or normal distribution. A skewed distribution will have one side of the box and whisker longer than the other. This is seen in Figure 5.15 for the exponential distribution. If the interquartile range is small, then the data in the middle are packed around the median. Conversely, if it is large, then the middle 50% of the data are widely dispersed. ☑
Finally, a 3-D contour plot is easily obtained using the \texttt{contour3} function as shown below. The resulting contour plot is shown in Figure 5.21.

\begin{verbatim}
 \texttt{contour3(x,y,z,15)}
\end{verbatim}

Bivariate Histogram

In the last section, we described the univariate density histogram as a way of viewing how our data are distributed over the range of the data. We can

of iris. These three species are: \textit{Iris setosa}, \textit{Iris virginica} and \textit{Iris versicolor}. We apply the \texttt{plotmatrix} function to the iris data set.

\begin{verbatim}
 load iris
 \% This loads up three matrices, one for each species.
 \% Get the plotmatrix display of the Iris setosa data.
 [H,ax,bigax,P] = plotmatrix(setosa);
 axes(bigax),title('Iris Setosa')
\end{verbatim}
The results are shown in Figure 5.26. Several argument options are available for the `plotmatrix` function. If the first two arguments are matrices, then MATLAB plots one column versus the other column. In our example, we use a single matrix argument, and MATLAB creates scatterplots of all possible pairs of variables. Histograms of each variable or column are shown along the diagonal of the scatterplot matrix. Optional output arguments allow one to add a title or change the plot as shown in the following MATLAB commands. Here we replace the histograms with text that identifies the variable names and display the result in Figure 5.27.

```matlab
% Create the labels as a cell array of strings.
labs = {'Sepal Length','Sepal Width',...
    'Petal Length', 'Petal Width'};
[H,ax,bigax,P] = plotmatrix(virginica);
axes(bigax)
title('Virginica')
% Delete the histograms.
delete(P)
% Put the labels in - the positions might have
% to be adjusted depending on the text.
for i = 1:4
ttxtax = axes('Position',get(ax(i,i),'Position'),...
    'units','normalized');
text(.1, .5, labs{i})
set(ttxtax,'xtick',[],'ytick',[],...
    'xgrid','off','ygrid','off','box','on')
end
```

Slices and Isosurfaces

If we have a function defined over a volume, \(f(x, y, z) \), then we can view it using the MATLAB `slice` function or the `isosurface` function (available in MATLAB 5.3 and higher). This situation could arise in cases where we have a probability density function defined over a volume. The `slice` capability allows us to view the distribution of our data on slices through a volume. The `isosurface` function allows us to view 3-D contours through our volume. These are illustrated in the following examples.

Example 5.18

To illustrate the `slice` function, we need \(f(x, y, z) \) values that are defined over a 3-D grid or volume. We will use a trivariate normal distribution centered at the origin with covariance equal to the identity matrix. The following MATLAB code displays slices through the \(x = 0 \), \(y = 0 \), and \(z = 0 \) planes, and the resulting display is shown in Figure 5.28. A standard normal bivari-
ate density is given in Figure 5.29 to help the reader understand what the slice function is showing. The density or height of the surface defined over the volume is mapped to a color. Therefore, in the slice plot, you can see that the maximum density or surface height is at the origin with the height decreasing at the edges of the slices. The color at each point is obtained by interpolation into the volume \(f(x, y, z) \).

% Create a grid for the domain.
[x,y,z] = meshgrid(-3:.1:3,-3:.1:3,-3:.1:3);
[n,d] = size(x(:));
% Evaluate the trivariate standard normal.
a = (2*pi)^(3/2);
arg = (x.^2 + y.^2 + z.^2);
prob = exp((-5)*arg)/a;
% Slice through the x=0, y=0, z=0 planes.
slice(x,y,z,prob,0,0,0)
xlabel('X Axis'),ylabel('Y Axis'),zlabel('Z Axis')

Isosurfaces are a way of viewing contours through a volume. An isosurface is a surface where the function values \(f(x, y, z) \) are constant. These are similar to \(\alpha \)-level contours [Scott, 1992], which are defined by
Figure 5.28
These are slices through the $x = 0, y = 0, z = 0$ planes for a standard trivariate normal distribution. Each of these planes slice through the volume, and the value of the volume (in this case, the height of the trivariate normal density) is represented by the color. The mode at the origin is clearly seen. We can also see that it is symmetric, because the volume is a mirror image in every slice. Finally, note that the ranges for all the axes are consistent with a standard normal distribution.

\[S_\alpha = \{ x : f(x) = \alpha f_{max} \}; \quad 0 \leq \alpha \leq 1, \]

(5.8)

where x is a d-dimensional vector. Generally, the α-level contours are nested surfaces.

The MATLAB function `isosurface(X,Y,Z,V,isosvalue)` determines the contour from the volume data V at the value given by `isosvalue`. The arrays in X, Y, and Z define the coordinates for the volume. The outputs from this function are the faces and vertices corresponding to the isosurface and can be passed directly into the `patch` function for displaying.

Example 5.19
We illustrate several isosurfaces of 3-D contours for data that is uniformly distributed over the volume defined by a unit cube. We display two contours of different levels in Figures 5.30 and 5.31.

```matlab
% Get some data that will be between 0 and 1.
data = rand(10,10,10);
data = smooth3(data,'gaussian');
```
% Just in case there are some figure windows
% open - we should start anew.
close all
for i = [0.4 0.6]
 figure
 hpatch = patch(isosurface(data, i), ...
 'FaceColor', 'blue', ...
 'EdgeColor', 'none', ...
 'AmbientStrength', .2, ...
 'SpecularStrength', .7, ...
 'DiffuseStrength', .4);
 isonormals(data, hpatch)
 title(['f(x,y,z) = ' num2str(i)])
 daspect([1,1,1])
 axis tight
 axis off
 view(3)
 camlight right
 camlight left
 lighting phong
drawnow
end
In Figure 5.30, we have the isosurface for \(f(x, y, z) = 0.4 \). The isosurface for \(f(x, y, z) = 0.6 \) is given in Figure 5.31. Again, these are surface contours where the value of the volume is the same.

\[f(x,y,z) = 0.4 \]

![Isosurface](image)

FIGURE 5.30
This is the isosurface of Example 5.39 for \(f(x, y, z) = 0.4 \).

It would be better if we had a context to help us understand what we are viewing with the isosurfaces. This can be done easily in MATLAB using the function called `iscaps`. This function puts caps on the boundaries of the domain and shows the distribution of the volume \(f(x, y, z) \) above the isosurface. The color of the cap is mapped to the values \(f(x, y, z) \) that are above the given value `isovalue`. Values below the `isovalue` can be shown on the `iscap` via the optional input argument, `enclose`. The following example illustrates this concept by adding isocaps to the surfaces obtained in Example 5.19.

Example 5.20
These MATLAB commands show how to add `iscaps` to the isosurfaces in the previous example.

```matlab
for i=[0.4 0.6]
    figure
    hpatch = patch(isosurface(data,i),...  
        'Facecolor','blue',...  
        'Edgecolor','none',...  
```
\(f(x,y,z) = 0.6 \)

FIGURE 5.31
This is the isosurface of Example 5.19 for \(f(x,y,z) = 0.6 \).

```matlab
'AmbientStrength', 2,...
'SpecularStrength', 7,...
'DiffuseStrength', 4);
isonormals(data, hp)
patch(isocaps(data, i),...  
'Facecolor', 'interp',...   
'EdgeColor', 'none')
colormap hsv

title(['f(x,y,z) = ' num2str(i)])
daspect([1,1,1])
axis tight
```

<table>
<thead>
<tr>
<th>Poisson</th>
<th>cspoirnd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points on a sphere</td>
<td>cssphrnd</td>
</tr>
</tbody>
</table>

4.6 Further Reading

In this text we do not attempt to assess the computational efficiency of the methods for generating random variables. If the statistician or engineer is performing extensive Monte Carlo simulations, then the time it takes to generate random samples becomes important. In these situations, the reader is encouraged to consult Gentle [1998] or Rubinstein [1981] for efficient algorithms. Our goal is to provide methods that are easily implemented using MATLAB or other software. In case the data analyst must write his own func...
FIGURE 5.32
This is the isosurface of Figure 5.30 with isocaps added. Note that the color of the edges is mapped to the volume. The default is to map all values above \(f(x, y, z) = 0.4 \) to the color on the isocaps. This can be changed by an input argument to isocaps.

Star Plots

Star diagrams were developed by Fienberg [1979] as a way of viewing multi-dimensional observations as a glyph or star. Each observed data point in the sample is plotted as a star, with the value of each measurement shown as a radial line from a common center point. Thus, each measured value for an observation is plotted as a spoke that is proportional to the size of the measured variable with the ends of the spokes connected with line segments to form a star. Star plots are a nice way to view the entire data set over all dimensions, but they are not suitable when there is a large number of observations \((n > 10)\) or many dimensions \((d > 15)\).

The next example applies this technique to data obtained from ratings of eight brands of cereal [Chakrapani and Ehrenberg, 1981; Venables and Ripley, 1994]. In our version of the star plot, the first variable is plotted as the spoke at angle \(\theta = 0 \), and the rest are shown counter-clockwise from there.

Example 5.21

This example shows the MATLAB code to plot \(d\)-dimensional observations in a star plot. The cereal file contains a matrix where each row corresponds to
in Equation 5.9. Embrechts and Herzberg [1991] also suggest that the data be rescaled so they are centered at the origin and have covariance equal to the identity matrix. Andrews curves can be extended by using orthogonal bases other than sines and cosines. For example, Embrechts and Herzberg [1991] illustrate Andrews curves using Legendre polynomials and Chebychev polynomials.

Parallel Coordinates

In the Cartesian coordinate system the axes are orthogonal, so the most we can view is three dimensions. If instead we draw the axes parallel to each other, then we can view many axes on the same display. This technique was developed by Wegman [1986] as a way of viewing and analyzing multidimensional data and was introduced by Inselberg [1985] in the context of computational geometry and computer vision. Parallel coordinate techniques were expanded on and described in a statistical setting by Wegman [1990]. Wegman [1990] also gave a rigorous explanation of the properties of parallel coordinates as a projective transformation and illustrated the duality properties between the parallel coordinate representation and the Cartesian orthogonal coordinate representation.

A parallel coordinate plot for d-dimensional data is constructed by drawing d lines parallel to each other. We draw d copies of the real line representing the coordinates for $x_1, x_2, ..., x_d$. The lines are the same distance apart and are perpendicular to the Cartesian y axis. Additionally, they all have the same positive orientation as the Cartesian x axis. Some versions of parallel coordinates [Inselberg, 1985] draw the parallel axes perpendicular to the Cartesian x axis.

A point $C = (c_1, ..., c_d)$ is shown in Figure 5.37 with the MATLAB code that generates it given in Example 5.24. We see that the point is a polygonal line with vertices at $(c_i, i-1)$, $i = 1, ..., d$ in Cartesian coordinates on the x_i parallel axis. Thus, a point in Cartesian coordinates is represented in parallel coordinates as a series of connected line segments.

Example 5.24

We now plot the point $C = (1, 3, 7, 2)$ in parallel coordinates using these MATLAB commands.

```matlab
C = [1 3 7 2];
% Get range of parallel axes.
x = [1 7];
% Plot the 4 parallel axes.
plot(x, zeros(1,2), x, ones(1,2), x, ...
2*ones(1,2), x, 3*ones(1,2))
hold on
% Now plot point C as a polygonal line.
```
Posse [1995a, 1995b] uses a random search to locate the global optimum of the projection index and combines it with the structure removal of Freidman [1987] to get a sequence of interesting 2-D projections. Each projection found shows a structure that is less important (in terms of the projection index) than the previous one. Before we describe this method for PPEDA, we give a summary of the notation that we use in projection pursuit exploratory data analysis.

NOTATION - PROJECTION PURSUIT EXPLORATORY DATA ANALYSIS

- X is an $n \times d$ matrix, where each row (X_i) corresponds to a d-dimensional observation and n is the sample size.
- Z is the spheredException of X.
- $\hat{\mu}$ is the $1 \times d$ sample mean:

$$\hat{\mu} = \frac{1}{n} \sum X_i / n.$$ \hspace{1cm} (5.10)

- Σ is the sample covariance matrix:

$$\Sigma_{ij} = \frac{1}{n-1} \sum (X_i - \hat{\mu})(X_j - \hat{\mu})^T.$$ \hspace{1cm} (5.11)

- α, β are orthonormal ($\alpha^T \alpha = 1 = \beta^T \beta$ and $\alpha^T \beta = 0$) d-dimensional vectors that span the projection plane.

- $P(\alpha, \beta)$ is the projection plane spanned by α and β.

- z_i^α, z_i^β are the spherened observations projected onto the vectors α and β:

$$z_i^\alpha = z_i^T \alpha$$

$$z_i^\beta = z_i^T \beta$$ \hspace{1cm} (5.12)

- (α^*, β^*) denotes the plane where the index is maximum.

- $PI_x^2(\alpha, \beta)$ denotes the chi-square projection index evaluated using the data projected onto the plane spanned by α and β.

- ϕ_z is the standard bivariate normal density.

- c_k is the probability evaluated over the k-th region using the standard bivariate normal,

$$c_k = \int \int_{\mathcal{B}_k} \phi_z dz_1 dz_2.$$ \hspace{1cm} (5.13)
B_i is a box in the projection plane.
I_{B_i} is the indicator function for region B_i.

$\eta_j = \pi j / 36, j = 0, \ldots , 8$ is the angle by which the data are rotated in the plane before being assigned to regions B_i.

$\alpha(\eta_j)$ and $\beta(\eta_j)$ are given by

$$
\alpha(\eta_j) = \alpha \cos \eta_j - \beta \sin \eta_j
$$

$$
\beta(\eta_j) = \alpha \sin \eta_j + \beta \cos \eta_j
$$

(5.14)

c is a scalar that determines the size of the neighborhood around (α', β') that is visited in the search for planes that provide better values for the projection pursuit index.

v is a vector uniformly distributed on the unit d-dimensional sphere.

$half$ specifies the number of steps without an increase in the projection index, at which time the value of the neighborhood is halved.

m represents the number of searches or random starts to find the best plane.

Projection Pursuit Index

Posse \cite{Posse1995a, Posse1995b} developed an index based on the chi-square. The plane

```matlab
% First load up a synthetic data set.
% This has structure
% in two planes - clusters.
% Note that the data is in
% ppdata.mat
load ppdata
```
Chapter 5: Exploratory Data Analysis

% For m random starts, find the best projection plane
% using N structure removal procedures.
% Two structures:
N = 2;
% Four random starts:
m = 4;
c = tan(80*pi/180);
% Number of steps with no increase.
half = 30;

We now set up some arrays to store the results of projection pursuit.

% To store the N structures:
astar = zeros(d,N);
bstar = zeros(d,N);
ppmax = zeros(1,N);

Next we have to sphere the data.

% Sphere the data.
[n,d] = size(X);
muhat = mean(X);
[V,D] = eig(cov(X));
Xc = X-ones(n,1)*muhat;
Z = ((D)^(-1/2)*V*Xc\')';

We use the sphered data as input to the function csppeda. The outputs from this function are the vectors that span the plane containing the structure and the corresponding value of the projection pursuit index.

% Now do the PPEDA.
% Find a structure, remove it,
% and look for another one.
Zt = Z;
for i = 1:N
 [astar(:,i),bstar(:,i),ppmax(i)] =,...
 csppeda(Zt,c,half,m);
 % Now remove the structure.
 Zt = csppstrtrem(Zt,astar(:,i),bstar(:,i));
end

Note that each column of astar and bstar contains the projections for a structure, each one found using m random starts of the Posse algorithm. To see the first structure and second structures, we project onto the best planes as follows:

% Now project and see the structure.
proj1 = [astar(:,1), bstar(:,1)];
proj2 = [astar(:,2), bstar(:,2)];
Zp1 = Z*proj1;
Zp2 = Z*proj2;
figure
plot(Zp1(:,1),Zp1(:,2),'k.'),title('Structure 1')
xlabel('\alpha^*'),ylabel('\beta^*')
figure
plot(Zp2(:,1),Zp2(:,2),'k.'),title('Structure 2')
xlabel('\alpha^*'),ylabel('\beta^*')

The results are shown in Figure 5.45 and Figure 5.46, where we see that projection pursuit did find two structures. The first structure has a projection pursuit index of 2.67, and the second structure has an index equal to 0.572.

Grand Tour

The grand tour of Asimov [1985] is an interactive visualization technique that enables the analyst to look for interesting structure embedded in multi-dimensional data. The idea is to project the \(d\)-dimensional data to a plane and to rotate the plane through all possible angles, searching for structure in the data. As with projection pursuit, structure is defined as departure from normality, such as clusters, spirals, linear relationships, etc.

In this procedure, we first determine a plane, project the data onto it, and then view it as a 2-D scatterplot. This process is repeated for a sequence of planes. If the sequence of planes is smooth (in the sense that the orientation of the plane changes slowly), then the result is a movie that shows the data points moving in a continuous manner. Asimov [1985] describes two methods for conducting a grand tour, called the torus algorithm and the random interpolation algorithm. Neither of these methods is ideal. With the torus method we may end up spending too much time in certain regions, and it is computationally intensive. The random interpolation method is better computationally, but cannot be reversed easily (to recover the projection) unless the set of random numbers used to generate the tour is retained. Thus, this method requires a lot of computer storage. Because of these limitations, we describe the pseudo grand tour described in Wegman and Shen [1993].

One of the important aspects of the torus grand tour is the need for a continuous space-filling path through the manifold of planes. This requirement satisfies the condition that the tour will visit all possible orientations of the projection plane. Here, we do not follow a space-filling curve, so this will be called a pseudo grand tour. In spite of this, the pseudo grand tour has many benefits:

- It can be calculated easily;
- It does not spend a lot of time in any one region;
- It still visits an ample set of orientations; and
- It is easily reversible.
FIGURE 5.45
Here we see the first structure that was found using PPEDA. This structure yields a value of 2.67 for the chi-square projection pursuit index.

FIGURE 5.46
Here is the second structure we found using PPEDA. This structure has a value of 0.572 for the chi-square projection pursuit index.
The fact that the pseudo grand tour is easily reversible enables the analyst to recover the projection for further analysis. Two versions of the pseudo grand tour are available: one that projects onto a line and one that projects onto a plane.

As with projection pursuit, we need unit vectors that comprise the desired projection. In the 1-D case, we require a unit vector $\alpha(t)$ such that

$$\|\alpha(t)\|^2 = \sum_{i=1}^{d} \alpha_i^2(t) = 1$$

for every t, where t represents a point in the sequence of projections. For the pseudo grand tour, $\alpha(t)$ must be a continuous function of t and should produce all possible orientations of a unit vector.

We obtain the projection of the data using

$$z_i^{\alpha(t)} = \alpha^T(t)x_i,$$ \hspace{1cm} (5.22)

where x_i is the i-th d-dimensional data point. To get the movie view of the pseudo grand tour, we plot $z_i^{\alpha(t)}$ on a fixed 1-D coordinate system, re-displaying the projected points as t increases.

The grand tour in two dimensions is similar. We need a second unit vector $\beta(t)$ that is orthonormal to $\alpha(t)$,

$$\|\beta(t)\|^2 = \sum_{i=1}^{d} \beta_i^2(t) = 1 \hspace{1cm} \alpha^T(t)\beta(t) = 0.$$

We project the data onto the second vector using

$$z_i^{\beta(t)} = \beta^T(t)x_i.$$ \hspace{1cm} (5.23)

To obtain the movie view of the 2-D pseudo grand tour, we display $z_i^{\alpha(t)}$ and $z_i^{\beta(t)}$ in a 2-D scatterplot, replotting the points as t increases.

The basic idea of the grand tour is to project the data onto a 1-D or 2-D space and plot the projected data, repeating this process many times to provide many views of the data. It is important for viewing purposes to make the time steps small to provide a nearly continuous path and to provide smooth motion of the points. The reader should note that the grand tour is an interactive approach to EDA. The analyst must stop the tour when an interesting projection is found.

Asimov [1985] contends that we are viewing more than one or two dimensions because the speed vectors provide further information. For example, the further away a point is from the computer screen, the faster the point
Chapter 5: Exploratory Data Analysis

rotates. We believe that the extra dimension conveyed by the speed is difficult to understand unless the analyst has experience looking at grand tour movies.

In order to implement the pseudo grand tour, we need a way of obtaining the projection vectors \(\alpha(t) \) and \(\beta(t) \). First we consider the data vector \(x \). If \(d \) is odd, then we augment each data point with a zero, to get an even number of elements. In this case,

\[
x = (x_1, \ldots, x_d, 0); \quad \text{for } d \text{ odd.}
\]

This will not affect the projection. So, without loss of generality, we present the method with the understanding that \(d \) is even. We take the vector \(\alpha(t) \) to be

\[
\alpha(t) = \sqrt{2/d} (\sin \omega_1 t, \cos \omega_1 t, \ldots, \sin \omega_{d/2} t, \cos \omega_{d/2} t), \quad (5.24)
\]

and the vector \(\beta(t) \) as

\[
\beta(t) = \sqrt{2/d} (\cos \omega_1 t, -\sin \omega_1 t, \ldots, \cos \omega_{d/2} t, -\sin \omega_{d/2} t). \quad (5.25)
\]

We choose \(\omega_i \) and \(\omega_j \) such that the ratio \(\omega_i / \omega_j \) is irrational for every \(i \) and \(j \). Additionally, we must choose these such that no \(\omega_i / \omega_j \) is a rational multiple of any other ratio. It is also recommended that the time step \(\Delta t \) be a small positive irrational number. One way to obtain irrational values for \(\omega_i \) is to let \(\omega_i = \sqrt{P_i} \), where \(P_i \) is the \(i \)-th prime number.

The steps for implementing the 2-D pseudo grand tour are given here. The details on how to implement this in MATLAB are given in Example 5.28.

PROCEDURE - PSEUDO GRAND TOUR

1. Set each \(\omega_i \) to an irrational number.
2. Find vectors \(\alpha(t) \) and \(\beta(t) \) using Equations 5.24 and 5.25.
3. Project the data onto the plane spanned by these vectors using Equations 5.23 and 5.24.
4. Display the projected points, \(z_i^{\alpha(t)} \) and \(z_i^{\beta(t)} \), in a 2-D scatterplot.
5. Using \(\Delta t \) irrational, increment the time, and repeat steps 2 through 4.

Before we illustrate this in an example, we note that once we stop the tour at an interesting projection, we can easily recover the projection by knowing the time step.
Example 5.28

In this example, we use the iris data to illustrate the grand tour. First we load up the data and set up some preliminaries.

```matlab
% This is for the iris data.
load iris
% Put data into one matrix.
x = [setosa;virginica;versicolor];
% Set up vector of frequencies.
th = sqrt([2 3]);
% Set up other constants.
[n,d] = size(x);
% This is a small irrational number:
delt = eps*10^14;
% Do the tour for some specified time steps.
maxit = 1000;
cof = sqrt(2/d);
% Set up storage space for projection vectors.
a = zeros(d,1);
b = zeros(d,1);
z = zeros(n,2);
```

We now do some preliminary plotting, just to get the handles we need to use MATLAB's Handle Graphics for plotting. This enables us to update the points that are plotted rather than replotting the entire figure.

```matlab
% Get an initial plot, so the tour can be implemented
% using Handle Graphics.
Hlin1 = plot(z(1:50,1),z(1:50,2),'ro');
set(gca,'backingstore','off')
set(gca,'Drawmode','fast')
hold on
Hlin2 = plot(z(51:100,1),z(51:100,2),'go');
Hlin3 = plot(z(101:150,1),z(101:150,2),'bo');
hold off
axis equal
axis vis3d
axis off
```

Now we do the actual pseudo grand tour, where we use a maximum number of iterations given by `maxit`.

```matlab
for t = 0:delt:(delt*maxit)
    % Find the transformation vectors.
    for j = 1:d/2
        a(2*(j-1)+1) = cof*sin(th(j)*t);
        a(2*j) = cof*cos(th(j)*t);
        b(2*(j-1)+1) = cof*cos(th(j)*t);
```

```matlab
end
```
b(2*j) = cof*(-sin(th(j)*t));
end

% Project onto the vectors.
z(:,1) = x*a;
z(:,2) = x*b;
set(Hlin1,'xdata',z(1:50,1), 'ydata', z(1:50,2))
set(Hlin2, 'xdata', z(51:100,1), 'ydata', z(51:100,2))
set(Hlin3, 'xdata', z(101:150,1), 'ydata', z(101:150,2))
drawnow
end

5.5 MATLAB Code

MATLAB has many functions for visualizing data, both in the main package and in the Statistics Toolbox. Many of these were mentioned in the text and are summarized in Appendix E. Basic MATLAB has functions for scatterplots (scatter), histograms (hist, bar), and scatterplot matrices (plotmatrix). The Statistics Toolbox has functions for constructing q-q plots (normplot, qqplot, weibplot), the empirical cumulative distribution function (cdfplot), grouped versions of plots (gscatter, gplotmatrix), and others. Some other graphing functions in the standard MATLAB package that might be of interest include pie charts (pie), stair plots (stairs), error bars (errorbar), and stem plots (stem).

The methods for statistical graphics described in Cleveland's Visualizing

4.6 Further Reading

In this text we do not attempt to assess the computational efficiency of the methods for generating random variables. If the statistician or engineer is performing extensive Monte Carlo simulations, then the time it takes to generate random samples becomes important. In these situations, the reader is encouraged to consult Gentle [1998] or Rubinstein [1981] for efficient algorithms. Our goal is to provide methods that are easily implemented using MATLAB or other software, in case the data analyst must write his own functions for generating random variables from non-standard distributions.
In the Computational Statistics Toolbox, we include several functions that implement some of the algorithms and graphics covered in Chapter 5. These are summarized in Table 5.3.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>MATLAB Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star Plot</td>
<td>csstars</td>
</tr>
<tr>
<td>Stem-and-leaf Plot</td>
<td>csstemleaf</td>
</tr>
<tr>
<td>Parallel Coordinates Plot</td>
<td>csparallel</td>
</tr>
<tr>
<td>Q-Q Plot</td>
<td>csqqplot</td>
</tr>
<tr>
<td>Poissonness Plot</td>
<td>csposisplot</td>
</tr>
<tr>
<td>Andrews Curves</td>
<td>csandrews</td>
</tr>
<tr>
<td>Exponential Probability Plot</td>
<td>csexpoplot</td>
</tr>
<tr>
<td>Binomial Plot</td>
<td>csbinoplot</td>
</tr>
<tr>
<td>PPEDA</td>
<td>csppeda</td>
</tr>
<tr>
<td></td>
<td>csppstrtrim</td>
</tr>
<tr>
<td></td>
<td>csppind</td>
</tr>
</tbody>
</table>

5.6 Further Reading

One of the first treatises on graphical exploratory data analysis is John Tukey’s *Exploratory Data Analysis* [1977]. In this book, he explains many aspects of EDA, including smoothing techniques, graphical techniques and others. The material in this book is practical and is readily accessible to readers with rudimentary knowledge of data analysis. Another excellent book on this subject is *Graphical Exploratory Data Analysis* [du Toit, Steyn and Stumpf, 1986], which includes several techniques (e.g., Chernoff faces and profiles) that we do not cover. For texts that emphasize the visualization of technical data, see Fortner and Meyer [1997] and Fortner [1995]. The paper by Wegman, Carr and Luo [1993] discusses many of the methods we present, along with others such as stereoscopic displays, generalized nonlinear regression using skeletons and a description of d-dimensional grand tour. This paper and Wegman [1990] provide an excellent theoretical treatment of parallel coordinates.

The *Grammar of Graphics* by Wilkinson [1999] describes a foundation for producing graphics for scientific journals, the internet, statistical packages, or
any visualization system. It looks at the rules for producing pie charts, bar charts, scatterplots, maps, function plots, and many others.

For the reader who is interested in visualization and information design, the three books by Edward Tufte are recommended. His first book, *The Visual Display of Quantitative Information* [Tufte, 1983], shows how to depict numbers. The second in the series is called *Envisioning Information* [Tufte, 1990], and illustrates how to deal with pictures of nouns (e.g., maps, aerial photographs, weather data). The third book is entitled *Visual Explanations* [Tufte, 1997], and it discusses how to illustrate pictures of verbs. These three books also provide many examples of good graphics and bad graphics. We highly recommend the book by Wainer [1997] for any statistician, engineer or data analyst. Wainer discusses the subject of good and bad graphics in a way that is accessible to the general reader.

Other techniques for visualizing multi-dimensional data have been proposed in the literature. One method introduced by Chernoff [1973] represents d-dimensional observations by a cartoon face, where features of the face reflect the values of the measurements. The size and shape of the nose, eyes, mouth, outline of the face and eyebrows, etc. would be determined by the value of the measurements. Chernoff faces can be used to determine simple trends in the data, but they are hard to interpret in most cases.

Another graphical EDA method that is often used is called brushing. Brushing [Venables and Ripley, 1994; Cleveland, 1993] is an interactive technique where the user can highlight data points on a scatterplot and the same points are highlighted on all other plots. For example, in a scatterplot matrix, highlighting a point in one plot shows up as highlighted in all of the others. This helps illustrate interesting structure across plots.

High-dimensional data can also be viewed using color histograms or data images. Color histograms are described in Wegman [1990]. Data images are discussed in Minette and West [1998] and are a special case of color histograms.

For more information on the graphical capabilities of MATLAB, we refer the reader to the MATLAB documentation Using MATLAB Graphics. Another excellent resource is the book called *Graphics and GUI's with MATLAB* by Marchand [1999]. These go into more detail on the graphics capabilities in MATLAB that are useful in data analysis such as lighting, use of the camera, animation, etc.

We now describe references that extend the techniques given in this book.

- **Stem-and-leaf:** Various versions and extensions of the stem-and-leaf plot are available. We show an ordered stem-and-leaf plot in this book, but ordering is not required. Another version shades the leaves. Most introductory applied statistics books have information on stem-and-leaf plots (e.g., Montgomery, et al. 1998). Hunter [1988] proposes an enhanced stem-and-leaf called the *digidot plot*. This combines a stem-and-leaf with a time sequence plot. As data
are collected they are plotted as a sequence of connected dots and a stem-and-leaf is created at the same time.

- **Discrete Quantile Plots**: Hoaglin and Tukey [1985] provide similar plots for other discrete distributions. These include the negative binomial, the geometric and the logarithmic series. They also discuss graphical techniques for plotting confidence intervals instead of points. This has the advantage of showing the confidence one has for each count.

- **Box plots**: Other variations of the box plot have been described in the literature. See McGill, Tukey and Larsen [1978] for a discussion of the variable width box plot. With this type of display, the width of the box represents the number of observations in each sample.

- **Scatterplots**: Scatterplot techniques are discussed in Carr, et al. [1987]. The methods presented in this paper are especially pertinent to the situation facing analysts today, where the typical data set that must be analyzed is often very large ($n = 10^3 \times 10^6$). They
There must be an alternative hypothesis such that we would decide in favor of one or the other, and this is denoted by H_1. If we reject H_0, then this leads to the acceptance of H_1. Returning to the engineering example, the alternative hypothesis might be that there is a difference in the instruments or that one is more accurate than the other. When we perform a statistical hypothesis test, we can never know with certainty what hypothesis is true. For ease of exposition, we will use the terms accept the null hypothesis and reject the null hypothesis for our decisions resulting from statistical hypothesis testing.

To clarify these ideas, let’s look at the example of the transportation official who wants to determine whether the average travel time to work has increased from the time it took in 1995. The mean travel time to work for northern Virginia residents in 1995 was 45 minutes. Since he wants to determine whether the mean travel time has increased, the statistical hypotheses are given by:

\[
H_0: \quad \mu = 45 \text{ minutes} \\
H_1: \quad \mu > 45 \text{ minutes.}
\]

The logic behind statistical hypothesis testing is summarized below, with details and definitions given after.

STEPS OF HYPOTHESIS TESTING

1. Determine the null and alternative hypotheses, using mathematical expressions if applicable. Usually, this is an expression that involves a characteristic or descriptive measure of a population.
2. Take a random sample from the population of interest.
3. Calculate a statistic from the sample that provides information about the null hypothesis. We use this to make our decision.

% Note the critical value:
cv = 1.645;
% Note the standard deviation for x-bar:
sig = 1.5;
% It's easier to use the non-standardized version,
% so convert:
ct = cv*1.5 + 45;

We find the area under the curve to the left of the critical value (the non-rejection region) for each of these values of the true mean. That would be the probability of not rejecting the null hypothesis.

% Get a vector of critical values that is
% the same size as mualt.
ctv = ct*ones(size(mualt));
% Now get the probabilities to the left of this value.
% These are the probabilities of the Type II error.
beta = normcdf(ctv,mualt,sig);

Note that the variable beta contains the probability of Type II error (the area to the left of the critical value cty under a normal curve with mean mualt.
\texttt{pow = 1 - beta;}

We plot the power against the true value of the population mean in Figure 6.2. Note that as \(\mu > \mu_0 \), the power (or the likelihood that we can detect the alternative hypothesis) increases.

\begin{verbatim}
plot(mualt,pow);
xlabel('True Mean \(\mu \)')
ylabel('Power')
axis([40 60 0 1.1])
\end{verbatim}

We leave it as an exercise for the reader to plot the probability of making a Type II error.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{power_curve.png}
\caption{
This shows the power (or probability of not making a Type II error) as a function of the true value of the population mean \(\mu \). Note that as the true mean gets larger, then the likelihood of not making a Type II error increases.
}
\end{figure}

There is an alternative approach to hypothesis testing, which uses a quantity called a \textit{p-value}. A \textit{p-value} is defined as the probability of observing a value of the test statistic as extreme as or more extreme than the one that is observed, when the null hypothesis \(H_0 \) is true. The word \textit{extreme} refers to the direction of the alternative hypothesis. For example, if a small value of the test statistic (a lower tail test) indicates evidence for the alternative hypothesis, then the \textit{p-value} is calculated as
\[p\text{-value} = P_{H_0}(T \leq t_o), \]

where \(t_o \) is the observed value of the test statistic \(T \), and \(P_{H_0}(\cdot) \) denotes the probability under the null hypothesis. The \(p \)-value is sometimes referred to as the \textit{observed significance level}.

In the \(p \)-value approach, a small value indicates evidence for the alternative hypothesis and would lead to rejection of \(H_0 \). Here small refers to a \(p \)-value that is less than or equal to \(\alpha \). The steps for performing hypothesis testing using the \(p \)-value approach are given below and are illustrated in Example 6.4.

PROCEDURE - HYPOTHESIS TESTING (\(P \)-VALUE APPROACH)

1. Determine the null and alternative hypotheses.
2. Find a test statistic \(T \) that will provide evidence about \(H_0 \).
3. Obtain a random sample from the population of interest and compute the value of the test statistic \(t_o \) from the sample.
4. Calculate the \(p \)-value:

 \textbf{Lower Tail Test:} \(p \text{-value} = P_{H_0}(T \leq t_o) \)

 \textbf{Upper Tail Test:} \(p \text{-value} = P_{H_0}(T \geq t_o) \)

5. If the \(p \)-value \(\leq \alpha \), then reject the null hypothesis.

For a two-tail test, the \(p \)-value is determined similarly.

Example 6.4

In this example, we repeat the hypothesis test of Example 6.2 using the \(p \)-value approach. First we set some of the values we need:

\[
\begin{align*}
\mu &= 45; \\
\sigma & = 1.5; \\
\text{obs} &= 47.0
\end{align*}
\]
value using the estimated distribution of the test statistic. The basic procedure is to randomly sample many times from the pseudo-population representing the null hypothesis, calculate the value of the test statistic at each trial, and use these values to estimate the distribution of the test statistic.

PROCEDURE - MONTE CARLO HYPOTHESIS TESTING (CRITICAL VALUE)

1. Using an available random sample of size \(n \) from the population of interest, calculate the observed value of the test statistic, \(t_o \).
2. Decide on a pseudo-population that reflects the characteristics of the true population under the null hypothesis.
3. Obtain a random sample of size \(n \) from the pseudo-population.
4. Calculate the value of the test statistic using the random sample in step 3 and record it.
5. Repeat steps 3 and 4 for \(M \) trials. We now have values \(t_1, \ldots, t_M \), that serve as an estimate of the distribution of the test statistic, \(T \), when the null hypothesis is true.
6. Obtain the critical value for the given significance level \(\alpha \):
 - **Lower Tail Test**: get the \(\alpha \)-th sample quantile, \(\hat{q}_\alpha \), from the \(t_1, \ldots, t_M \).
 - **Upper Tail Test**: get the \((1 - \alpha) \)-th sample quantile, \(\hat{q}_{1 - \alpha} \), from the \(t_1, \ldots, t_M \).
 - **Two-Tail Test**: get the sample quantiles \(\hat{q}_{\alpha/2} \) and \(\hat{q}_{1 - \alpha/2} \) from the \(t_1, \ldots, t_M \).
7. If \(t_o \) falls in the critical region, then reject the null hypothesis.

The critical values in step 6 can be obtained using the estimate of a sample quantile that we discussed in Chapter 3. The function `cquantiles` from the Computational Statistics Toolbox is also available to find these values.

In the examples given below, we apply the Monte Carlo method to a familiar hypothesis testing situation where we are testing an hypothesis about the population mean. As we saw earlier, we can use analytical approaches for this type of test. We use this simple application in the hope that the reader will better understand the ideas of Monte Carlo hypothesis testing and then easily apply them to more complicated problems.

Example 6.6

This toy example illustrates the concepts of Monte Carlo hypothesis testing. The `mcdataln` data set contains 25 observations. We are interested in using these data to test the following null and alternative hypotheses:
\[H_0: \quad \mu = 454 \]
\[H_1: \quad \mu < 454. \]

We will perform our hypothesis test using simulation to get the critical values. We decide to use the following as our test statistic

\[z = \frac{\bar{x} - 454}{\sigma/\sqrt{n}}. \]

First, we take care of some preliminaries.

% Load up the data.
load mcdata
n = length(mcdata);
% Population sigma is known.
sigma = 7.8;
sigxbar = sigma/sqrt(n);
% Get the observed value of the test statistic.
Tobs = (mean(mcdata) - 454)/sigxbar;

The observed value of the test statistic is \(t = -2.56 \). The next step is to decide on a model for the population that generated our data. We suspect that the normal distribution with \(\sigma = 7.8 \) is a good model, and we check this assumption using a normal probability plot. The resulting plot in Figure 6.4 shows that we can use the normal distribution as the pseudo-population.

% This command generates the normal probability plot.
% It is a function in the MATLAB Statistics Toolbox.
normplot(mcdata)

We are now ready to implement the Monte Carlo simulation. We use 1000 trials in this example. At each trial, we randomly sample from the distribution of the test statistic under the null hypothesis (the normal distribution with \(\mu = 454 \) and \(\sigma = 7.8 \)) and record the value of the test statistic.

M = 1000; % Number of Monte Carlo trials
% Storage for test statistics from the MC trials.
Tm = zeros(1,M);
% Start the simulation.
for i = 1:M
 % Generate a random sample under H_0
 % where n is the sample size.
 xs = sigma*randn(1,n) + 454;
 Tm(i) = (mean(xs) - 454)/sigxbar;
end
Now that we have the estimated distribution of the test statistic contained in the variable Tm, we can use that to estimate the critical value for a lower tail test.

\begin{verbatim}
 % Get the critical value for alpha.
 % This is a lower-tail test, so it is the
 % alpha quantile.
 alpha = 0.05;
 cv = cquantiles(Tm, alpha);
\end{verbatim}

We get an estimated critical value of -1.75. Since the observed value of our test statistic is $t_o = -2.56$, which is less than the estimated critical value, we reject H_0.

The procedure for Monte Carlo hypothesis testing using the p-value approach is similar. Instead of finding the critical value from the simulated distribution of the test statistic, we use it to estimate the p-value.
PROCEDURE - MONTE CARLO HYPOTHESIS TESTING (P-VALUE)

1. For a random sample of size \(n \) to be used in a statistical hypothesis test, calculate the observed value of the test statistic, \(t_a \).
2. Decide on a pseudo-population that reflects the characteristics of the population under the null hypothesis.
3. Obtain a random sample of size \(n \) from the pseudo-population.
4. Calculate the value of the test statistic using the random sample in step 3 and record it as \(t_i \).
5. Repeat steps 3 and 4 for \(M \) trials. We now have values \(t_1, \ldots, t_M \), that serve as an estimate of the distribution of the test statistic, \(T \), when the null hypothesis is true.
6. Estimate the \(p \)-value using the distribution found in step 5, using the following.

 Lower Tail Test:

 \[
 \hat{p}-\text{value} = \frac{\#(t_i \leq t_0)}{M}; \quad i = 1, \ldots, M
 \]

 Upper Tail Test:

 \[
 \hat{p}-\text{value} = \frac{\#(t_i \geq t_0)}{M}; \quad i = 1, \ldots, M
 \]

7. If \(\hat{p}-\text{value} \leq \alpha \), then reject the null hypothesis.

Example 6.7

We return to the situation in Example 6.6 and apply Monte Carlo simulation to the \(p \)-value approach to hypothesis testing. Just to change things a bit, we use the sample mean as our test statistic.

```matlab
% Let's change the test statistic to xbar.
Tobs = mean(mcdatal);  % Number of Monte Carlo trials.
M = 1000;
% Start the simulation.
Tm = zeros(1,M);
for i = 1:M
    % Generate a random sample under H_0.
    xs = sigma*randn(1,n) + 454;
    Tm(i) = mean(xs);
end
```
We find the estimated p-value by counting the number of observations in T_m that are below the value of the observed value of the test statistic and dividing by M.

% Get the p-value. This is a lower tail test.
% Find all of the values from the simulation that are
% below the observed value of the test statistic.
ind = find(Tm <= Tobs);
pvalhat = length(ind)/M;

We have an estimated p-value given by 0.007. If the significance level of our test is $\alpha = 0.05$, then we would reject the null hypothesis.

\[\square \]

Monte Carlo Assessment of Hypothesis Testing

Monte Carlo simulation can be used to evaluate the performance of an inference model or hypothesis test in terms of the Type I error and the Type II error. For some statistics, such as the sample mean, these errors can be determined analytically. However, what if we have an inference test where the assumptions of the standard methods might be violated or the analytical methods cannot be applied? For instance, suppose we choose the critical value by using a normal approximation (when our test statistic is not normally distributed), and we need to assess the results of doing that? In these situations, we can use Monte Carlo simulation to estimate the Type I and the Type II error.

We first outline the procedure for estimating the Type I error. Because the Type I error occurs when we reject the null hypothesis test when it is true, we must sample from the pseudo-population that represents H_0.

PROCEDURE - MONTE CARLO ASSESSMENT OF TYPE I ERROR

1. Determine the pseudo-population when the null hypothesis is true.
2. Generate a random sample of size n from this pseudo-population.
3. Perform the hypothesis test using the critical value.
4. Determine whether a Type I error has been committed. In other words, was the null hypothesis rejected? We know that it should not be rejected because we are sampling from the distribution according to the null hypothesis. Record the result for this trial as,

\[I = \begin{cases}
1: & \text{Type I error is made} \\
0: & \text{Type I error is not made.}
\end{cases} \]

5. Repeat steps 2 through 4 for M trials.
6. The probability of making a Type I error is

\[\hat{\alpha} = \frac{1}{M} \sum_{i=1}^{M} I_i. \tag{6.9} \]

Note that in step 6, this is the same as calculating the proportion of times the null hypothesis is falsely rejected out of \(M \) trials. This provides an estimate of the significance level of the test for a given critical value.

The procedure is similar for estimating the Type II error of a hypothesis test. However, this error is determined by sampling from the distribution when the null hypothesis is false. There are many possibilities for the Type II error, and the analyst should investigate the Type II error for those alternative hypotheses that are of interest.

PROCEDURE - MONTE CARLO ASSESSMENT OF TYPE II ERROR

1. Determine a pseudo-population of interest where the null hypothesis is *false*.
2. Generate a random sample of size \(n \) from this pseudo-population.
3. Perform the hypothesis test using the significance level \(\alpha \) and corresponding critical value.
4. Note whether a Type II error has been committed; i.e., was the null hypothesis *not* rejected? Record the result for this trial as,

\[I_i = \begin{cases}
1; & \text{Type II error is made} \\
0; & \text{Type II error is not made.}
\end{cases} \]

5. Repeat steps 2 through 4 for \(M \) trials.
6. The probability of making a Type II error is

\[\hat{\beta} = \frac{1}{M} \sum_{i=1}^{M} I_i. \tag{6.10} \]

The Type II error rate is estimated using the proportion of times the null hypothesis is not rejected (when it should be) out of \(M \) trials.

Example 6.8

For the hypothesis test in Example 6.6, we had a critical value (from theory) of -1.645. We can estimate the significance level of the test using the following steps:
\[M = 1000; \]
alpha = 0.05;
\% Get the critical value, using z as test statistic.
cv = norminv(alpha,0,1);
\% Start the simulation.
Im = 0;
for i = 1:M
\% Generate a random sample under H_0.
xs = sigma*randn(1,n) + 454;
Tm = (mean(xs)-454)/sigxbar;
if Tm <= cv \% then reject H_0
Im = Im +1;
end
end
alphahat = Im/M;

A critical value of -1.645 in this situation corresponds to a desired probability of Type I error of 0.05. From this simulation, we get an estimated value of 0.045, which is very close to the theoretical value. We now check the Type II

4.6 Further Reading

In this text we do not attempt to assess the computational efficiency of the methods for generating random variables. If the statistician or engineer is performing extensive Monte Carlo simulations, then the time it takes to generate random samples becomes important. In these situations, the reader is encouraged to consult Gentle [1998] or Rubinstein [1981] for efficient algorithms. Our goal is to provide methods that are easily implemented using MATLAB or other software, in case the data analyst must write his own functions for generating random variables from non-standard distributions.
FIGURE 6.5
Here is the curve for the estimated power corresponding to the hypothesis test of Example 6.8.

An important point to keep in mind about the Monte Carlo simulations discussed in this section is that the experiment is applicable only for the situation that has been simulated. For example, when we assess the Type II error in Example 6.8, it is appropriate only for those alternative hypotheses, sample size and critical value. What would be the probability of Type II error, if some other departure from the null hypothesis is used in the simulation? In other cases, we might need to know whether the distribution of the statistic changes with sample size or skewness in the population or some other characteristic of interest. These variations are easily investigated using multiple Monte Carlo experiments.

One quantity that the researcher must determine is the number of trials that are needed in Monte Carlo simulations. This often depends on the computing assets that are available. If time and computer resources are not an issue, then M should be made as large as possible. Hope (1968) showed that results from a Monte Carlo simulation are unbiased for any M, under the assumption that the programming is correct.

Mooney (1997) states that there is no general theory that governs the number of trials in Monte Carlo simulation. However, he recommends the following general guidelines. The researcher should first use a small number of trials and ensure that the program is working properly. Once the code has been checked, the simulation or experiments can be run for very large M.
Most simulations would have $M > 1000$, but M between 10,000 and 25,000 is not uncommon. One important guideline for determining the number of trials, is the purpose of the simulation. If the tail of the distribution is of interest (e.g., estimating Type I error, getting p-values, etc.), then more trials are needed to ensure that there will be a good estimate of that area.

6.4 Bootstrap Methods

The treatment of the bootstrap methods described here comes from Efron and Tibshirani [1993]. The interested reader is referred to that text for more information on the underlying theory behind the bootstrap. There does not seem to be a consistent terminology in the literature for what techniques are considered bootstrap methods. Some refer to the resampling techniques of the previous section as bootstrap methods. Here, we use bootstrap to refer to Monte Carlo simulations that treat the original sample as the pseudo-population or as an estimate of the population. Thus, in the steps we randomly sample from the pseudo-population, we now resample from the original sample.

In this section, we discuss the general bootstrap methodology, followed by some applications of the bootstrap. These include bootstrap estimates of the standard error, bootstrap estimates of bias, and bootstrap confidence intervals.

General Bootstrap Methodology

The bootstrap is a method of Monte Carlo simulation where no parametric assumptions are made about the underlying population that generated the random sample. Instead, we use the sample as an estimate of the population. This estimate is called the empirical distribution \hat{F} where each x_i has probability mass $1/n$. Thus, each x_i has the same likelihood of being selected in a new sample taken from \hat{F}.

When we use \hat{F} as our pseudo-population, then we resample with replacement from the original sample $x = (x_1, \ldots, x_n)$. We denote the new sample obtained in this manner by $x' = (x'_1, \ldots, x'_n)$. Since we are sampling with replacement from the original sample, there is a possibility that some points x_i will appear more than once in x' or maybe not at all. We are looking at the univariate situation, but the bootstrap concepts can also be applied in the d-dimensional case.

A small example serves to illustrate these ideas. Let's say that our random sample consists of the four numbers $x = (5, 8, 3, 2)$. The following are possible samples x', when we sample with replacement from x:
\[\mathbf{x}^* = (x_1, x_2, x_3, x_4) = (2, 2, 8, 5) \]
\[\mathbf{x}^{*2} = (x_4, x_2, x_3, x_4) = (2, 8, 3, 2). \]

We use the notation \(x^*_b \), \(b = 1, ..., B \) for the \(b \)-th bootstrap data set.

In many situations, the analyst is interested in estimating some parameter \(\theta \) by calculating a statistic from the random sample. We denote this estimate by

\[\hat{\theta} = T = t(x_1, ..., x_n). \] \hspace{1cm} (6.11)

We might also like to determine the standard error in the estimate \(\hat{\theta} \) and the bias. The bootstrap method can provide an estimate of this when analytical methods fail. The method is also suitable for situations when the estimator \(\hat{\theta} = t(x) \) is complicated.

To get estimates of bias or standard error of a statistic, we obtain \(B \) bootstrap samples by sampling with replacement from the original sample. For every bootstrap sample, we calculate the same statistic to obtain the bootstrap replications of \(\hat{\theta} \), as follows

\[\hat{\theta}^*_b = t(x^*_b), \quad b = 1, ..., B. \] \hspace{1cm} (6.12)

These \(B \) bootstrap replicates provide us with an estimate of the distribution of \(\hat{\theta} \). This is similar to what we did in the previous section, except that we are not making any assumptions about the distribution for the original sample. Once we have the bootstrap replicates in Equation 6.12, we can use them to understand the distribution of the estimate.

The steps for the basic bootstrap methodology are given here, with detailed procedures for finding specific characteristics of \(\hat{\theta} \) provided later. The issue of how large to make \(B \) is addressed with each application of the bootstrap.

PROCEDURE - BASIC BOOTSTRAP

1. Given a random sample, \(\mathbf{x} = (x_1, ..., x_n) \), calculate \(\hat{\theta} \).
2. Sample with replacement from the original sample to get \(\mathbf{x}^*_b = (x^*_1, ..., x^*_n) \).
3. Calculate the same statistic using the bootstrap sample in step 2 to get \(\hat{\theta}^*_b \).
4. Repeat steps 2 through 3, \(B \) times.
5. Use this estimate of the distribution of \(\hat{\theta} \) (i.e., the bootstrap replicates) to obtain the desired characteristic (e.g., standard error, bias or confidence interval).
Efron and Tibshirani [1993] discuss a method called the **parametric bootstrap**. In this case, the data analyst makes an assumption about the distribution that generated the original sample. Parameters for that distribution are estimated from the sample, and resampling (in step 2) is done using the assumed distribution and the estimated parameters. The parametric bootstrap is closer to the Monte Carlo methods described in the previous section.

For instance, say we have reason to believe that the data come from an exponential distribution with parameter λ. We need to estimate the variance and use

$$
\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
$$

(6.13)

as the estimator. We can use the parametric bootstrap as outlined above to understand the behavior of $\hat{\theta}$. Since we assume an exponential distribution for the data, we estimate the parameter λ from the sample to get $\hat{\lambda}$. We then resample from an exponential distribution with parameter $\hat{\lambda}$ to get the bootstrap samples. The reader is asked to implement the parametric bootstrap in the exercises.

Bootstrap Estimate of Standard Error

When our goal is to estimate the standard error of $\hat{\theta}$ using the bootstrap method, we proceed as outlined in the previous procedure. Once we have the estimated distribution for θ, we use it to estimate the standard error for $\hat{\theta}$. This estimate is given by

$$
\hat{SE}_B(\hat{\theta}) = \left[\frac{1}{B-1} \sum_{b=1}^{B} (\hat{\theta}^{*b} - \hat{\theta})^2 \right]^{1/2},
$$

(6.14)

where

$$
\hat{\theta}^{*b} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{*b}.
$$

(6.15)

Note that Equation 6.14 is just the sample standard deviation of the bootstrap replicates, and Equation 6.15 is the sample mean of the bootstrap replicates.

Efron and Tibshirani [1993] show that the number of bootstrap replicates B should be between 50 and 200 when estimating the standard error of a statistic. Often the choice of B is dictated by the computational complexity of $\hat{\theta}$, the sample size n, and the computer resources that are available. Even using
a small value of B, say $B = 25$, the analyst will gain information about the variability of $\hat{\theta}$. In most cases, taking more than 200 bootstrap replicates to estimate the standard error is unnecessary.

The procedure for finding the bootstrap estimate of the standard error is given here and is illustrated in Example 6.9

PROCEDURE: BOOTSTRAP ESTIMATE OF THE STANDARD ERROR

1. Given a random sample, $x = (x_1, \ldots, x_n)$, calculate the statistic $\hat{\theta}$.
2. Sample with replacement from the original sample to get $x^{*b} = (x_1^{*b}, \ldots, x_n^{*b})$.
3. Calculate the same statistic using the sample in step 2 to get the bootstrap replicates, $\hat{\theta}^{*b}$.
4. Repeat steps 2 through 3, B times.
5. Estimate the standard error of $\hat{\theta}$ using Equations 6.14 and 6.15.

Example 6.9

The lengths of the forearm (in inches) of 140 adult males are contained in the file *forearm* [Hand, et al., 1994]. We use these data to estimate the skewness of the population. We then estimate the standard error of this statistic using the bootstrap method. First we load the data and calculate the skewness.

```matlab
load forearm
% Sample with replacement from this.
% First get the sample size.
n = length(forearm);
B = 100;  % number of bootstrap replicates
% Get the value of the statistic of interest.
skew = skewness(forearm);
```
Now we get the quantiles that we need for the interval given in Equation 6.24 and calculate the interval.

% Get the quantiles.
k = B*alpha/2;
szval = sort(zvals);
tlo = szval(k);
 thi = szval(B-k);
% Get the endpoints of the interval.
blo = thetahat - thi*SE;
bhi = thetahat - tlo*SE;

The bootstrap-t interval for the variance of the forearm data is (1.00, 1.57).

Bootstrap Percentile Interval

An improved bootstrap confidence interval is based on the quantiles of the distribution of the bootstrap replicates. This technique has the benefit of being more stable than the bootstrap-t, and it also enjoys better theoretical coverage properties [Efron and Tibshirani, 1993]. The bootstrap percentile confidence interval is

\[(\hat{\theta}_{B}^{(*)(\alpha/2)}, \hat{\theta}_{B}^{(*)(1-\alpha/2)}) \]

(6.25)

where \(\hat{\theta}_{B}^{(*)(\alpha/2)} \) is the \(\alpha/2 \) quantile in the bootstrap distribution of \(\hat{\theta}^{*} \). For example, if \(\alpha/2 = 0.025 \) and \(B = 1000 \), then \(\hat{\theta}_{B}^{(*)(0.025)} \) is the \(\hat{\theta}^{*} \) in the 25th position of the ordered bootstrap replicates. Similarly, \(\hat{\theta}_{B}^{(*)(0.975)} \) is the replicate in position 975. As discussed previously, some other suitable estimate for the quantile can be used.

The procedure is the same as the general bootstrap method, making it easy to understand and to implement. We outline the steps below.

PROCEDURE - BOOTSTRAP PERCENTILE INTERVAL

1. Given a random sample, \(x = (x_1, \ldots, x_n) \), calculate \(\hat{\theta} \).
2. Sample with replacement from the original sample to get \(x^* = (x_1^*, \ldots, x_n^*) \).
3. Calculate the same statistic using the sample in step 2 to get the bootstrap replicates, \(\hat{\theta}^{*b} \).
4. Repeat steps 2 through 3, \(B \) times, where \(B \geq 1000 \).
5. Order the \(\hat{\theta}^{*b} \) from smallest to largest.
6. Calculate \(B \cdot \alpha/2 \) and \(B \cdot (1 - \alpha/2) \).
Now we get the quantiles that we need for the interval given in Equation 6.24 and calculate the interval.

```matlab
% Get the quantiles.
k = B*alpha/2;
```
Exercises

6.1. Repeat Example 6.1 where the population standard deviation for the travel times to work is $\sigma_x = 5$ minutes. Is $\bar{x} = 47.2$ minutes still consistent with the null hypothesis?

6.2. Using the information in Example 6.3, plot the probability of Type II error as a function of μ. How does this compare with Figure 6.2?

6.3. Would you reject the null hypothesis in Example 6.4 if $\alpha = 0.10$?

6.4. Using the same value for the sample mean, repeat Example 6.3 for different sample sizes of $n = 50, 100, 200$. What happens to the curve showing the power as a function of the true mean as the sample size changes?

6.5. Repeat Example 6.6 using a two-tail test. In other words, test for the alternative hypothesis that the mean is not equal to 454.

6.6. Repeat Example 6.8 for larger M. Does the estimated Type I error get closer to the true value?

6.7. Write MATLAB code that implements the parametric bootstrap. Test it using the forearm data. Assume that the normal distribution is a reasonable model for the data. Use your code to get a bootstrap estimate of the standard error and the bias of the coefficient of skewness and the coefficient of kurtosis. Get a bootstrap percentile interval for the sample central second moment using your parametric bootstrap approach.

6.8. Write MATLAB code that will get the bootstrap standard confidence interval. Use it with the forearm data to get a confidence interval for the sample central second moment. Compare this interval with the ones obtained in the examples and in the previous problem.

6.9. Use your program from problem 6.8 and the forearm data to get a bootstrap confidence interval for the mean. Compare this to the theoretical one.

6.10. The remiss data set contains the remission times for 42 leukemia patients. Some of the patients were treated with the drug called 6-mercaptopurine (mp), and the rest were part of the control group (control). Use the techniques from Chapter 5 to help determine a suitable model (e.g., Weibull, exponential, etc.) for each group. Devise a Monte Carlo hypothesis test to test for the equality of means between the two groups [Hand, et al., 1994; Gehan, 1965]. Use the p-value approach.

6.11. Load the lawpop data set [Efron and Tibshirani, 1993]. These data contain the average scores on the LSAT (lsat) and the corresponding
average undergraduate grade point average (gpa) for the 1973 freshman class at 82 law schools. Note that these data constitute the entire population. The data contained in law comprise a random sample of 15 of these classes. Obtain the true population variances for the lsat
Assume that we have a sample of observed predictor variables with corresponding responses. We denote these by \((X_i, Y_i), i = 1, \ldots, n\). The least squares fit is obtained by finding the values of the parameters that minimize the sum of the squared errors

\[
RSE = \sum_{i=1}^{n} \hat{e}_i^2 = \sum_{i=1}^{n} (Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i))^2,
\]

where \(RSE\) denotes the residual squared error.

Estimates of the parameters \(\hat{\beta}_0\) and \(\hat{\beta}_1\) are easily obtained in MATLAB using the function `polyfit`, and other methods available in MATLAB will be explored in Chapter 10. We use the function `polyfit` in Example 7.1 to model the linear relationship between the atmospheric temperature and the amount of steam used per month (see Figure 7.1).
observed x values, the observed y values and the degree of the polynomial that we want to fit to the data. The following commands fit a polynomial of degree one to the steam data.

```matlab
% Loads the vectors x and y.
load steam
% Fit a first degree polynomial to the data.
[p,s] = polyfit(x,y,1);
```

The output argument p is a vector of coefficients of the polynomial in decreasing order. So, in this case, the first element of p is the estimated slope $\hat{\beta}_1$ and the second element is the estimated y-intercept $\hat{\beta}_0$. The resulting model is

$$
\hat{\beta}_0 = 13.62 \quad \hat{\beta}_1 = -0.08.
$$

The predictions that would be obtained from the model (i.e., points on the line given by the estimated parameters) are shown in Figure 7.2, and we see that it seems to be a reasonable fit.

![Figure 7.2](image)

Figure 7.2
This figure shows a scatterplot of the steam data along with the line obtained using `polyfit`. The estimate of the slope is $\hat{\beta}_1 = -0.08$, and the estimate of the y-intercept is $\hat{\beta}_0 = 13.62$.
The **prediction error** is defined as

\[PE = E[(Y - \hat{Y})^2] \tag{7.5} \]

where the expectation is with respect to the true population. To estimate the error given by Equation 7.5, we need to test our model (obtained from **polyfit**) using an independent set of data that we denote by \((x'_i, y'_i)\). This means that we would take an observed \((x'_i, y'_i)\) and obtain the estimate of \(\hat{y}'_i\) using our model:

\[\hat{y}'_i = \hat{\beta}_0 + \hat{\beta}_1 x'_i. \tag{7.6} \]

We then compare \(\hat{y}'_i\) with the true value of \(y'_i\). Obtaining the outputs or \(\hat{y}'_i\) from the model is easily done in MATLAB using the **polyval** function as shown in Example 7.2.

Say we have \(m\) independent observations \((x'_i, y'_i)\) that we can use to test the model. We estimate the prediction error (Equation 7.5) using

\[\hat{PE} = \frac{1}{m} \sum_{i=1}^{m} (y'_i - \hat{y}'_i)^2. \tag{7.7} \]

Equation 7.7 measures the average squared error between the predicted response obtained from the model and the true measured response. It should be noted that other measures of error can be used, such as the absolute difference between the observed and predicted responses.

Example 7.2

We now show how to estimate the prediction error using Equation 7.7. We first choose some points from the **steam** data set and put them aside to use as an independent test sample. The rest of the observations are then used to obtain the model.

```
load steam
% Get the set that will be used to
% estimate the line.
indtest = 2:2:20; % Just pick some points.
xtest = x(indtest);
ytest = y(indtest);
% Now get the observations that will be
% used to fit the model.
xtrain = x;
ytrain = y;
% Remove the test observations.
```
xtrain(indtest) = []; ytrain(indtest) = [];

The next step is to fit a first degree polynomial:

\%
\text{Fit a first degree polynomial (the model)}
\%
\text{to the data.}
[p,s] = polyfit(xtrain,ytrain,1);

We can use the MATLAB function \texttt{polyval} to get the predictions at the \(x\) values in the testing set and compare these to the observed \(y\) values in the testing set.

\%
\text{Now get the predictions using the model and the}
\%
\text{testing data that was set aside.}
yhat = polyval(p,xtest);
\%
\text{The residuals are the difference between the true}
\%
\text{and the predicted values.}
r = (ytest - yhat);

Finally, the estimate of the prediction error (Equation 7.7) is obtained as follows:

\[
\text{pe} = \text{mean}(r.^2);
\]

The estimated prediction error is \(\hat{PE} = 0.91\). The reader is asked to explore this further in the exercises.

What we just illustrated in Example 7.2 was a situation where we partitioned the data into one set for building the model and one for estimating the prediction error. This is perhaps not the best use of the data, because we have all of the data available for evaluating the error in the model. We could repeat the above procedure, repeatedly partitioning the data into \textit{many} training and testing sets. This is the fundamental idea underlying cross-validation.

The most general form of this procedure is called \textit{K}-fold cross-validation. The basic concept is to split the data into \(K\) partitions of approximately equal size. One partition is reserved for testing, and the rest of the data are used for fitting the model. The test set is used to calculate the squared error \((y_i - \hat{y}_i)^2\). Note that the prediction \(\hat{y}_i\) is from the model obtained using the current training set (one without the \(i\)-th observation in it). This procedure is repeated until all \(K\) partitions have been used as a test set. Note that we have \(n\) squared errors because each observation will be a member of one testing set. The average of these errors is the estimated expected prediction error.

In most situations, where the size of the data set is relatively small, the analyst can set \(K = n\), so the size of the testing set is one. Since this requires fitting the model \(n\) times, this can be computationally expensive if \(n\) is large. We note, however, that there are efficient ways of doing this [Gentle 1998; Hjorth,
1994]. We outline the steps for cross-validation below and demonstrate this approach in Example 7.3.

PROCEDURE - CROSS-VALIDATION

1. Partition the data set into K partitions. For simplicity, we assume that $n = r \cdot K$, so there are r observations in each set.
2. Leave out one of the partitions for testing purposes.
3. Use the remaining $n - r$ data points for training (e.g., fit the model, build the classifier, estimate the probability density function).
4. Use the test set with the model and determine the squared error between the observed and predicted response: $(y_i - \hat{y}_i)^2$.
5. Repeat steps 2 through 4 until all K partitions have been used as a test set.
6. Determine the average of the n errors.

Note that the error mentioned in step 4 depends on the application and the goal of the analysis [Hjorth, 1994]. For example, in pattern recognition applications, this might be the cost of misclassifying a case. In the following example, we apply the cross-validation technique to help decide what type of model should be used for the steam data.

Example 7.3

In this example, we apply cross-validation to the modeling problem of Example 7.1. We fit linear, quadratic (degree 2) and cubic (degree 3) models to the data and compare their accuracy using the estimates of prediction error obtained from cross-validation.

```matlab
% Set up the array to store the prediction errors.
N = length(x);
r1 = zeros(1,N); % store error - linear fit
r2 = zeros(1,N); % store error - quadratic fit
r3 = zeros(1,N); % store error - cubic fit
% Loop through all of the data. Remove one point at a time as the test point.
for i = 1:N
    xtest = x(i); % Get the test point.
ytest = y(i);
xtrain = x; % Get the points to build model.
ytrain = y;
xtrain(i) = []; % Remove test point.
ytrain(i) = [];
% Fit a first degree polynomial to the data.
[p1,s] = polyfit(xtrain,ytrain,1);
```
% Fit a quadratic to the data.
[p2,s] = polyfit(xtrain,ytrain,2);
% Fit a cubic to the data
[p3,s] = polyfit(xtrain,ytrain,3);
% Get the errors
r1(i) = (ytest - polyval(p1,xtest)).^2;
 r2(i) = (ytest - polyval(p2,xtest)).^2;
 r3(i) = (ytest - polyval(p3,xtest)).^2;
end

We obtain the estimated prediction error of both models as follows,

% Get the prediction error for each one.
p1 = mean(r1);
p2 = mean(r2);
p3 = mean(r3);

From this, we see that the estimated prediction error for the linear model is 0.04, the quadratic model is 0.08, and the cubic is 0.06.
The jackknife method is similar to cross-validation in that we leave out one observation \(x_i \) from our sample to form a \textit{jackknife sample} as follows

\[
x_{i_1}, \ldots, x_{i_{i-1}}, x_{i_{i+1}}, \ldots, x_n.
\]

This says that the \(i \)-th jackknife sample is the original sample with the \(i \)-th data point removed. We calculate the value of the estimate using this reduced jackknife sample to obtain the \(i \)-th \textit{jackknife replicate}. This is given by

\[
T^{(-i)} = t(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n).
\]

This means that we leave out one point at a time and use the rest of the sample to calculate our statistic. We continue to do this for the entire sample, leaving out one observation at a time, and the end result is a sequence of \(n \) jackknife replications of the statistic.

The estimate of the bias of \(T \) obtained from the jackknife technique is given by [Efron and Tibshirani, 1993]

\[
\hat{\text{Bias}}_{\text{jack}}(T) = (n - 1)(\overline{T^{(i)}} - T),
\]

where

\[
\overline{T^{(i)}} = \frac{1}{n} \sum_{i=1}^{n} T^{(-i)}/n.
\]

We see from Equation 7.10 that \(\overline{T^{(i)}} \) is simply the average of the jackknife replications of \(T \).

The estimated standard error using the jackknife is defined as follows

\[
\hat{SE}_{\text{jack}}(T) = \left[\frac{n - 1}{n} \sum_{i=1}^{n} (T^{(-i)} - \overline{T^{(i)}})^2 \right]^{1/2}.
\]

Equation 7.11 is essentially the sample standard deviation of the jackknife replications with a factor \((n - 1)/n\) in front of the summation instead of \(1/(n - 1)\). Efron and Tibshirani [1993] show that this factor ensures that the jackknife estimate of the standard error of the sample mean, \(\hat{SE}_{\text{jack}}(\overline{x}) \), is an unbiased estimate.
PROCEDURE - JACKKNIFE

1. Leave out an observation.
2. Calculate the value of the statistic using the remaining sample points to obtain \(T^{(-i)} \).
3. Repeat steps 1 and 2, leaving out one point at a time, until all \(n \) \(T^{(-i)} \) are recorded.
4. Calculate the jackknife estimate of the bias of \(T \) using Equation 7.9.
5. Calculate the jackknife estimate of the standard error of \(T \) using Equation 7.11.

The following two examples show how this is used to obtain jackknife estimates of the bias and standard error for an estimate of the correlation coefficient.

Example 7.4

In this example, we use a data set that has been examined in Efron and Tibshirani [1993]. Note that these data are also discussed in the exercises for Chapter 6. These data consist of measurements collected on the freshman class of 82 law schools in 1973. The average score for the entering class on a national law test (lsat) and the average undergraduate grade point average (gpa) were recorded. A random sample of size \(n = 15 \) was taken from the population. We would like to use these sample data to estimate the correlation coefficient \(\hat{\rho} \) between the test scores (lsat) and the grade point average (gpa). We start off by finding the statistic of interest.

```matlab
% Loads up a matrix - law.
load law

% Estimate the desired statistic from the sample.
lsat = law(:,1);
gpa = law(:,2);
tmp = corrcorr(gpa,lsat);
% Recall from Chapter 3 that the corrcorr function
% returns a matrix of correlation coefficients. We
% want the one in the off-diagonal position.
T = tmp(1,2);
```

We get an estimated correlation coefficient of \(\hat{\rho} = 0.78 \), and we would like to get an estimate of the bias and the standard error of this statistic. The following MATLAB code implements the jackknife procedure for estimating these quantities.

```matlab
% Set up memory for jackknife replicates.
n = length(gpa);
reps = zeros(1,n);
for i = 1:n
```
% Store as temporary vector:
gpat = gpa;
lSatt = lSatt;
% Leave i-th point out:
gpat(i) = [];
lSatt(i) = [];
% Get correlation coefficient:
% In this example, we want off-diagonal element.
tmp = corrcoef(gpat,lSatt);
reps(i) = tmp(1,2);
end
mureps = mean(reps);
sehat = sqrt((n-1)/n*sum((reps-mureps).^2));
% Get the estimate of the bias:
biashat = (n-1)*(mureps-T);

Our estimate of the standard error of the sample correlation coefficient is

$$\hat{SE}_{\hat{r}}(\hat{r}) = 0.14,$$

and our estimate of the bias is

$$\hat{Bias}_{\hat{r}}(\hat{r}) = -0.0065.$$

This data set will be explored further in the exercises.

Example 7.5
We provide a MATLAB function called csjack that implements the jackknife procedure. This will work with any MATLAB function that takes the random sample as the argument and returns a statistic. This function can be one that comes with MATLAB, such as mean or var, or it can be one written by the user. We illustrate its use with a user-written function called corr that returns the single correlation coefficient between two univariate random variables.

```matlab
function r = corr(data)
    % This function returns the single correlation
    % coefficient between two variables.
tmp = corrcoef(data);
r = tmp(1,2);
end
```

The data used in this example are taken from Hand, et al. [1994]. They were originally from Anscombe [1973], where they were created to illustrate the point that even though an observed value of a statistic is the same for data sets ($\hat{r} = 0.82$), that does not tell the entire story. He also used them to show
the importance of looking at scatterplots, because it is obvious from the plots that the relationships between the variables are not similar. The scatterplots are shown in Figure 7.3.

% Here is another example.
% We have 4 data sets with essentially the same correlation coefficient.
% The scatterplots look very different.
% When this file is loaded, you get four sets
% of x and y variables.
load anscombe
% Do the scatterplots.
subplot(2,2,1),plot(x1,y1,'k*');
subplot(2,2,2),plot(x2,y2,'k*');
subplot(2,2,3),plot(x3,y3,'k*');
subplot(2,2,4),plot(x4,y4,'k*');

We now determine the jackknife estimate of bias and standard error for
Example 7.8
We use an example from Efron and Tibshirani [1993] to illustrate the BC$_a$ interval. Here we have a set of measurements of 26 neurologically impaired children who took a test of spatial perception called test A. We are interested in finding a 90% confidence interval for the variance of a random score on test A. We use the following estimate for the variance

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2,$$

where x_i represents one of the test scores. This is a biased estimator of the variance, and when we calculate this statistic from the sample we get a value of $\hat{\theta} = 171.5$. We provide a function called csbootbca that will determine the BC$_a$ interval. Because it is somewhat lengthy, we do not include the MATLAB code here, but the reader can view it in Appendix D. However, before we can use the function csbootbca, we have to write an M-file function that will return the estimate of the second sample central moment using only the sample as an input. It should be noted that MATLAB Statistics Toolbox has a function (moment) that will return the sample central moments of any order. We do not use this with the csbootbca function, because the function specified as an input argument to csbootbca can only use the sample as an input. Note that the function mom is the same function used in Chapter 6. We can get the bootstrap BC$_a$ interval with the following command.

```matlab
% First load the data.
load spatial
% Now find the BC-a bootstrap interval.
alpha = 0.10;
B = 2000;
% Use the function we wrote to get the
% 2nd sample central moment - 'mom'.
[blo,bhi,bvals,z0,aHat] = ...
    csbootbca(spatial,'mom',B,alpha);
```

From this function, we get a bias correction of $\hat{z}_0 = 0.16$ and an acceleration factor of $\hat{a} = 0.061$. The endpoints of the interval from csbootbca are (115.97, 258.54). In the exercises, the reader is asked to compare this to the bootstrap-t interval and the bootstrap percentile interval.

\qed
7.5 Jackknife-After-Bootstrap

In Chapter 6, we presented the bootstrap method for estimating the statistical accuracy of estimates. However, the bootstrap estimates of standard error and bias are also estimates, so they too have error associated with them. This error arises from two sources, one of which is the usual sampling variability because we are working with the sample instead of the population. The other variability comes from the fact that we are working with a finite number B of bootstrap samples.

We now turn our attention to estimating this variability using the jackknife-after-bootstrap technique. The characteristics of the problem are the same as in Chapter 6. We have a random sample $x = (x_1, ..., x_n)$, from which we calculate our statistic $\hat{\theta}$. We estimate the distribution of $\hat{\theta}$ by creating B bootstrap replicates $\hat{\theta}^*$. Once we have the bootstrap replicates, we estimate some feature of the distribution of $\hat{\theta}$ by calculating the corresponding feature of the distribution of bootstrap replicates. We will denote this feature or bootstrap estimate as $\hat{\gamma}_c$. As we saw before, $\hat{\gamma}_c$ could be the bootstrap estimate of
excellent resource that discusses the underlying theory and the connection between the jackknife, the bootstrap and cross-validation. A more recent text by Shao and Tu [1995] provides a guide to using the jackknife and other resampling plans. Many practical examples are included. They also present the theoretical properties of the jackknife and the bootstrap, examining them in an asymptotic framework. Efron and Tibshirani [1993] show the connection between the bootstrap and the jackknife through a geometrical representation. For a reference on the jackknife that is accessible to readers at the undergraduate level, we recommend Mooney and Duval [1993]. This text also gives a description of the delete-d jackknife procedure.

The use of jackknife-after-bootstrap to evaluate the error in the bootstrap is discussed in Efron and Tibshirani [1993] and Efron [1992]. Applying another level of bootstrapping to estimate this error is given in Loh [1987], Tibshirani [1988], and Hall and Martin [1988]. For other references on this topic, see Chernick [1999].
Exercises

7.1. The \textit{insulate} data set [Hand, et al., 1994] contains observations corresponding to the average outside temperature in degrees Celsius and the amount of weekly gas consumption measured in 1000 cubic feet. Do a scatterplot of the data corresponding to the measurements taken before insulation was installed. What is a good model for this? Use cross-validation with $K = 1$ to estimate the prediction error for your model. Use cross-validation with $K = 4$. Does your error change significantly? Repeat the process for the data taken after insulation was installed.

7.2. Using the same procedure as in Example 7.2, use a quadratic (degree is 2) and a cubic (degree is 3) polynomial to build the model. What is the estimated prediction error from these models? Which one seems best: linear, quadratic or cubic?

7.3. The \textit{peanuts} data set [Hand, et al., 1994; Draper and Smith, 1981] contain measurements of the aflatoxin (X) and the corresponding percentage of non-contaminated peanuts in the batch (Y). Do a scatterplot of these data. What is a good model for these data? Use cross-
hf(\xi_k) = \int_{u_k} f(t) dt; \quad \text{for some } \xi_k \text{ in } B_k. \tag{8.8}

This is based on the assumption that the probability density function f(x) is Lipschitz continuous over the bin interval B_k. A function is Lipschitz continuous if there is a positive constant γ_k such that

\[|f(x) - f(y)| \leq γ_k |x - y|; \quad \text{for all } x, y \text{ in } B_k. \tag{8.9} \]

The first term in Equation 8.7 is an upper bound for the variance of the density estimate, and the second term is an upper bound for the squared bias of the density estimate. This upper bound shows what happens to the density estimate when the bin width h is varied.

We can try to minimize the MSE by varying the bin width h. We could set h very small to reduce the bias, but this also increases the variance. The increased variance in our density estimate is evident in Figure 8.1, where we see more spikes as the bin width gets smaller. Equation 8.7 shows a common problem in some density estimation methods: the trade-off between variance and bias as h is changed. Most of the optimal bin widths presented here are obtained by trying to minimize the squared error.

A rule for bin width selection that is often presented in introductory statistics texts is called Sturges' Rule. In reality, it is a rule that provides the number of bins in the histogram, and is given by the following formula.

STURGES' RULE (HISTOGRAM)

\[k = 1 + \log_2 n. \]

Here k is the number of bins. The bin width h is obtained by taking the range of the sample data and dividing it into the requisite number of bins, k.

Some improved values for the bin width h can be obtained by assuming the existence of two derivatives of the probability density function f(x). We include the following results (without proof), because they are the basis for many of the univariate bin width rules presented in this chapter. The interested reader is referred to Scott [1992] for more details. Most of what we present here follows his treatment of the subject.

Equation 8.7 provides a measure of the squared error at a point x. If we want to measure the error in our estimate for the entire function, then we can integrate over all values of x. Let's assume f(x) has an absolutely continuous and a square-integrable first derivative. If we let n get very large (n \to \infty), then the asymptotic MISE is
\[
\text{AMISE}_{\text{Hist}}(h) = \frac{1}{nh} + \frac{1}{12}h^2 R(f'),
\]

where \(R(g) = \int g^2(x) \, dx\) is used as a measure of the roughness of the function, and \(f'\) is the first derivative of \(f(x)\). The first term of Equation 8.10 indicates the asymptotic integrated variance, and the second term refers to the asymptotic integrated squared bias. These are obtained as approximations to the integrated squared bias and integrated variance [Scott, 1992]. Note, however, that the form of Equation 8.10 is similar to the upper bound for the MSE in Equation 8.7 and indicates the same trade-off between bias and variance, as the smoothing parameter \(h\) changes.

The optimal bin width \(h^*_{\text{Hist}}\) for the histogram is obtained by minimizing the AMISE (Equation 8.10), so it is the \(h\) that yields the smallest MISE as \(n\) gets large. This is given by

\[
h^*_{\text{Hist}} = \left(\frac{6}{nR(f')} \right)^{1/3}.
\]

For the case of data that is normally distributed, we have a roughness of

\[
R(f') = \frac{1}{4\sigma^3 \sqrt{\pi}}.
\]

Using this in Equation 8.11, we obtain the following expression for the optimal bin width for normal data.

NORMAL REFERENCE RULE - 1-D HISTOGRAM

\[
h^*_{\text{Hist}} = \left(\frac{24\sigma^2 \sqrt{\pi}}{n} \right)^{1/3} \approx 3.5 \sigma n^{-1/3}.
\]

Scott [1979, 1992] proposed the sample standard deviation as an estimate of \(\sigma\) in Equation 8.12 to get the following bin width rule.

SCOTT'S RULE

\[
h^*_{\text{Hist}} = 3.5 \times s \times n^{-1/3}.
\]

A robust rule was developed by Freedman and Diaconis [1981]. This uses the interquartile range (IQR) instead of the sample standard deviation.
FREEDMAN-DIACONIS RULE

\[
h_{\text{Hist}}^* = 2 \times \text{IQR} \times n^{-1/3}.
\]

It turns out that when the data are skewed or heavy-tailed, the bin widths are too large using the Normal Reference Rule. Scott [1979, 1992] derived the following correction factor for skewed data:

\[
\text{skewness factor } h_{\text{Hist}} = \frac{2^{1/3} \sigma}{e^{3\sigma^2/4} (\sigma^2 + 2)^{1/3} (e^{\sigma^2} - 1)^{1/2}}.
\]

(8.13)

The bin width obtained from Equation 8.12 should be multiplied by this factor when there is evidence that the data come from a skewed distribution. A factor for heavy-tailed distributions can be found in Scott [1992]. If one suspects the data come from a skewed or heavy-tailed distribution, as indicated by calculating the corresponding sample statistics (Chapter 3) or by graphical exploratory data analysis (Chapter 5), then the Normal Reference Rule bin widths should be multiplied by these factors. Scott [1992] shows that the modification to the bin widths is greater for skewness and is not so critical for kurtosis.

Example 8.2

Data representing the waiting times (in minutes) between eruptions of the Old Faithful geyser at Yellowstone National Park were collected [Hand, et al, 1994]. These data are contained in the file `geyser`. In this example, we use an alternative MATLAB function (available in the standard MATLAB package) for finding a histogram, called `histc`. This takes the bin edges as one of the arguments. This is in contrast to the `hist` function that takes the bin centers as an optional argument. The following MATLAB code will construct a histogram density estimate for the Old Faithful geyser data.

```matlab
load geyser
n = length(geyser);
% Use Normal Reference Rule for bin width.
h = 3.5*std(geyser)*n^(-1/3);
% Get the bin mesh.
t0 = min(geyser)-1;
tm = max(geyser)+1;
rng = tm - t0;
 nbins = ceil(rng/h);
bins = t0:h:(nbins*h + t0);
% Get the bin counts vk.
vk = histc(geyser,bins);
% Normalize to make it a bona fide density.
```
% We do not need the last count in fhat.
 fhat(end) = [];
 fhat = v*k/(n*h);

We have to use the following to create a plot of our histogram density. The MATLAB bar function takes the bin centers as the argument, so we convert our mesh to bin centers before plotting. The plot is shown in Figure 8.2, and the existence of two modes is apparent.

 % To plot this, use bar with the bin centers.
 tm = max(bins);
 bc = (t0+h/2):h:(tm-h/2);
 bar(bc,fhat,1,'w')

\[
\begin{figure}
\centering
\includegraphics[width=\textwidth]{figures/figure8.2.png}
\caption{Histogram of Old Faithful \texttt{geyser} data. Here we are using Scott's Rule for the bin widths.}
\end{figure}
\]

Multivariate Histograms

Given a data set that contains d-dimensional observations X_i, we would like to estimate the probability density $f(x)$. We can extend the univariate histogram to d dimensions in a straightforward way. We first partition the d-dimensional space into hyper-rectangles of size $h_1 \times h_2 \times \ldots \times h_d$. We denote
the \(k \)-th bin by \(B_k \), and the number of observations falling into that bin by \(v_k \), with \(\sum v_k = n \). The multivariate histogram is then defined as

\[
\hat{f}_{\text{Hist}}(x) = \frac{v_k}{nh_1h_2\ldots h_d}; \quad x \text{ in } B_k. \tag{8.14}
\]

If we need an estimate of the probability density at \(x \), we first determine the bin that the observation falls into. The estimate of the probability density would be given by the number of observations falling into that same bin divided by the sample size and the bin widths of the partitions. The MATLAB code to create a bivariate histogram was given in Chapter 5. This could be easily extended to the general multivariate case.

For a density function that is sufficiently smooth [Scott, 1992], we can write the asymptotic MISE for a multivariate histogram as

\[
\text{AMISE}_{\text{Hist}}(h) = \frac{1}{nh_1h_2\ldots h_d} + \frac{1}{12} \sum_{j=1}^{d} h_j^2 R(f_j), \tag{8.15}
\]

where \(h = (h_1, \ldots, h_d) \). As before, the first term indicates the asymptotic integrated variance and the second term provides the asymptotic integrated squared bias. This has the same general form as the 1-D histogram and shows the same bias-variance trade-off. Minimizing Equation 8.15 with respect to \(h_j \) provides the following equation for optimal bin widths in the multivariate case

\[
h_{\text{MISE}}^* = R(f)_{1/2} \left(6 \prod_{j=1}^{d} R(f_j)^{1/2} \right)^{-1/2} n^{1/2d}, \tag{8.16}
\]

where

\[
R(f_j) = \int_{\mathbb{R}^d} \left(\frac{\partial}{\partial x_j} f(x) \right)^2 dx.
\]

We can get a multivariate Normal Reference Rule by looking at the special case where the data are distributed as multivariate normal with the covariance equal to a diagonal matrix with \(\sigma_1^2, \ldots, \sigma_d^2 \) along the diagonal. The Normal Reference Rule in the multivariate case is given below [Scott, 1992].
NORMAL REFERENCE RULE - MULTIVARIATE HISTOGRAMS

\[h_{i,\text{mult}} = 3.5 \sigma_i n^{-\frac{1}{2+d}}, \quad i = 1, \ldots, d. \]

Notice that this reduces to the same univariate Normal Reference Rule when \(d = 1 \). As before, we can use a suitable estimate for \(\sigma_i \).

Frequency Polygons

Another method for estimating probability density functions is to use a frequency polygon. A univariate frequency polygon approximates the density by linearly interpolating between the bin midpoints of a histogram with equal bin widths. Because of this, the frequency polygon extends beyond the histogram to empty bins at both ends.

The univariate probability density estimate using the frequency polygon is obtained from the following,

\[\hat{f}_{fr}(x) = \left(\frac{1}{2} - \frac{x}{h} \right) \hat{f}_i + \left(\frac{1}{2} + \frac{x}{h} \right) \hat{f}_{i+1}; \quad \bar{B}_i \leq x \leq \bar{B}_{i+1}, \quad (8.17) \]

where \(\hat{f}_i \) and \(\hat{f}_{i+1} \) are adjacent univariate histogram values and \(\bar{B}_i \) is the center of bin \(B_i \). An example of a section of a frequency polygon is shown in Figure 8.3.

As is the case with the univariate histogram, under certain assumptions
FIGURE 8.3
The frequency polygon is obtained by connecting the center of adjacent bins using straight lines. This figure illustrates a section of the frequency polygon.

NORMAL REFERENCE RULE - FREQUENCY POLYGON

\[h_{FP} = 2.15\sigma n^{-1/5}. \]

We can use the sample standard deviation in this rule as an estimate of \(\sigma \) or choose a robust estimate based on the interquartile range. If we choose the IQR and use \(\hat{\sigma} = IQR/1.348 \), then we obtain a bin width of

\[\hat{h}_{FP} = 1.59 \times IQR \times n^{-1/5}. \]

As for the case of histograms, Scott [1992] provides a skewness factor for frequency polygons, given by

\[\text{skewness factor}_{FP} = \frac{12^{1/2}\sigma}{e^{\sigma^2/4}(e^{\sigma^2} - 1)^{1/2}(9\sigma^4 + 20\sigma^2 + 12)^{1/5}}. \quad (8.20) \]

If there is evidence that the data come from a skewed distribution, then the bin width should be multiplied by this factor. The kurtosis factor for frequency polygons can be found in Scott [1992].
Example 8.3
Here we show how to create a frequency polygon using the Old Faithful geyser data. We must first create the histogram from the data, where we use the frequency polygon Normal Reference Rule to choose the smoothing parameter.

```
load geyser
n = length(geyser);
% Use Normal Reference Rule for bin width
% of frequency polygon.
h = 2.15*sqrt(var(geyser))*n^(-1/5);
t0 = min(geyser)-1;
tm = max(geyser)+1;
bins = t0:h:tm;
vk = histc(geyser,bins);
vk(end) = [];
fhnt = vk/(n*h);
```

We then use the MATLAB function called `interp1` to interpolate between the bin centers. This function takes three arguments (and an optional fourth argument). The first two arguments to `interp1` are the xdata and ydata vectors that contain the observed data. In our case, these are the bin centers and the bin heights from the density histogram. The third argument is a vector of xinterp values for which we would like to obtain interpolated yinterp values. There is an optional fourth argument that allows the user to select the type of interpolation (linear, cubic, nearest and spline). The default is linear, which is what we need for the frequency polygon. The following code constructs the frequency polygon for the geyser data.

```
% For frequency polygon, get the bin centers,
% with empty bin center on each end.
b2 = (t0-h/2):h:(tm+h/2);
b = [0 fhnt 0];
% Use linear interpolation between bin centers
% Get the interpolated values at x.
xinterp = linspace(min(bc2),max(bc2));
fp = interp1(bc2, b, xinterp);
```

To see how this looks, we can plot the frequency polygon and underlying histogram, which is shown in Figure 8.4.

```
% To plot this, use bar with the bin centers
tm = max(bins);
b = (t0-h/2):h:(tm-h/2);
bar(bc,fhnt,1,'w')
hold on
plot(xinterp,fp)
hold off
```
axis([30 120 0 0.035])
xlabel('Waiting Time (minutes)')
ylabel('Probability Density Function')
title('Old Faithful-Waiting Times Between Eruptions')

to ensure that we have a valid probability density function, we can verify that the area under the curve is approximately one by using the \texttt{trapz} function.

\texttt{area = trapz(xinterp,fp);}

we get an approximate area under the curve of 0.9998, indicating that the frequency polygon is indeed a \textit{bona fide} density estimate.

\textbf{FIGURE 8.4}
Frequency polygon for the Old Faithful data.

The frequency polygon can be extended to the multivariate case. the interested reader is referred to Scott [1985, 1992] for more details on the multivariate frequency polygon. He proposes an approximate Normal Reference Rule for the multivariate frequency polygon given by the following formula.
NORMAL REFERENCE RULE - FREQUENCY POLYGON (MULTIVARIATE)

\[h_i^* = 2\sigma_i n^{-1/(d+1)} \]

where a suitable estimate for \(\sigma \) can be used. This is derived using the assumption that the true probability density function is multivariate normal with covariance equal to the identity matrix. The following example illustrates the procedure for obtaining a bivariate frequency polygon in MATLAB.

Example 8.4
We first generate some random variables that are bivariate standard normal and then calculate the surface heights corresponding to the linear interpolation between the histogram density bin heights.

% First get the constants.
bin0 = [-4 -4];
n = 1000;
% Normal Reference Rule with sigma = 1.
h = 3*n^(-1/4)*ones(1,2);
% Generate bivariate standard normal variables.
x = randn(n,2);
% Find the number of bins.
nb1 = ceil((max(x(:,1))-bin0(1))/h(1));
nb2 = ceil((max(x(:,2))-bin0(2))/h(2));
% Find the mesh or bin edges.
t1 = bin0(1):h(1):(nb1*h(1)+bin0(1));
t2 = bin0(2):h(2):(nb2*h(2)+bin0(2));
[X,Y] = meshgrid(t1,t2);

Now that we have the random variables and the bin edges, the next step is to find the number of observations that fall into each bin. This is easily done with the MATLAB function inpolygon. This function can be used with any polygon (e.g., triangle or hexagon), and it returns the indices to the points that fall into that polygon.

% Find bin frequencies.
[nr,nc] = size(X);
vu = zeros(nr-1,nc-1);
for i = 1:(nr-1)
 for j = 1:(nc-1)
 xv = [X(i,j) X(i,j+1) X(i+1,j+1) X(i+1,j)];
 yy = [Y(i,j) Y(i,j+1) Y(i+1,j+1) Y(i+1,j)];
 in = inpolygon(x(:,1),x(:,2),xv,yy);
 vu(i,j) = sum(in(1));
 end
end
\[
\hat{f}(u) = \frac{vu}{n \cdot h(1) \cdot h(2)};
\]

Now that we have the histogram density, we can use the MATLAB function \texttt{interp2} to linearly interpolate at points between the bin centers.

% Now get the bin centers for the frequency polygon.
% We add bins at the edges with zero height.
\[
t_1 = (\text{bin0}(1)-h(1)/2):h(1):(\text{max}(t_1)+h(1)/2);
\]
\[
t_2 = (\text{bin0}(2)-h(2)/2):h(2):(\text{max}(t_2)+h(2)/2);
\]
\[
[bcx,bcy] = \text{meshgrid}(t_1,t_2);
\]
\[
[nr,nc] = \text{size}(fhat);
\]
\[
binh = \text{zeros}(nr+2,nc+2); % add zero bin heights
\]
\[
binh(2:(1+nr),2:(1+nc)) = fhat;
\]
% Get points where we want to interpolate to get
% the frequency polygon.
\[
[xint,yint] = \text{meshgrid}([\text{linrange}(\text{min}(t_1),\text{max}(t_1))])
\]
We obtain the above kernel density estimate for $n = 10$ random variables. A weighted kernel is centered at each data point, and the curves are averaged together to obtain the estimate. Note that there are two 'bumps' where there is a higher concentration of smaller densities.

Notice that the places where there are more curves or kernels yield 'bumps' in the final estimate. An alternative implementation is discussed in the exercises.

PROCEDURE - UNIVARIATE KERNEL

1. Choose a kernel, a smoothing parameter h, and the domain (the set of x values) over which to evaluate $\hat{f}(x)$.
2. For each X_i, evaluate the following kernel at all x in the domain:

 $$K_i = K\left(\frac{x - X_i}{h}\right); \quad i = 1, \ldots, n.$$

 The result from this is a set of n curves, one for each data point X_i.
3. Weight each curve by $1/h$.
4. For each x, take the average of the weighted curves.
Example 8.6
In this example, we show how to obtain the kernel density estimate for a data set, using the standard normal density as our kernel. We use the procedure outlined above. The resulting probability density estimate is shown in Figure 8.8.

```matlab
% Generate standard normal random variables.
  n = 10;
  data = randn(1,n);
% We will get the density estimate at these x values.
  x = linspace(-4,4,50);
  fhat = zeros(size(x));
  h = 1.06*n^(-1/5);
  hold on
  for i=1:n
    % get each kernel function evaluated at x
    % centered at data
    f = exp(-(1/(2*h^2)))*(x-data(i)).^2)/sqrt(2*pi)/h;
    plot(x,f/(n*h));
    fhat = fhat+f/(n);
  end
  plot(x,fhat);
  hold off
```

As in the histogram, the parameter h determines the amount of smoothing we have in the estimate $f_{k(h)}(x)$. In kernel density estimation, the h is usually called the window width. A small value of h yields a rough curve, while a large value of h yields a smoother curve. This is illustrated in Figure 8.9, where we show kernel density estimates $f_{k(h)}(x)$ at various window widths. Notice that when the window width is small, we get a lot of noise or spurious structure in the estimate. When the window width is larger we get a smoother estimate, but there is the possibility that we might obscure bumps or other interesting structure in the estimate. In practice, it is recommended that the analyst examine kernel density estimates for different window widths to explore the data and to search for structures such as modes or bumps.

As with the other univariate probability density estimators, we are interested in determining appropriate values for the parameter h. These can be obtained by choosing values for h that minimize the asymptotic MISE. Scott [1992] shows that, under certain conditions, the AMISE for a nonnegative univariate kernel density estimator is

$$\text{AMISE}_{k(h)}(h) = \frac{R(K)}{h} + \frac{1}{2} \sigma^2 h^4 R(f'').$$ (8.28)
where $\phi(x;\mu, \sigma^2)$ represents the normal probability density function at x. We see from the model that we have three terms or component densities, centered at -3, 0, and 2. The mixing coefficient or weight for the first two terms are 0.3 leaving a weight of 0.4 for the last term. The following MATLAB code produces the curve for this model and is shown in Figure 8.12.

```matlab
% Create a domain x for the mixture.
x = linspace(-6,5);
% Create the model - normal components used.
mix = [0.3 0.3 0.4];   % mixing coefficients
mus = [3 0 2];          % term means
vars = [1.1 0.5];
nterm = 3;
% Use Statistics Toolbox function to evaluate
% normal pdf.
fh = zeros(size(x));
for i = 1:nterm
    fh = fh + mix(i) * normpdf(x,mus(i),vars(i));
end
plot(x,fh)
title('3 Term Finite Mixture')
```

Hopefully, the reader can see the connection between finite mixtures and kernel density estimation. Recall that in the case of univariate kernel density estimators, we obtain these by evaluating a weighted kernel centered at each sample point, and adding these n terms. So, a kernel estimate can be considered a special case of a finite mixture where $c = n$.

The component densities of the finite mixture can be any probability density function, continuous or discrete. In this book, we confine our attention to the continuous case and use the normal density for the component function. Therefore, the estimate of a finite mixture would be written as

$$
\hat{f}_{M}(x) = \sum_{i=1}^{c} \hat{p}_i \phi(x;\hat{\mu}_i, \hat{\sigma}_i^2),
$$

(8.32)

where $\phi(x;\mu, \sigma^2)$ denotes the normal probability density function with mean μ, and variance σ^2. In this case, we have to estimate $c-1$ independent mixing coefficients, as well as the c means and c variances using the data. Note that to evaluate the density estimate at a point x, we only need to retain these $3c - 1$ parameters. Since $c \ll n$, this can be a significant computational savings over evaluating density estimates using the kernel method. With finite mixtures much of the computational burden is shifted to the estimation part of the problem.
FIGURE 8.12
3 Term Finite Mixture

The figure shows the probability density function corresponding to the 3 term finite mixture.
where τ_{ij} represents the estimated posterior probability that point x_j belongs to the i-th term, $\phi(x_j;\hat{\mu}_i, \hat{\Sigma}_i)$ is the multivariate normal density for the i-th term evaluated at x_j, and

$$\hat{f}(x_j) = \sum_{i=1}^{c} p_i \phi(x_j;\hat{\mu}_i, \hat{\Sigma}_i)$$ \hspace{1cm} (8.35)

is the finite mixture estimate at point x_j.

The posterior probability tells us the likelihood that a point belongs to each of the separate component densities. We can use this estimated posterior probability to obtain a weighted update of the parameters for each component. This yields the iterative EM update equations for the mixing coefficients, the means and the covariance matrices. These are

$$\hat{p}_i = \frac{1}{n} \sum_{j=1}^{n} \hat{\tau}_{ij}$$ \hspace{1cm} (8.36)

$$\hat{\mu}_i = \frac{1}{n} \sum_{j=1}^{n} \frac{\tau_{ij} x_j}{p_i}$$ \hspace{1cm} (8.37)

$$\hat{\Sigma}_i = \frac{1}{n} \sum_{j=1}^{n} \frac{\tau_{ij} (x_j - \hat{\mu}_i)(x_j - \hat{\mu}_i)^T}{p_i}$$ \hspace{1cm} (8.38)

Note that if $d = 1$, then the update equation for the variance is

$$\hat{\sigma}_i^2 = \frac{1}{n} \sum_{j=1}^{n} \frac{\tau_{ij} (x_j - \hat{\mu}_i)^2}{p_i}$$ \hspace{1cm} (8.39)

The steps for the EM algorithm to estimate the parameters for a finite mixture with multivariate normal components are given here and are illustrated in Example 8.11.

FINITE MIXTURES - EM PROCEDURE

1. Determine the number of terms or component densities c in the mixture.
2. Determine an initial guess at the component parameters. These are the mixing coefficients, means and covariance matrices for each normal density.

3. For each data point x_i, calculate the posterior probability using Equation 8.34.

4. Update the mixing coefficients, the means and the covariance matrices for the individual components using Equations 8.36 through 8.38.

5. Repeat steps 3 through 4 until the estimates converge.

Typically, step 5 is implemented by continuing the iteration until the changes in the estimates at each iteration are less than some pre-set tolerance. Note that with the iterative EM algorithm, we need to use the entire data set to simultaneously update the parameter estimates. This imposes a high computational load when dealing with massive data sets.

Example 8.11

In this example, we provide the MATLAB code that implements the multivariate EM algorithm for estimating the parameters of a finite mixture probability density model. To illustrate this, we will generate a data set that is a mixture of two terms with equal mixing coefficients. One term is centered at the point $(-2, 2)$ and the other is centered at $(2, 0)$. The covariance of each component density is given by the identity matrix. Our first step is to generate 200 data points from this distribution.

```matlab
% Create some artificial two-term mixture data.
% n = 200;
data = zeros(n,2);
% Now generate 200 random variables. First find
% the number that come from each component.
r = rand(1,n);
% Find the number generated from component 1.
ind = length(find(r <= 0.5));
% Create some mixture data. Note that the
% component densities are multivariate normals.
% Generate the first term.
data(1:ind,1) = randn(ind,1) - 2;
data(1:ind,2) = randn(ind,1) + 2;
% Generate the second term.
data(ind+1:n,1) = randn(n-ind,1) + 2;
data(ind+1:n,2) = randn(n-ind,1);
```

We must then specify various parameters for the EM algorithm, such as the number of terms.

```matlab
c = 2; % number of terms
```
[n,d] = size(data); % n=# pts, d=# dims
tol = 0.00001; % set up criterion for stopping EM
max_it = 100;
totprob = zeros(n,1);

We also need an initial guess at the component density parameters.

% Get the initial parameters for the model to start EM
mu(:,1) = [-1,-1]'; % each column represents a mean
mu(:,2) = [1 1]';
mix_cof = [0.3 0.7];
var_mat(:, :,1) = eye(d);
var_mat(:, :,2) = eye(d);
varup = zeros(size(var_mat));
muup = zeros(size(mu));
% Just to get started.
num_it = 1;
deltol = tol+1; % to get started

The following steps implement the EM update formulas found in
Equations 8.34 through 8.38.

while num_it <= max_it & deltol > tol
 % get the posterior probabilities
totprob = zeros(n,1);
 for i=1:c
 posterior(:,i) = mix_cof(i)*
 csevalnorm(data,mu(:,i)',var_mat(:, :,i));
 totprob = totprob+posterior(:,i);
 end
 den = totprob*ones(1,c);
 posterior = posterior./den;
 % Update the mixing coefficients.
mix_cofup = sum(posterior)/n;
 % Update the means.
 mut = data'*posterior;
 MIX = ones(d,1)*mix_cof;
 muup = mut./(MIX*n);
 % Update the means and the variances.
 for i=1:c
 cen_data = data-ones(n,1)*mu(:,i)';
 mat = cen_data'*
 diag(posterior(:,i))*cen_data;
 varup(:,i,i)=mat./(mix_cof(i)*n);
 end
 % Get the tolerances.
delvar = max(max(max(abs(varup-var_mat))));
delmu = max(max(abs(muup-mu)));
end
Chapter 8: Probability Density Estimation

delpi = max(abs(mix_cof-mix_cofup));
deltol = max([delvar,delmu,delpi]);
% Reset parameters.
num_it = num_it+1;
mix_cof = mix_cofup;
mu = muup;
var_mat = varup;
end % while loop

For our data set, it took 37 iterations to converge to an answer. The convergence of the EM algorithm to a solution and the number of iterations depends on the tolerance, the initial parameters, the data set, etc. The estimated model returned by the EM algorithm is

\[\hat{p}_1 = 0.498 \quad \hat{p}_2 = 0.502, \]

\[\hat{\mu}_1 = \begin{bmatrix} -2.08 \\ 2.03 \end{bmatrix} \quad \hat{\mu}_2 = \begin{bmatrix} 1.83 \\ -0.03 \end{bmatrix}. \]

For brevity, we omit the estimated covariances, but we can see from these results that the model does match the data that we generated.

Adaptive Mixtures

The adaptive mixtures [Priebe, 1994] method for density estimation uses a data-driven approach for estimating the number of component densities in a mixture model. This technique uses the recursive EM update equations that are provided below. The basic idea behind adaptive mixtures is to take one point at a time and determine the distance from the observation to each component density in the model. If the distance to each component is larger than some threshold, then a new term is created. If the distance is less than the threshold for all terms, then the parameter estimates are updated based on the recursive EM equations.

We start our explanation of the adaptive mixtures approach with a description of the recursive EM algorithm for mixtures of multivariate normal densities. This method recursively updates the parameter estimates based on a new observation. As before, the first step is to determine the posterior probability that the new observation belongs to each term:

\[\hat{\tau}_i^{(n+1)} = \frac{\hat{p}_i^{(n)} \phi(x^{(n+1)}; \hat{\mu}_i^{(n)}, \hat{\Sigma}_i^{(n)})}{\sum_{j=1}^{c} \phi(x^{(n+1)}; \hat{\mu}_j^{(n)}, \hat{\Sigma}_j^{(n)})}, \quad i = 1, \ldots, c, \quad (8.40) \]
where \(\hat{\tau}_i^{(n+1)} \) represents the estimated posterior probability that the new observation \(x_i^{(n+1)} \) belongs to the \(i \)-th term, and the superscript \((n) \) denotes the estimated parameter values based on the previous \(n \) observations. The denominator is the finite mixture density estimate

\[
\hat{f}^{(n)}(x^{(n+1)}) = \sum_{i=1}^{c} \hat{p}_i \phi(x^{(n+1)}; \hat{\mu}_i^{(n)}, \hat{\Sigma}_i^{(n)})
\]

for the new observation using the mixture from the previous \(n \) points.

The remainder of the recursive EM update equations are given by Equations 8.41 through 8.43. Note that recursive equations are typically in the form of the old value for an estimate plus an update term using the new observation. The recursive update equations for mixtures of multivariate normals are:

\[
\hat{p}_i^{(n+1)} = \hat{p}_i^{(n)} + \frac{1}{n} (\hat{\tau}_i^{(n+1)} - \hat{p}_i^{(n)}) \tag{8.41}
\]

\[
\hat{\mu}_i^{(n+1)} = \hat{\mu}_i^{(n)} + \frac{\hat{\tau}_i^{(n+1)}}{n \hat{p}_i^{(n)}} (x^{(n+1)} - \hat{\mu}_i^{(n)}) \tag{8.42}
\]

\[
\hat{\Sigma}_i^{(n+1)} = \hat{\Sigma}_i^{(n)} + \frac{\hat{\tau}_i^{(n+1)}}{n \hat{p}_i^{(n)}} \left[(x^{(n+1)} - \hat{\mu}_i^{(n)}) (x^{(n+1)} - \hat{\mu}_i^{(n)})^T - \hat{\Sigma}_i^{(n)} \right]. \tag{8.43}
\]

This reduces to the 1-D case in a straightforward manner, as was the case with the iterative EM update equations.

The adaptive mixtures approach updates our probability density estimate \(f(x) \) and also provides the opportunity to expand the parameter space (i.e., the model) if the data indicate that should be done. To accomplish this, we need a way to determine when a new component density should be added. This could be done in several ways, but the one we present here is based on the Mahalanobis distance. If this distance is too large for all of the terms (or alternatively if the minimum distance is larger than some threshold), then we can consider the new point too far away from the existing terms to update the current model. Therefore, we create a new term.

The squared Mahalanobis distance between the new observation \(x^{(n+1)} \) and the \(i \)-th term is given by

\[
MD_i^2(x^{(n+1)}) = (x^{(n+1)} - \hat{\mu}_i^{(n)})^T \hat{\Sigma}_i^{(n)}^{-1} (x^{(n+1)} - \hat{\mu}_i^{(n)}). \tag{8.44}
\]

We create a new term if
where t_c is a threshold to create a new term. The rule in Equation 8.45 states that if the smallest squared Mahalanobis distance is greater than the threshold, then we create a new term. In the univariate case, if $t_c = 1$ is used, then a new term is created if a new observation is more than one standard deviation away from the mean of each term. For $t_c = 4$, a new term would be created for an observation that is at least two standard deviations away from the existing terms. For multivariate data, we would like to keep the same term creation rate as in the 1-D case. Solka [1995] provides thresholds t_c based on the squared Mahalanobis distance for the univariate, bivariate, and trivariate cases. These are shown in Table 8.3.

TABLE 8.3

<table>
<thead>
<tr>
<th>Dimensionality</th>
<th>Create Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2.34</td>
</tr>
<tr>
<td>3</td>
<td>3.54</td>
</tr>
</tbody>
</table>

When we create a new term, we initialize the parameters using Equations 8.46 through 8.48. We denote the current number of terms in the model by N.

\[
\hat{\mu}^{(n+1)}_{N+1} = \mathbf{x}^{(n+1)}, \tag{8.46}
\]

\[
\hat{p}^{(n+1)}_{N+1} = \frac{1}{n+1}, \tag{8.47}
\]

\[
\hat{\Sigma}_{N+1}^{(n+1)} = \mathbb{S}(\hat{\Sigma}), \tag{8.48}
\]

where $\mathbb{S}(\hat{\Sigma})$ is a weighted average using the posterior probabilities. In practice, some other estimate or initial covariance can be used for the new term. To ensure that the mixing coefficients sum to one when a new term is added, the $\hat{p}^{(n+1)}_i$ must be rescaled using

\[
\hat{p}^{(n+1)}_i = \frac{n\hat{p}^{(n)}_i}{n+1}; \quad i = 1, \ldots, N.
\]
We continue through the data set, one point at a time, adding new terms as necessary. Our density estimate is then given by

\[
\hat{f}_{AM}(x) = \sum_{i=1}^{N} \hat{p}_i \phi(x; \hat{\mu}_i, \hat{\Sigma}_i).
\]

This allows for a variable number of terms \(N \), where usually \(N \ll n \). The adaptive mixtures technique is captured in the procedure given here, and a function called `csadpmix` is provided with the Computational Statistics Toolbox. Its use in the univariate case is illustrated in Example 8.12.

ADAPTIVE MIXTURES PROCEDURE:

1. Initialize the adaptive mixtures procedure using the first data point \(x^{(1)} \):

 \[
 \hat{\mu}_1^{(1)} = x^{(1)}, \hat{\rho}_1^{(1)} = 1, \text{ and } \hat{\Sigma}_1^{(1)} = I,
 \]

 where \(I \) denotes the identity matrix. In the univariate case, the variance of the initial term is one.

2. For a new data point \(x^{(n+1)} \), calculate the squared Mahalanobis distance as in Equation 8.44.

3. If the minimum squared distance is greater than \(t_c \), then create a new term using Equations 8.46 through 8.48. Increase the number of terms \(N \) by one.

4. If the minimum squared distance is less than the create threshold \(t_c \), then update the existing terms using Equations 8.41 through 8.43.

5. **Continue steps 2 through 4 using all data points.**
\[f(x) = 0.3 \times \phi(x; -3, 1) + 0.3 \times \phi(x; 0, 1) + 0.4 \times \phi(x; 2, 0.5). \]

% Get the true model to generate data.
pi_tru = [0.3 0.3 0.4];
n = 100;
x = zeros(n,1);
% Now generate 100 random variables. First find
% the number that fall in each one.
r = rand(1,100);
% Find the number generated from each component.
ind1 = length(find(r <= 0.3));
ind2 = length(find(r > 0.3 & r <= 0.6));
ind3 = length(find(r > 0.6));
% create some artificial 3 term mixture data
x(ind1+1:ind1+ind1) = randn(ind1,1) - 3;
x(ind1+ind1+1:ind2+1) = randn(ind2,1);
x(ind1+ind2+1:n) = randn(ind3,1) * sqrt(0.5) + 2;

We now call the adaptive mixtures function \texttt{csadpmix} to estimate the model.

% Now call the adaptive mixtures function.
maxterms = 25;
[pihat,muhat,varhat] = csadpmix(x,maxterms);

The following MATLAB commands provide the plots shown in Figure 8.16.

% Get the plots.
csdfplot(muhat,varhat,pihat,min(x),max(x));
axis equal
nterms = length(pihat);
figure
csplotuni(pihat,muhat,varhat,...
 nterms,min(x)-5,max(x)+5,100)

We reorder the observations and repeat the process to get the plots in Figure 8.17.

% Now re-order the points and repeat
% the adaptive mixtures process.
ind = randperm(n);
x = x(ind);
[pihat,muhat,varhat] = csadpmix(x,maxterms);

Our example above demonstrates some interesting things to consider with adaptive mixtures. First, the model complexity or the number of terms is sometimes greater than is needed. For example, in Figure 8.16, we show a \(df \)
plot for the three term mixture model in Example 8.12. Note that the adaptive mixture approach yields more than three terms. This is a problem with mixture models in general. Different models (i.e., number of terms and estimated component parameters) can produce essentially the same function estimate or curve for \(f(x) \). This is illustrated in Figures 8.16 and 8.17, where we see that similar curves are obtained from two different models for the same data set. These results are straight from the adaptive mixtures density estimation approach. In other words, we did not use this estimate as an initial starting point for the EM approach. If we had applied the iterative EM to these estimated models, then the curves should be the same.

The other issue that must be considered when using the adaptive mixtures approach is that the resulting model or estimated probability density function depends on the order in which the data are presented to the algorithm. This is also illustrated in Figures 8.16 and 8.17, where the second estimated model is obtained after re-ordering the data. These issues were addressed by Solka [1995].

8.5 Generating Random Variables

In the introduction, we discussed several uses of probability density estimates, and it is our hope that the reader will discover many more. One of the applications of density estimation is in the area of modeling and simulation. Recall that a key aspect of modeling and simulation is the collection of data generated according to some underlying random process and the desire to generate more random variables from the same process for simulation purposes. One option is to use one of the density estimation techniques discussed in this chapter and randomly sample from that distribution. In this section, we provide the methodology for generating random variables from finite or adaptive mixtures density estimates.

We have already seen an example of this procedure in Example 8.11 and Example 8.12. The procedure is to first choose the class membership of generated observations based on uniform (0,1) random variables. The number of random variables generated from each component density is given by the corresponding proportion of these uniform variables that are in the required range. The steps are outlined here.

PROCEDURE - GENERATING RANDOM VARIABLES (FINITE MIXTURE)

1. We are given a finite mixture model \((p_i, g_i(x; \theta_i)) \) with \(c \) components, and we want to generate \(n \) random variables from that distribution.
FIGURE 8.16
The upper plot shows the dR representation for Example 8.12. Compare this with Figure 8.17 for the same data. Note that the curves are essentially the same, but the number of terms and associated parameters are different. Thus, we can get different models for the same data.
FIGURE 8.17
This is the second estimated model using adaptive mixtures for the data generated in Example 8.12. This second model was obtained by re-ordering the data set and then implementing the adaptive mixtures technique. This shows the dependence of the technique on the order in which the data are presented to the method.
2. First determine the component membership of each of the \(n \) random variables. We do this by generating \(n \) uniform \((0,1)\) random variables \((U_i)\). Component membership is determined as follows:

- If \(0 \leq U_i < p_1 \), then \(X_i \) is from component density 1.
- If \(p_1 \leq U_i < p_1 + p_2 \), then \(X_i \) is from component density 2.

\[
\vdots
\]

- If \(\sum_{j=1}^{c-1} p_j \leq U_i \leq 1 \), then \(X_i \) is from component density \(c \).

3. Generate the \(X_i \) from the corresponding \(\phi_i(x; \theta_i) \) using the compo-
8.17. Repeat Example 8.12. Plot the curves from the estimated models. What is the ISE between the two estimates? Use the iterative EM algorithm on both models to refine the estimates. What is the ISE after you do this? What can you say about the two different models? Are your conclusions different if you use the IAE?

8.18. Write a MATLAB function that will generate random variables (univariate or multivariate) from a finite mixture of normals.

8.19. Using the method for generating random variables from a finite mixture that was discussed in this chapter, develop and implement an algorithm for generating random variables based on a kernel density estimate.

8.20. Write a function that will estimate the MISE between two functions. Convert it to also estimate the MIAE between two functions.

8.21. Apply some of the univariate density estimation techniques from this chapter to the forearm data.

8.22. The elderly data set contains the height measurements (in centimeters) of 351 elderly females [Hand, et al., 1994]. Use some of the univariate density estimation techniques from this chapter to explore the data. Is there evidence of bumps and modes?

8.23. Apply the multivariate techniques of this chapter to the nfl data [Csorgo and Welsh, 1989; Hand, et al., 1994]. These data contain bivariate measurements of the game time to the first points scored by kicking the ball between the end posts (X_1), and the game time to
covset = cov(setosa);
muvir = mean(virginica);
covvir = cov(virginica);
muver = mean(versicolor);
covver = cov(versicolor);

Estimating Class-Conditional Probabilities: Nonparametric

If it is not appropriate to assume the features for a class follow a known distribution, then we can use the nonparametric density estimation techniques from Chapter 8. These include the averaged shifted histogram, the frequency polygon, kernel densities, finite mixtures and adaptive mixtures. To obtain the class-conditional probabilities, we take the set of measured features from each class and estimate the density using one of these methods. This is illustrated in Example 9.2, where we use the product kernel to estimate the probability densities for the iris data.

Example 9.2

We estimate the class-conditional probability densities for the iris data using the product kernel, where the univariate normal kernel is used for each dimension. We illustrate the use of two functions for estimating the product kernel. One is called cskern2d that can only be used for bivariate data. The output arguments from this function are matrices for use in the MATLAB plotting functions surf and mesh. The cskern2d function should be used when the analyst wants to plot the resulting probability density. We use it on the first two dimensions of the iris data and plot the surface for Iris virginica in Figure 9.2.

load iris
 % This loads up three matrices:
 % setosa, virginica and versicolor
 % We will use the product kernel to estimate densities.
 % To try this, get the kernel estimate for the first
 % two features and plot.
 % The arguments of 0.1 indicate the grid size in
 % each dimension. This creates the domain over
 % which we will estimate the density.
 [xset,yset,pset]=cskern2d(setosa(:,1:2),0.1,0.1);
 [xvir,yvir,pvir]=cskern2d(virginica(:,1:2),0.1,0.1);
 [xver,yver,pver]=cskern2d(versicolor(:,1:2),0.1,0.1);
 mesh(xvir,yvir,pvir)
 colormap(gray(256))
• We are building a classifier for a military command and control system that will take features from images of objects and classify them as targets or non-targets. If an object is classified as a target, then we will destroy it. Target objects might be tanks or military trucks. Non-target objects are such things as school buses or automobiles. We would want to make sure that when we build a classifier we do not classify an object as a tank when it is really a school bus. So, we will control the amount of acceptable error in wrongly saying it (a school bus or automobile) is in the target class. This is the same as our Type I error, if we write our hypotheses as

\[H_0 \quad \text{Object is a school bus, automobile, etc.} \]

\[H_1 \quad \text{Object is a tank, military vehicle, etc.} \]

• Another example, where this situation arises is in medical diagnosis. Say that the doctor needs to determine whether a patient has cancer by looking at radiographic images. The doctor does not want to classify a region in the image as cancer when it is not. So, we might want to control the probability of wrongly deciding that there is cancer when there is none. However, failing to identify a cancer when it is really there is more important to control. Therefore, in this situation, the hypotheses are

\[H_0 \quad \text{X-ray shows cancerous tissue} \]

\[H_1 \quad \text{X-ray shows only healthy tissue} \]

The terminology that is sometimes used for the Type I error in pattern recognition is **false alarms** or **false positives**. A false alarm is wrongly classifying something as a target (\(\omega_1 \)), when it should be classified as non-target (\(\omega_2 \)). The probability of making a false alarm (or the probability of making a Type I error) is denoted as

\[P(FA) = \alpha. \]

This probability is represented as the shaded area in Figure 9.7.

Recall that Bayes Decision Rule gives a rule that yields the minimum probability of incorrectly classifying observed patterns. We can change this boundary to obtain the desired probability of false alarm \(\alpha \). Of course, if we do this, then we must accept a higher probability of misclassification as shown in Example 9.4.

In the two class case, we can put our Bayes Decision Rule in a different form. Starting from Equation 9.7, we have our decision as

\[P(x|\omega_1)P(\omega_1) > P(x|\omega_2)P(\omega_2) \Rightarrow x \text{ is in } \omega_1, \quad (9.9) \]
FIGURE 9.7
The shaded region shows the probability of false alarm or the probability of wrongly classifying as target (class ω_1) when it really belongs to class ω_2.

or else we classify x as belonging to ω_2. Rearranging this inequality yields the following decision rule

$$L_R(x) = \frac{P(x|\omega_1)}{P(x|\omega_2)} \cdot \frac{P(\omega_1)}{P(\omega_2)} = \tau_c \Rightarrow x \text{ is in } \omega_1.$$ \hspace{1cm} (9.10)

The ratio on the left of Equation 9.10 is called the likelihood ratio, and the quantity on the right is the threshold. If $L_R > \tau_c$, then we decide that the case belongs to class ω_1. If $L_R < \tau_c$, then we group the observation with class ω_2. If we have equal priors, then the threshold is one ($\tau_c = 1$). Thus, when $L_R > 1$, we assign the observation or pattern to ω_1, and if $L_R < 1$, then we classify the observation as belonging to ω_2. We can also adjust this threshold to obtain a desired probability of false alarm, as we show in Example 9.5.

Example 9.5
We use the class-conditional and prior probabilities of Example 9.3 to show how we can adjust the decision boundary to achieve the desired probability of false alarm. Looking at Figure 9.7, we see that
\[
P(FA) = \int_{-\infty}^{c} P(x|\omega_2)P(\omega_2)dx, \]

where \(C\) represents the value of \(x\) that corresponds to the decision boundary. We can factor out the prior, so

\[
P(FA) = P(\omega_2) \int_{-\infty}^{c} P(x|\omega_2)dx. \]

We then have to find the value for \(C\) such that

\[
\int_{-\infty}^{c} P(x|\omega_2)dx = \frac{P(FA)}{P(\omega_2)}.
\]

From Chapter 3, we recognize that \(C\) is a quantile. Using the probabilities in Example 9.3, we know that \(P(\omega_2) = 0.4\) and \(P(x|\omega_2)\) is normal with mean 1 and variance of 1. If our desired \(P(FA) = 0.05\), then

\[
\int_{-\infty}^{c} P(x|\omega_2)dx = \frac{0.05}{0.40} = 0.125.
\]

We can find the value for \(C\) using the inverse cumulative distribution function for the normal distribution. In MATLAB, this is

\[
c = \text{norminv}(0.05/0.4,1,1);
\]

This yields a decision boundary of \(x = -0.15\).

9.3 Evaluating the Classifier

Once we have our classifier, we need to evaluate its usefulness by measuring the percentage of observations that we correctly classify. This yields an estimate of the probability of correctly classifying cases. It is also important to report the probability of false alarms, when the application requires it (e.g., when there is a target class). We will discuss two methods for estimating the probability of correctly classifying cases and the probability of false alarm: the use of an independent test sample and cross-validation.
Independent Test Sample

If our sample is large, we can divide it into a training set and a testing set. We use the training set to build our classifier and then we classify observations in the test set using our classification rule. The proportion of correctly classified observations is the estimated classification rate. Note that the classifier has not seen the patterns in the test set, so the classification rate estimated in this way is not biased. Of course, we could collect more data to be used as the independent test set, but that is often impossible or impractical.

By biased we mean that the estimated probability of correctly classifying a pattern is not overly optimistic. A common mistake that some researchers make is to build a classifier using their sample and then use the same sample to determine the proportion of observations that are correctly classified. That procedure typically yields much higher classification success rates, because the classifier has already seen the patterns. It does not provide an accurate idea of how the classifier recognizes patterns it has not seen before. However, for a thorough discussion on these issues, see Ripley [1996]. The steps for evaluating the classifier using an independent test set are outlined below.

PROBABILITY OF CORRECT CLASSIFICATION: INDEPENDENT TEST SAMPLE

1. Randomly separate the sample into two sets of size \(n_{\text{TEST}} \) and \(n_{\text{TRAIN}} \), where \(n_{\text{TRAIN}} + n_{\text{TEST}} = n \). One is for building the classifier (the training set), and one is used for testing the classifier (the testing set).
2. Build the classifier (e.g., Bayes Decision Rule, classification tree, etc.) using the training set.
3. Present each pattern from the test set to the classifier and obtain a class label for it. Since we know the correct class for these observations, we can count the number we have successfully classified. Denote this quantity as \(N_{\text{CC}} \).
4. The rate at which we correctly classified observations is

\[
P(\text{CC}) = \frac{N_{\text{CC}}}{n_{\text{TEST}}}.
\]

The higher this proportion, the better the classifier. We illustrate this procedure in Example 9.6.

Example 9.6

We first load the data and then divide the data into two sets, one for building the classifier and one for testing it. We use the two species of iris that are hard to separate: iris versicolor and Iris virginica.
load iris
% This loads up three matrices:
% setosa, versicolor and virginica.
% We will use the versicolor and virginica.
% To make it interesting, we will use only the
% first two features.
% Get the data for the training and testing set. We
% will just pick every other one for the testing set.
indtrain = 1:2:50;
indtest = 2:2:50;
versitest = versicolor(indtest,1:2);
versitrain = versicolor(indtrain,1:2);
virgitest = virginica(indtest,1:2);
virgitrain = virginica(indtrain,1:2);

We now build the classifier by estimating the class-conditional probabilities. We use the parametric approach, making the assumption that the class-conditional densities are multivariate normal. In this case, the estimated priors are equal.

% Get the classifier. We will assume a multivariate
% normal model for these data.
muver = mean(versitrain);
covver = cov(versitrain);
muvir = mean(virgitrain);
covvir = cov(virgitrain);

Note that the classifier is obtained using the training set only. We use the testing set to estimate the probability of correctly classifying observations.

% Present each test case to the classifier. Note that
% we are using equal priors, so the decision is based
% only on the class-conditional probabilities.
% Put all of the test data into one matrix.
X = [versitest;virgitest];
% These are the probability of x given versicolor.
pxgver = csevalnorm(X,muver,covver);
% These are the probability of x given virginica.
pxgvir = csevalnorm(X,muvir,covvir);
% Check which are correctly classified.
% In the first 25, pxgver > pxgvir are correct.
ind = find(pxgver(1:25)>pxgvir(1:25));
ncc = length(ind);
% In the last 25, pxgvir > pxgver are correct.
ind = find(pxgvir(26:50) > pxgver(26:50));
ncc = ncc + length(ind);
pcc = ncc/50;
Using this type of classifier and this partition of the learning sample, we estimate the probability of correct classification to be 0.74.

Cross-Validation

The cross-validation procedure is discussed in detail in Chapter 7. Recall that with cross-validation, we systematically partition the data into testing sets of size \(k \). The \(n - k \) observations are used to build the classifier, and the remaining \(k \) patterns are used to test it. We continue in this way through the entire data set. When the sample is too small to partition it into a single testing and training set, then cross-validation is the recommended approach. The following is the procedure for calculating the probability of correct classification using cross-validation with \(k = 1 \).

PROBABILITY OF CORRECT CLASSIFICATION - CROSS-VALIDATION

1. Set the number of correctly classified patterns to 0, \(N_{CC} = 0 \).
2. Keep out one observation, call it \(x_i \).
3. Build the classifier using the remaining \(n - 1 \) observations.
4. Present the observation \(x_i \) to the classifier and obtain a class label using the classifier from the previous step.
5. If the class label is correct, then increment the number correctly
% based on the class-conditional probabilities.
ncc = 0;
% We will use only the first two features of
% the iris data for our classification.
% This should make it more difficult to
% separate the classes.
% Delete 3rd and 4th features.
virginica(:,3:4) = [];
versicolor(:,3:4) = [];
[nver,d] = size(versicolor);
[nvир,d] = size(virginica);
n = nvir + nver;

First, we will loop through all of the \texttt{versicolor} observations. We build a
classifier, leaving out one pattern at a time for testing purposes. Throughout
this loop, the class-conditional probability for \texttt{virginica} remains the same,
so we find that first.

% Loop first through all of the patterns corresponding
% to versicolor. Here correct classification
% is obtained if pxgver > pxgvir;
mvир = mean(virginica);
covvir = cov(virginica);
% These will be the same for this part.
for i = 1:nver
 % Get the test point and the training set
 versitrain = versicolor;
 % This is the testing point.
 x = versitrain(i,:);
 % Delete from training set.
 % The result is the training set.
 versitrain(i,:)=[];
 mvер = mean(versitrain);
covвер = cov(versitrain);
pxgver = csevalnorm(x,mvир,covвер);
pxgvир = csevalnorm(x,mvир,covвир);
if pxgver > pxgvир
 % then we correctly classified it
 ncc = ncc+1;
end
end

We repeat the same procedure leaving out each \texttt{virginica} observation as
the test pattern.

% Loop through all of the patterns of virginica notes.
% Here correct classification is obtained when
% pxgвир > pxgвер
muver = mean(versicolor);
covver = cov(versicolor);
% Those remain the same for the following.
for i = 1:nvir
 % Get the test point and training set.
 virtrain = virginica;
 x = virtrain(i,:);
 virtrain(i,:)=[1];
 muvir = mean(virtrain);
 covvir = cov(virtrain);
 pxgver = csevalnorm(x,muver,covver);
 pxgvir = csevalnorm(x,muvir,covvir);
 if pxgver > pxgvir
 % then we correctly classified it
 ncc = ncc+1;
 end
end

Finally, the probability of correct classification is estimated using

\[pcc = \frac{ncc}{n}; \]

The estimated probability of correct classification for the iris data using cross-validation is 0.68.

Receiver Operating Characteristic (ROC) Curve

We now turn our attention to how we can use cross-validation to evaluate a classifier that uses the likelihood approach with varying decision thresholds \(\tau_c \). It would be useful to understand how the classifier performs for various thresholds (corresponding to the probability of false alarm) of the likelihood ratio. This will tell us what performance degradation we have (in terms of correctly classifying the target class) if we limit the probability of false alarm to some level.

We start by dividing the sample into two sets: one with all of the target observations and one with the non-target patterns. Denote the observations as follows

\[x_i^{(1)} \Rightarrow \text{Target pattern (} \omega_1 \text{)} \]
\[x_i^{(2)} \Rightarrow \text{Non-target pattern (} \omega_2 \text{)} . \]

Let \(n_1 \) represent the number of target observations (class \(\omega_1 \)) and \(n_2 \) denote the number of non-target (class \(\omega_2 \)) patterns. We work first with the non-target observations to determine the threshold we need to get a desired proba-
bility of false alarm. Once we have the threshold, we can determine the probability of correctly classifying the observations belonging to the target class.

Before we go on to describe the receiver operating characteristic (ROC) curve, we first describe some terminology. For any boundary we might set for the decision regions, we are likely to make mistakes in classifying cases. There will be some target patterns that we correctly classify as targets and some we misclassify as non-targets. Similarly, there will be non-target patterns that are correctly classified as non-targets and some that are misclassified as targets. This is summarized as follows:

- **True Positives - TP:** This is the fraction of patterns correctly classified as target cases.
- **False Positives - FP:** This is the fraction of non-target patterns incorrectly classified as target cases.
- **True Negatives - TN:** This is the fraction of non-target cases correctly classified as non-target.
- **False Negatives - FN:** This is the fraction of target cases incorrectly classified as non-target.

In our previous terminology, the false positives (FP) correspond to the false alarms. Figure 9.8 shows these areas for a given decision boundary.

A **ROC curve** is a plot of the true positive rate against the false positive rate. ROC curves are used primarily in signal detection and medical diagnosis [Egan, 1975; Lusted, 1971; McNeil, et. al., 1975; Hanley and McNeil, 1983; Hanley and Hajian-Tilaki, 1997]. In their terminology, the true positive rate is also called the sensitivity. **Sensitivity** is the probability that a classifier will classify a pattern as a target when it really is a target. **Specificity** is the probability that a classifier will correctly classify the true non-target cases. Therefore, we see that a ROC curve is also a plot of sensitivity against 1 minus specificity.

One of the purposes of a ROC curve is to measure the discriminating power of the classifier. It is used in the medical community to evaluate the diagnostic power of tests for diseases. By looking at a ROC curve, we can understand the following about a classifier:

- It shows the trade-off between the probability of correctly classifying the target class (sensitivity) and the false alarm rate (1 – specificity).
- The area under the ROC curve can be used to compare the performance of classifiers.

We now show in more detail how to construct a ROC curve. Recall that the likelihood ratio is given by
In this figure, we see the decision regions for deciding whether a feature corresponds to the target class or the non-target class.

\[
L_R(x) = \frac{P(x|\omega_1)}{P(x|\omega_2)}.
\]

We start off by forming the likelihood ratios using the non-target (\(\omega_2\)) observations and cross-validation to get the distribution of the likelihood ratios. We use these likelihood ratios to denote:

- \(t_L\) and \(t_R\) are the left and right child nodes.
- \(\{t_1\}\) is the tree containing only the root node.
- \(T_t\) is a branch of tree \(T\) starting at node \(t\).
- \(\hat{T}\) is the set of terminal nodes in the tree.
- \(|\hat{T}|\) is the number of terminal nodes in tree \(T\).
- \(t_k^*\) is the node that is the weakest link in tree \(T_k\).
- \(n\) is the total number of observations in the learning set.
- \(n_j\) is the number of observations in the learning set that belong to the \(j\)-th class \(\omega_j\), \(j = 1, \ldots, J\).
- \(n(t)\) is the number of observations that fall into node \(t\).
- \(n_j(t)\) is the number of observations at node \(t\) that belong to class \(\omega_j\).
- \(\pi_j\) is the prior probability that an observation belongs to class \(\omega_j\).

This can be estimated from the data as

\[
\hat{\pi}_j = \frac{n_j}{n}.
\]
is found by subtracting the maximum conditional probability
$p(\omega_j | t)$ for the node from 1:

$$r(t) = 1 - \max_j \{p(\omega_j | t)\}. \quad (9.15)$$

$R(t)$ is the resubstitution estimate of risk for node t. This is

$$R(t) = r(t)p(t). \quad (9.16)$$

$R(T)$ denotes a resubstitution estimate of the overall misclassification rate for a tree T. This can be calculated using every terminal node in the tree as follows

$$R(T) = \sum_{i \in \mathcal{T}} r(t)p(t) = \sum_{i \in \mathcal{T}} R(t). \quad (9.17)$$

α is the complexity parameter.

$i(t)$ denotes a measure of impurity at node t.

$\Delta i(s, t)$ represents the decrease in impurity and indicates the goodness of the split s at node t. This is given by

$$\Delta i(s, t) = i(t) - p_R i(t_R) - p_L i(t_L). \quad (9.18)$$

p_L and p_R are the proportion of data that are sent to the left and right child nodes by the split s.

Growing the Tree

The idea behind binary classification trees is to split the d-dimensional space into smaller and smaller partitions, such that the partitions become purer in terms of the class membership. In other words, we are seeking partitions where the majority of the members belong to one class. To illustrate these ideas, we use a simple example where we have patterns from two classes, each one containing two features, x_1 and x_2. How we obtain these data are discussed in the following example.

Example 9.10

We use synthetic data to illustrate the concepts of classification trees. There are two classes, and we generate 50 points from each class. From Figure 9.11, we see that each class is a two term mixture of bivariate uniform random variables.
% This shows how to generate the data that will be used
% to illustrate classification trees.
deln = 25;
data(1:deln,:) = rand(deln,2)+.5;
s0=deln+1; sf = 2*deln;
data(s0:sf,:)= rand(deln,2)-.5;
s0=sf+1; sf = 3*deln;
data(s0:sf,1) = rand(deln,1)-.5;
data(s0:sf,2) = rand(deln,1)+.5;
s0=sf+1; sf = 4*deln;
data(s0:sf,1) = rand(deln,1)+.5;
data(s0:sf,2) = rand(deln,1)-.5;

A scatterplot of these data is given in Figure 9.11. One class is depicted by the
'•' and the other is represented by the 'o'. These data are available in the file
called carxdata, so the user can load them and reproduce the next example.

minimize it until a jump point for α is reached. Thus, we will be looking for
a sequence of complexity values α and the trees that minimize the cost complexity
measure for each level. Once we have our tree T_k, we start pruning
off the branches that have the weakest link. To find the weakest link, we first
define a function on a tree as follows

$$
g_k(t) = \frac{R(t) - R(T_{k,t})}{|T_{k,t}| - 1} \quad \text{if } t \text{ is an internal node,} \tag{9.24}
$$

where $T_{k,t}$ is the branch T_k corresponding to the internal node t of subtree T_k.

From Equation 9.24, for every internal node in tree T_k, we determine the
value for $g_k(t)$. We define the weakest link t^*_k in tree T_k as the internal node
that minimizes Equation 9.24,

$$
g_k(t_k^*) = \min_t \{g_k(t)\} \tag{9.25}
$$

Once we have the weakest link, we prune the branch defined by that node.
The new tree in the sequence is obtained by

$$
T_{k+1} = T_k - T_{k,t_k^*} \tag{9.26}
$$

where the subtraction in Equation 9.26 indicates the pruning process. We set
the value of the complexity parameter to

$$
\alpha_{k+1} = g_k(t_k^*) \tag{9.27}
$$

The result of this pruning process will be a decreasing sequence of trees,

$$
T_{max} > T_1 > T_2 > \ldots > T_K = \{t_1\},
$$

along with an increasing sequence of values for the complexity parameter

$$
0 = \alpha_1 < \alpha_2 < \alpha_k \tag{9.28}
$$

We need the following key fact when we describe the procedure for choosing
the best tree from the sequence produced.
For \(k \geq 1 \), the tree \(T_k \) is the minimal cost complexity tree for the interval \(\alpha_k \leq \alpha < \alpha_{k+1} \), and

\[
T(\alpha) = T(\alpha_k) = T_k.
\]

PROCEDURE - PRUNING THE TREE

1. Start with a large tree \(T_{\text{max}} \).
2. Find the first tree in the sequence \(T_i \) by searching through all terminal node pairs. For each of these pairs, if \(R(t) = R(t_L) + R(t_R) \), then delete nodes \(t_L \) and \(t_R \).
3. For all internal nodes in the current tree, calculate \(g_k(t) \) as given in Equation 9.24.
4. The weakest link is the node that has the smallest value for \(g_k(t) \).
5. Prune off the branch that has the weakest link.
6. Repeat steps 3 through 5 until only the root node is left.

Example 9.12

We continue with the same data set from the previous examples. We apply the pruning procedure to the large tree obtained in Example 9.11. The pruning function for classification trees is called \texttt{csprunec}. The input argument is a tree, and the output argument is a cell array of subtrees, where the first tree corresponds to tree \(T_i \) and the last tree corresponds to the root node.

```matlab
treeseq = csprunec(tree);
K = length(treeseq);
alpha = zeros(1,K);
% Find the sequence of alphas.
% Note that the root node corresponds to K,
% the last one in the sequence.
for i = 1:K
  alpha(i) = treeseq{i}.alpha;
end
```

The resulting sequence for \(\alpha \) is

\[
\alpha = 0, 0.01, 0.03, 0.07, 0.08, 0.10.
\]

We see that as \(k \) increases (or, equivalently, the complexity of the tree decreases), the complexity parameter increases. We plot two of the subtrees in Figures 9.14 and 9.15. Note that tree \(T_3 \) with \(\alpha = 0.08 \) has fewer terminal nodes than tree \(T_3 \) with \(\alpha = 0.03 \).
Choosing the Best Tree

In the previous section, we discussed the importance of using independent test data to evaluate the performance of our classifier. We now use the same procedures to help us choose the right size tree. It makes sense to choose a
Chapter 9: Statistical Pattern Recognition

We use the test samples \(\mathbf{L}_v \) along with the trees \(T^{(o)}_k \) to determine the classification error of the subtrees \(T_k \). To accomplish this, we have to find trees that have equivalent complexity to \(T_k \) in the sequence of trees \(T^{(o)}_k \).

Recall that a tree \(T_k \) is the minimal cost complexity tree over the range \(\alpha_k \leq \alpha < \alpha_{k+1} \). We define a representative complexity parameter for that interval using the geometric mean

\[
\alpha'_k = \sqrt{\alpha_k \alpha_{k+1}}.
\]

(9.32)

The complexity for a tree \(T_k \) is given by this quantity. We then estimate the misclassification error using

\[
\hat{R}^{CV}(T_k) = \hat{R}^{CV}(T(\alpha'_k)),
\]

(9.33)

where the right hand side of Equation 9.33 is the proportion of test cases that are misclassified, using the trees \(T^{(o)}_k \) that correspond to the complexity parameter \(\alpha'_k \).

To choose the best subtree, we need an expression for the standard error of the misclassification error \(\hat{R}^{CV}(T_k) \). When we present our test cases from the partition \(\mathbf{L}_v \), we record a zero or a one, denoting a correct classification and an incorrect classification, respectively. We see then that the estimate in Equation 9.33 is the mean of the ones and zeros. We estimate the standard error of this from

\[
\hat{SE} (\hat{R}^{CV}(T_k)) = \sqrt{\frac{s^2}{n}},
\]

(9.34)

where \(s^2 \) is \((n - 1)/n\) times the sample variance of the ones and zeros.

The cross-validation procedure for estimating the misclassification error when we have unit cost and the priors are estimated from the data is outlined below.

PROCEDURE - CHOOSING THE BEST SUBTREE (CROSS-VALIDATION)

1. Obtain a sequence of subtrees \(T_k \) that are grown using the learning sample \(\mathbf{L} \).
2. Determine the cost complexity parameter \(\alpha'_k \) for each \(T_k \) using Equation 9.32.
3. Partition the learning sample into \(V \) partitions, \(\mathbf{L}_v \). These will be used to test the trees.
4. For each \(\mathbf{L}_v \), build the sequence of subtrees using \(\mathbf{L}^{(o)} \). We should now have \(V + 1 \) sequences of trees.
5. Now find the estimated misclassification error $\hat{R}^{CV}(T_k)$. For $\alpha_{k}^{(v)}$ corresponding to T_k, find all equivalent trees $T_{k}^{(v)}$, $v = 1, ..., V$. We do this by choosing the tree $T_{k}^{(v)}$ such that

$$\alpha_{k}^{(v)} \in \{\alpha_{k}^{(v)}, \alpha_{k}^{(v+1)}\}.$$

6. Take the test cases in each L_v and present them to the tree $T_{k}^{(v)}$ found in step 5. Record a one if the test case is misclassified and a zero if it is classified correctly. These are the classification costs.

7. Calculate $\hat{R}^{CV}(T_k)$ as the proportion of test cases that are misclassified (or the mean of the array of ones and zeros found in step 6).

8. Calculate the standard error as given by Equation 9.34.

9. Continue steps 5 through 8 to find the misclassification cost for each subtree T_k.

10. Find the minimum error

$$\hat{R}_{\text{min}}^{CV} = \min_i \{\hat{R}^{CV}(T_i)\}.$$

11. Add the estimated standard error to it to get

$$\hat{R}_{\text{min}} + \hat{SE}(\hat{R}_{\text{min}}).$$

12. Find the tree with the largest k or fewest number of nodes such that its misclassification error is less than the amount found in step 11.

Example 9.14

For this example, we return to the *iris* data, described at the beginning of this chapter. We implement the cross-validation approach using $V = 5$. We start by loading the data and setting up the indices that correspond to each partition. The fraction of cases belonging to each class is the same in all testing sets.

```matlab
load iris
% Attach class labels to each group.
setosa(:,5)=1;
versicolor(:,5)=2;
virginica(:,5)=3;
X = [setosa;versicolor;virginica];
n = 150; % total number of data points
% These indices indicate the five partitions
% for cross-validation.
ind1 = 1:5:50;
```
\begin{verbatim}
ind2 = 2:5:50;
ind3 = 3:5:50;
ind4 = 4:5:50;
ind5 = 5:5:50;

Next we set up all of the testing and training sets. We use the MATLAB `eval`
function to do this in a loop.

```matlab
% Get the testing sets: test1, test2, ...
for i = 1:5
    eval(['test' int2str(i) ' = setosa(ind' int2str(i) 
    ',:); versicolor(ind' int2str(i) ... 
    ',:); virginica(ind' int2str(i) ',:)];')
end
for i = 1:5
    tmp1 = setosa;
tmp2 = versicolor;
tmp3 = virginica;
    % Remove points that are in the test set.
    eval(['tmp1(ind' int2str(i) ',:) = []';])
    eval(['tmp2(ind' int2str(i) ',:) = []';])
    eval(['tmp3(ind' int2str(i) ',:) = []';])
    eval(['train' int2str(i) ' = [tmp1,tmp2,tmp3]';])
end

Now we grow the trees using all of the data and each training set.

```matlab
% Grow all of the trees.
pies = ones(1,3)/3;
maxn = 2; % get large trees
clas = 1:3;
Nk = [50,50,50];
tree = csgrowc(X,maxn,clas,Nk,pies);
Nk1 = [40 40 40];
for i = 1:5
 eval(['tree' int2str(i) ' = ...
 csgrowc(train',...
 int2str(i) ',maxn,clas,Nk1,pies);'])
end

The following MATLAB code gets all of the sequences of pruned subtrees:

```matlab
% Now prune each sequence.
treeseq = csprune(tree);
for i = 1:5
    eval(['treeseq' int2str(i) ' = ... 
        csprune(tree' int2str(i) ')';'])
end
\end{verbatim}
The complexity parameters must be extracted from each sequence of subtrees. We show how to get this for the main tree and for the sequences of subtrees grown on the first partition. This must be changed appropriately for each of the remaining sequences of subtrees.

\[
K = \text{length(treeseq)};
alpha = \text{zeros}(1,K);
\]
% Find the sequence of alphas.
for \(i = 1:K\)
    \(alpha(i) = \text{treeseq}(i)\).alpha;
end
% For the other subtree sequences, change the
% 1 to 2, 3, 4, 5 and re-run.
K1 = \text{length(treeseq1)};
for \(i = 1:K1\)
    \(alpha1(i) = \text{treeseq1}(i)\).alpha;
end

We need to obtain the equivalent complexity parameters for the main sequence of trees using Equation 9.32. We do this in MATLAB as follows:

\[
% Get the akprime equivalent values for the main tree.
for \(i = 1:K-1\)
    \(akprime(i) = \sqrt{alpha(i) \cdot alpha(i+1)}\);
end
\]

We must now loop through all of the subtrees in the main sequence, find the equivalent subtrees in each partition and use those trees to classify the cases in the corresponding test set. We show a portion of the MATLAB code here to illustrate how we find the equivalent subtrees. The complete steps are contained in the M-file called \texttt{ex9_14.m} (downloadable with the Computational Statistics Toolbox). In addition, there is an alternative way to implement cross-validation using cell arrays (courtesy of Tom Lane, The MathWorks). The complete procedure can be found in \texttt{ex9_14alt.m}.

\[
n = 150;
k = \text{length(akprime)};
\]
% For the first tree, find the
% equivalent tree from the first partition
\(\text{ind} = \text{find}(alpha1 <= akprime(1))\);
% Should be the last one.
% Get the tree that corresponds to that one.
\(\text{tk} = \text{treeseq1(ind(end))}\);
% Get the misclassified points in the test set.
for \(j = 1:30\) % loop through the points in test 1
\(\text{[c,pclass,node] = ctreeec(test1(j,1:4),tk);\}
if \(c != \text{test1}(j,5)\)
misclass(j) = 1;
end
end

We continue in this manner using all of the subtrees. The estimated misclassification error using cross-validation is

\[ R_k = 0.047, 0.047, 0.047, 0.067, 0.21, 0.41, \]

and the estimated standard error for \( \tilde{R}_{\text{min}} \) is 0.017. When we add this to the minimum of the estimated errors, we get 0.064. We see that the tree with the minimum complexity that has error less than this is tree \( T_1 \). All of the data and variables that are generated in this example can be loaded from irisexamp.mat.

\[ \square \]

9.5 Clustering

Clustering methodology is used to explore a data set where the goal is to separate the sample into groups or to provide understanding about the underlying structure or nature of the data. The results from clustering methods can be used to prototype supervised classifiers or to generate hypotheses. Clustering is called unsupervised classification because we typically do not know what groups there are in the data or the group membership of an individual observation. In this section, we discuss two main methods for clustering. The first is hierarchical clustering, and the second method is called \( k \)-means clustering. First, however, we cover some preliminary concepts.

Measures of Distance

The goal of clustering is to partition our data into groups such that the observations that are in one group are dissimilar to those in other groups. We need to have some way of measuring that dissimilarity, and there are several measures that fit our purpose.

The first measure of dissimilarity is the Euclidean distance given by

\[ d_{rs} = \sqrt{(x_r - x_s)^T (x_r - x_s)}, \quad (9.35) \]

where \( x_r \) is a column vector representing one observation. We could also use the Mahalanobis distance defined as

\[ d_{rs} = \sqrt{(x_r - x_s)^T \Sigma^{-1} (x_r - x_s)}, \quad (9.36) \]
where $\Sigma^{-1}$ denotes the inverse covariance matrix. The city block distance is found using absolute values rather than squared distances, and it is calculated using

$$d_{rs} = \sum_{j=1}^{d} |x_{rj} - x_{sj}|.$$  (9.37)

In Equation 9.37, we take the absolute value of the difference between the observations $x_r$ and $x_s$ componentwise and then add up the values. The final distance that we present covers the more general case of the Euclidean distance or the city block distance. This is called the Minkowski distance, and it is found using

$$d_{rs} = \left( \sum_{j=1}^{d} |x_{rj} - x_{sj}|^p \right)^{1/p}.$$  (9.38)

If $p = 1$, then we have the city block distance, and if $p = 2$ we have the Euclidean distance.

The researcher should be aware that distances might be affected by differing scales or magnitude among the variables. For example, suppose our data measured two variables: age and annual income in dollars. Because of its magnitude, the income variable could influence the distances between observations, and we would end up clustering mostly on the incomes. In some situations, we might want to standardize the observations. The MATLAB Statistics Toolbox contains a function called zscore that will perform this standardization.

The MATLAB Statistics Toolbox also has a function that calculates distances. It is called pdist and takes as its argument a matrix $X$ that is dimension $n \times d$. Each row represents an observation in our data set. The pdist function returns a vector containing the distance information. The default distance is Euclidean, but the user can specify other distances as discussed above. We illustrate the use of this function in the following example.

Example 9.15
We use a small data set to illustrate the various distances available in the MATLAB Statistics Toolbox. We have only five data points. The following commands set up the matrix of values and plots the points in Figure 9.16.

```matlab
% Let's make up a data set - 2-D.
X = [1 1; 1 2; 2 1; -1 -1; -1 -2];
plot(X(:,1),X(:,2),'kx') % plots the points.
axis([-3 3 -3 3])
text(X(:,1)+.1,X(:,2)+.1,'1|2|3|4|5');
```
We first find the Euclidean distance between the points using the `pdist` function. We also illustrate the use of the function `squareform` that puts the distances in a more familiar matrix form, where the \( ij \)-th element corresponds to the distance between the \( i \)-th and \( j \)-th observation.

% Find the Euclidean distance using pdist.

modeling the dependency of \( Y \) on \( X \). The easiest example of linear regression is in situations where we can fit a straight line between \( X \) and \( Y \). In Figure 7.1, we show a scatterplot of 25 observed \((X_i, Y_i)\) pairs [Draper and Smith, 1981]. The \( X \) variable represents the average atmospheric temperature measured in degrees Fahrenheit, and the \( Y \) variable corresponds to the pounds of steam used per month. The scatterplot indicates that a straight line is a reasonable model for the relationship between these variables. We will use these data to illustrate linear regression.

The linear, first-order model is given by

\[
Y = \beta_0 + \beta_1 X + \epsilon, \tag{7.1}
\]

where \( \beta_0 \) and \( \beta_1 \) are parameters that must be estimated from the data, and \( \epsilon \) represents the error in the measurements. It should be noted that the word \textit{linear} refers to the linearity of the parameters \( \beta \). The \textit{order} (or \textit{degree}) of the model refers to the highest power of the predictor variable \( X \). We know from elementary algebra that \( \beta_1 \) is the slope and \( \beta_0 \) is the \( y \)-intercept. As another example, we represent the linear, second-order model by

\[
Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon. \tag{7.2}
\]

To get the model, we need to estimate the parameters \( \beta_0 \) and \( \beta_1 \). Thus, the estimate of our model given by Equation 7.1 is

\[
\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X, \tag{7.3}
\]

where \( \hat{Y} \) denotes the predicted value of \( Y \) for some value of \( X \), and \( \hat{\beta}_0 \) and \( \hat{\beta}_1 \) are the estimated parameters. We do not go into the derivation of the estimators, since it can be found in most introductory statistics textbooks.
centroid linkage and Ward's method. The MATLAB Statistics Toolbox provides a function called \textit{linkage} that will perform agglomerative clustering using any of these methods. Its use is illustrated in the next example, but first we briefly describe each of the methods [Hair, et al., 1995].

The \textit{single linkage} method uses minimum distance, where the distance between clusters is defined as the distance between the closest pair of observations. Pairs consisting of one case from each group are used in the calculation. The first cluster is formed by merging the two groups with the shortest distance. Then the next smallest distance is found between all of the clusters (keep in mind that an observation is also a cluster). The two clusters corresponding to the smallest distance are then merged. The process continues in this manner until there is one group. In some cases, single linkage can lead to chaining of the observations, where those on the ends of the chain might be very dissimilar.

The process for the \textit{complete linkage} method is similar to single linkage, but the clustering criterion is different. The distance between groups is defined as the most distant pair of observations, with one coming from each group. The logic behind using this type of similarity criterion is that the maximum distance between observations in each cluster represents the smallest sphere that can enclose all of the objects in both clusters. Thus, the closest of these cluster pairs should be grouped together. The complete linkage method does not have the chaining problem that single linkage has.

\textbf{FIGURE 9.16}
These are the observations used in Example 9.15. Two clusters are clearly seen.
The *average linkage* method for clustering starts out the same way as single and complete linkage. In this case, the cluster criterion is the average distance between all pairs, where one member of the pair comes from each cluster. Thus, we find all pairwise distances between observations in each cluster and take the average. This linkage method tends to combine clusters with small variances and to produce clusters with approximately equal variance.

*Centroid linkage* calculates the distance between two clusters as the distance between the centroids. The centroid of a cluster is defined as the $d$-dimensional sample mean for those observations that belong to the cluster. Whenever we merge clusters together or add an observation to a cluster, the centroid is recalculated.

The distance between two clusters using *Ward's linkage* method is defined as the incremental sum of the squares between two clusters. To merge clusters, the within-group sum-of-squares is minimized over all possible partitions obtained by combining two clusters. The within-group sum-of-squares is defined as the sum of the squared distances between all observations in a cluster and its centroid. This method tends to produce clusters with approximately the same number of observations in each one.

**Example 9.16**

We illustrate the *linkage* function using the data and distances from the previous example. We look only at single linkage and complete linkage using the Euclidean distances. We show the results of the clustering in dendrograms given in Figures 9.17 and 9.18.

```matlab
% Get the cluster output from the linkage function.
zsingle = linkage(ye,'single');
zcomplete = linkage(ye,'complete');

% Get the dendrogram.
dendrogram(zsingle)
title('Clustering - Single Linkage')
dendrogram(zcomplete)
title('Clustering - Complete Linkage')
```

A *dendrogram* shows the links between objects as inverted U-shaped lines, where the height of the U represents the distance between the objects. The cases are listed along the horizontal axis. Cutting the tree at various $y$ values of the dendrogram yields different clusters. For example, cutting the complete linkage tree at $y = 1.2$ would yield 3 clusters. As expected, if we choose to create two clusters, then the two linkage methods give the same cluster definitions.

Now that we have our cases clustered, we would like to measure the validity of the clustering. One way to do this would be to compare the distances between all observations with the links in the dendrogram. If the clustering
FIGURE 9.17
This is the dendrogram using Euclidean distances and single linkage.

FIGURE 9.18
This is the dendrogram using Euclidean distances and complete linkage.
is a valid one, then there should be a strong correlation between them. We can measure this using the cophenetic correlation coefficient. A cophenetic matrix is defined using the results of the linkage procedure. The \( ij \)-th entry of the cophenetic matrix is the fusion level at which the \( i \)-th and \( j \)-th objects appear together in the same cluster for the first time. The correlation coefficient between the distances and the corresponding cophenetic entries is the cophenetic correlation coefficient. Large values indicate that the linkage provides a reasonable clustering of the data. The MATLAB Statistics Toolbox provides a function that will calculate the cophenetic correlation coefficient. Its use is illustrated in the following example.

**Example 9.17**

In this example, we show how to obtain the cophenetic correlation coefficient in MATLAB. We use the same small data set from before and calculate the cophenetic correlation coefficient when we have clusters based on different distances and linkages. First, we get the clusters using the following commands.

```matlab
x = [1 1; 1 2; 2 1; -1 -1; -1 -2];
ye = pdist(x,'euclid');
ycb = pdist(x,'cityblock');
zsineu = linkage(ye,'single');
zscompeu = linkage(ye,'complete');
zsincb = linkage(ycb,'single');
zscomcb = linkage(ycb,'complete');
```

We now have four different cluster hierarchies. Their cophenetic correlation coefficients can be found from the following:

```matlab
ccompeu = cophenet(zcompeu,ye);
csineu = cophenet(zsineu,ye);
csincb = cophenet(zsincb,ycb);
ccomcb = cophenet(zcomcb,ycb);
```

As expected, all of the resulting cophenetic correlation coefficients are large (approximately 0.95), with the largest corresponding to the complete linkage clustering based on the city block distance.

\( \blacksquare \)

**K-Means Clustering**

The goal of \( k \)-means clustering is to partition the data into \( k \) groups such that the within-group sum-of-squares is minimized. One way this technique differs from hierarchical clustering is that we must specify the number of groups or clusters that we are looking for. We briefly describe two algorithms for obtaining clusters via \( k \)-means.
One of the basic algorithms for $k$-means clustering is a two step procedure. First, we assign observations to its closest group, usually using the Euclidean distance between the observation and the cluster centroid. The second step of the procedure is to calculate the new cluster centroid using the assigned objects. These steps are alternated until there are no changes in cluster membership or until the centroids do not change. This algorithm is sometimes referred to as HMEANS [Spath, 1980] or the basic ISODATA method.

**PROCEDURE - HMEANS ALGORITHM**

1. Specify the number of clusters $k$.
2. Determine initial cluster centroids. These can be randomly chosen or the user can specify them.
3. Calculate the distance between each observation and each cluster centroid.
4. Assign every observation to the closest cluster.
5. Calculate the centroid (i.e., the $d$-dimensional mean) of every cluster using the observations that were just grouped there.
6. Repeat steps 3 through 5 until no more changes are made.

There are two problems with the HMEANS algorithm. The first one is that this method could lead to empty clusters, so users should be aware of this possibility. As the centroid is recalculated and observations are reassigned to groups, some clusters could become empty. The second issue concerns the optimality of the partitions. With $k$-means, we are searching for partitions where the within-group sum-of-squares is minimum. It can be shown [Webb, 1999] that in some cases, the final $k$-means cluster assignment is not optimal, in the sense that moving a single point from one cluster to another may reduce the sum of squared errors. The following procedure helps address the second problem.

**PROCEDURE - K-MEANS**

1. Obtain a partition of $k$ groups, possibly from the HMEANS algorithm.
2. Take each data point $x_i$ and calculate the Euclidean distance between it and every cluster centroid.
3. Here $x_i$ is in the $r$-th cluster, $n_r$ is the number of points in the $r$-th cluster, and $d_{ir}$ is the Euclidean distance between $x_i$ and the centroid of cluster $r$. If there is a group $s$ such that

$$\frac{n_r}{n_r - 1} d_{ir}^2 > \frac{n_s}{n_s + 1} d_{is}^2,$$
then move $x_i$ to cluster $s$.

4. If there are several clusters that satisfy the above inequality, then move the $x_i$ to the group that has the smallest value for

$$\frac{n_s}{n_s + 1} d_{is}^2.$$

5. Repeat steps 2 through 4 until no more changes are made.

We note that there are many algorithms for $k$-means clustering described in the literature. We provide some references to these in the last section of this chapter.

**Example 9.18**

We show how to implement HMEANS in MATLAB, using the *iris* data. Normally, clustering methods would be used on data where we do not know what groups are there, unlike the *iris* data. However, since we do know the true groups represented by the data, these will give us a way to verify that the clusters make sense. We first obtain the cluster centers by randomly picking observations from the data set. Note that initial cluster centers do not have to be actual observations.

```matlab
load iris
k = 3;
% Put all of the data together.
x = [setosa;versicolor;virginica];
[n,d] = size(x);

% Pick some observations to be the cluster centers.
ind = randperm(n);
ind = ind(1:k);
nc = x(ind,:);
% Set up storage.
% Integers 1,...,k indicating cluster membership
cid = zeros(1,n);
% Make this different to get the loop started.
oldcid = ones(1,n);
% The number in each cluster.
r = zeros(1,k);
% Set up maximum number of iterations.
maxiter = 100;
iter = 1;

while ~isequal(cid,oldcid) & iter < maxiter
 oldcid = cid;
    ```
% Implement the hmeans algorithm.
% For each point, find the distance
% to all cluster centers.
for i = 1:n
    dist = sum((repmat(x(:,i),k,1)-nc).^2,2);
    % assign it to this cluster
    [m,ind] = min(dist);
    cid(i) = ind;
end
% Find the new cluster centers.
for i = 1:k
    % Find all points in this cluster.
    ind = find(cid==i);
    % Find the centroid.
    nc(i,:) = mean(x(ind,:));
    % Find the number in each cluster.
    nx(i) = length(ind);
end
iter = iter + 1
end

To check these results, we show a scatterplot of the first two features of the iris data in Figure 9.19, where the three classes are represented by different plotting symbols. The clusters we obtain from this implementation of k-means clustering (using the HMEANS procedure) are shown in Figure 9.20. The algorithm finds the one group, corresponding to Iris setosa, but has trouble separating the other two species. However, the results are certainly reasonable.

9.6 MATLAB Code

We provide a function called cshmeans that implements the HMEANS algorithm given above. We also have a function called csmeans that checks to see if moving individual observations changes the sum-square error. With both of these functions, the user can specify the initial centers as an input argument. However, if that argument is omitted, then the function will randomly pick the initial cluster centers.

As we stated in the body of the text, there are many MATLAB functions available that the analyst can use to develop classifiers using Bayes decision theory. These are any of the functions in the Statistics Toolbox that estimates a probability density function using the parametric approach: normfit, normfit, confint, wilfr; and, approach, estimating the class-conditional probabilities using the product kernel. Which classifier performs better, based on the ROC curve analysis?

9.6 For the Iris A data, obtain a classification curve. How does it compare?
9.14. The \textit{k-nearest neighbor rule} assigns patterns \(x\) to the class that is the most common amongst its \(k\) nearest neighbors. To fix the notation, let \(k_m\) represent the number of cases belonging to class \(\omega_m\) out of the \(k\) nearest neighbors to \(x\). We classify \(x\) as belonging to class \(\omega_m\), if \(k_m \geq k_i\), for \(i = 1, \ldots, J\). Write a MATLAB function that implements this classifier.

9.15. Repeat Example 9.7 using all of the features for \textit{versicolor} and \textit{virginica}. What is your estimated probability of correct classification?

9.16. Apply the method of Example 9.7 to the \textit{virginica} and \textit{setosa} classes.
Chapter 10
Nonparametric Regression

10.1 Introduction

In Chapter 7, we briefly introduced the concepts of linear regression and showed how cross-validation can be used to determine a model that provides a good fit to the data. We return to linear regression in this section to introduce nonparametric regression and smoothing. We first revisit classical linear regression and provide more information on how to analyze and visualize the results of the model. We also examine more of the capabilities available in MATLAB for this type of analysis. In Section 10.2, we present a method for scatterplot smoothing called loess. Kernel methods for nonparametric regression are discussed in Chapter 10.3 and regression kernels in...
It is known from introductory statistics texts that the function which minimizes Equation 10.7 is

\[ E(Y|X = x) \].

Note that if we are in the parametric regression setting, then we are assuming a parametric form for the smoothing function such as

\[ f(X) = \beta_0 + \beta_1 X. \]

If we do not make any assumptions about the form for \( f(X) \), then we should use nonparametric regression techniques.

The nonparametric regression method covered in this section is called a scatterplot smooth because it helps to visually convey the relationship between \( X \) and \( Y \) by graphically summarizing the middle of the data using a smooth function of the points. Besides helping to visualize the relationship, it also provides an estimate or prediction for given values of \( x \). The smoothing method we present here is called loess, and we discuss the basic version for one predictor variable. This is followed by a version of loess that is made robust by using the bisquare function to re-weight points based upon the magnitude of their residuals. Finally, we show how to use loess to get upper and lower smooths to visualize the spread of the data.

**Loess**

Before deciding on what model to use, it is a good idea to look at a scatterplot of the data for insight on how to model the relationship between the variables, as was discussed in Chapter 7. Sometimes, it is difficult to construct a simple parametric formula for the relationship, so smoothing a scatterplot can help the analyst understand how the variables depend on each other. Loess is a method that employs locally weighted regression to smooth a scatterplot and also provides a nonparametric model of the relationship between two variables. It was originally described in Cleveland [1979], and further extensions can be found in Cleveland and McGill [1984] and Cleveland [1993].

The curve obtained from a loess model is governed by two parameters, \( \alpha \) and \( \lambda \). The parameter \( \alpha \) is a smoothing parameter. We restrict our attention to values of \( \alpha \) between zero and one, where high values for \( \alpha \) yield smoother curves. Cleveland [1993] addresses the case where \( \alpha \) is greater than one. The second parameter \( \lambda \) determines the degree of the local regression. Usually, a first or second degree polynomial is used, so \( \lambda = 1 \) or \( \lambda = 2 \). How to set these parameters will be explored in the exercises.

The general idea behind loess is the following. To get a value of the curve \( \hat{y} \) at a given point \( x \), we first determine a local neighborhood of \( x \) based on \( \alpha \).
All points in this neighborhood are weighted according to their distance from $x$, with points closer to $x$ receiving larger weight. The estimate $\hat{y}$ at $x$ is obtained by fitting a linear or quadratic polynomial using the weighted points in the neighborhood. This is repeated for a uniform grid of points $x$ in the domain to get the desired curve.

We describe below the steps for obtaining a loess curve [Hastie and Tibshirani, 1990]. The steps of the loess procedure are illustrated in Figure 10.7.

1. Let $w_i = \exp\left( -d_i^2 / r^2 \right)$, where $r$ is the bandwidth.
2. Define $w_i$ using the bisquare function in Equation 10.13.
3. Repeat the loess procedure using weights of $w_i$.
4. Repeat steps 2 through 5 until the loess curve converges.

In essence, the robust loess iteratively adjusts the weights based on the residuals. We illustrate the robust loess procedure in the next example.

Example 10.4
We return to the filip data in this example. We create some outliers in the data by adding noise to five of the points.

```matlab
load filip
% Make several of the points outliers by adding noise.
N = length(x);
ind = unidrnd(N,1,5); % pick 5 points to make outliers
y(ind) = y(ind) + 0.1*randn(size(y(ind)));
```

A function that implements the robust version of loess is included with the text. It is called csloessr and takes the following input arguments: the observed values of the predictor variable, the observed values of the response variable, the values of $x_0$, $\alpha$ and $\lambda$. We now use this function to get the loess curve.
% Now call the loess procedure and plot the result.
% Get a domain over which to evaluate the curve.
x0 = linspace(min(wind), max(wind), 50);
yhat = csloess(wind, ozone, x0, alpha, lambda);
% Plot the results.
plot(wind, ozone, 'k.', x0, yhat, 'k')
xlabel('Wind Speed (MPH)'), ylabel('Ozone (PPB)')

The resulting scatterplot with loess smooth is shown in Figure 10.6. The final curve is obtained by linearly interpolating between the estimates from loess.

As we will see in the exercises, fitting curves is an iterative process. Different values for the parameters α and λ should be used to obtain various loess curves. Then the scatterplot with superimposed loess curve and residuals plots can be examined to determine whether or not the model adequately describes the relationship.

Robust Loess Smoothing

Loess is not robust, because it relies on the method of least squares. A method is called robust if it performs well when the associated underlying assumptions (e.g., normality) are not satisfied [Kotz and Johnson, Vol. 8, 1988]. There are many ways in which assumptions can be violated. A common one is the presence of outliers or extreme values in the response data. These are points in the sample that deviate from the pattern of the other observations. Least squares regression is vulnerable to outliers, and it takes only one extreme value to unduly influence the result. This is easily seen in Figure 10.7, where there is an outlier in the upper left corner. The dashed line is obtained using least squares with the outlier present, and the solid line is obtained with the outlier removed. It is obvious that the outlier affects the slope of the line and would change the predictions one gets from the model.

Cleveland [1993, 1979] and Cleveland and McGill [1984] present a method for smoothing a scatterplot using a robust version of loess. This technique uses the bisquare method [Hoaglin, Mosteller, and Tukey, 1983; Mosteller and Tukey, 1977; Huber, 1973; Andrews, 1974] to add robustness to the weighted least squares step in loess. The idea behind the bisquare is to re-weight points based on their residuals. If the residual for a given point in the neighborhood is large (i.e., it has a large deviation from the model), then the weight for that point should be decreased, since large residuals tend to indicate outlying observations. On the other hand, if the point has a small residual, then it should be weighted more heavily.
**Chapter 10: Nonparametric Regression**

![Figure 10.5](image1)

**FIGURE 10.5**
This shows the local fit at \( x_0 = 10 \) using weighted least squares. Here \( \lambda = 1 \) and \( \alpha = 2/3 \).

![Figure 10.6](image2)

**FIGURE 10.6**
This shows the scatterplot of ozone and wind speed along with the accompanying loess smooth.
Before showing how the bisquare method can be incorporated into loess, we first describe the general bisquare least squares procedure. First a linear regression is used to fit the data, and the residuals $\hat{e}_i$ are calculated from

$$\hat{e}_i = Y_i - \hat{Y}_i.$$  \hspace{1cm} (10.12)

The residuals are used to determine the weights from the bisquare function given by

$$B(u) = \begin{cases} (1-u^2)^2; & |u| < 1 \\ 0; & \text{otherwise}. \end{cases}$$ \hspace{1cm} (10.13)

The robustness weights are obtained from

$$r_i = B \left( \frac{\hat{e}_i}{6\hat{\sigma}_{0.5}} \right),$$  \hspace{1cm} (10.14)
where $\hat{\theta}_{0.5}$ is the median of $|\hat{e}|$. A weighted least squares regression is performed using $r_i$ as the weights.

To add bisquare to loess, we first fit the loess smooth, using the same procedure as before. We then calculate the residuals using Equation 10.12 and determine the robust weights from Equation 10.14. The loess procedure is repeated using weighted least squares, but the weights are now $r_i w_i(x_0)$. Note that the points used in the fit are the ones in the neighborhood of $x_0$. This is an iterative process and is repeated until the loess curve converges or stops changing. Cleveland and McGill [1984] suggest that two or three iterations are sufficient to get a reasonable model.

**PROCEDURE - ROBUST LOESS**

1. Fit the data using the loess procedure with weights $w_i$.
2. Calculate the residuals, $\hat{e}_i = y_i - \hat{y}_i$ for each observation.
3. Determine the median of the absolute value of the residuals, $\hat{\theta}_{0.5}$.
4. Find the robustness weight from
% Get the x values where we want to evaluate the curve.
xo = linspace(min(x), max(x), 25);
% Use robust loess to get the smooth.
alpha = 0.5;
deg = 1;
yhat = csloessr(x, y, xo, alpha, deg);

The resulting smooth is shown in Figure 10.8. Note that the loess curve is not
affected by the presence of the outliers.

![Graph](image)

**FIGURE 10.8**
This shows a scatterplot of the filip data, where five of the responses deviate from the
rest of the data. The curve is obtained using the robust version of loess, and we see that the
curve is not affected by the presence of the outliers.

**Upper and Lower Smooths**
The loess smoothing method provides a model of the middle of the distribution of Y given X. This can be extended to give us upper and lower smooths
[Cleveland and McGill, 1984], where the distance between the upper and lower smooths indicates the spread. The procedure for obtaining the upper
and lower smooths follows.
Chapter 10: Nonparametric Regression

**PROCEDURE - UPPER AND LOWER SMOOTH S (LOESS)**

1. Compute the fitted values $\hat{y}_i$ using loess or robust loess.
2. Calculate the residuals $\hat{\varepsilon}_i = y_i - \hat{y}_i$.
3. Find the positive residuals $\hat{\varepsilon}_i^+$ and the corresponding $x_i$ and $\hat{y}_i$ values. Denote these pairs as $(x_i^+, \hat{y}_i^+)$.
4. Find the negative residuals $\hat{\varepsilon}_i^-$ and the corresponding $x_i$ and $\hat{y}_i$ values. Denote these pairs as $(x_i^-, \hat{y}_i^-)$.
5. Smooth the $(x_i^+, \hat{y}_i^+)$ and add the fitted values from that smooth to $\hat{y}_i^+$. This is the upper smoothing.
6. Smooth the $(x_i^-, \hat{y}_i^-)$ and add the fitted values from this smooth to $\hat{y}_i^-$. This is the lower smoothing.

**Example 10.5**

In this example, we generate some data to show how to get the upper and lower loess smooths. These data are obtained by adding noise to a sine wave. We then use the function called `closessenv` that comes with the Computational Statistics Toolbox. The inputs to this function are the same as the other loess functions.

```matlab
% Generate some x and y values.
x = linspace(0, 4 * pi, 100);
y = sin(x) + 0.75 * randn(size(x));
% Use loess to get the upper and lower smooths.
[yhat, ylo, xlo, yup, xup] = closessenv(x, y, x, 0.5, 1, 0);
% Plot the smooths and the data.
plot(x, y, 'k.', x, yhat, 'k', xlo, ylo, 'k', xup, yup, 'k')
```

The resulting middle, upper and lower smooths are shown in Figure 10.9, and we see that the smooths do somewhat follow a sine wave. It is also interesting to note that the upper and lower smooths indicate the symmetry of the noise and the constancy of the spread.

□

**10.3 Kernel Methods**

This section follows the treatment of kernel smoothing methods given in Wand and Jones [1995]. We first discussed kernel methods in Chapter 8, where we applied them to the problem of estimating a probability density function in a nonparametric setting. We now present a class of smoothing
We now give the expression for the local polynomial kernel estimator. Let $d$ represent the degree of the polynomial that we fit at a point $x$. We obtain the estimate $\hat{y} = \hat{f}(x)$ by fitting the polynomial

$$\beta_0 + \beta_1(X_i - x) + \ldots + \beta_d(X_i - x)^d$$  \hspace{1cm} (10.15)

using the points $(X_i, Y_i)$ and utilizing the weighted least squares procedure. The weights are given by the kernel function

$$K_h(x_i - x) = \frac{1}{h} K\left(\frac{x_i - x}{h}\right).$$  \hspace{1cm} (10.16)

The value of the estimate at a point $x$ is $\hat{\beta}_0$, where the $\hat{\beta}_i$ minimize

$$\sum_{i=1}^{n} K_h(x_i - x)(Y_i - \beta_0 - \beta_1(X_i - x) - \ldots - \beta_d(X_i - x)^d)^2.$$  \hspace{1cm} (10.17)

Because the points that are used to estimate the model are all centered at $x$ (see Equation 10.15), the estimate at $x$ is obtained by setting the argument in the model equal to zero. Thus, the only parameter left is the constant term $\hat{\beta}_0$.

The attentive reader will note that the argument of the $K_h$ is backwards from what we had in probability density estimation using kernels. There, the kernels were centered at the random variables $X_i$. We follow the notation of Wand and Jones [1995] that shows explicitly that we are centering the kernels at the points $x$ where we want to obtain the estimated value of the function.

We can write this weighted least squares procedure using matrix notation. According to standard weighted least squares theory [Draper and Smith, 1981], the solution can be written as

$$\hat{\beta} = (X^T W X)^{-1} X^T W Y,$$  \hspace{1cm} (10.18)

where $Y$ is the $n \times 1$ vector of responses,

$$X = \begin{bmatrix}
1 & X_1 - x & \ldots & (X_1 - x)^d \\
\vdots & \vdots & \ddots & \vdots \\
1 & X_n - x & \ldots & (X_n - x)^d
\end{bmatrix},$$  \hspace{1cm} (10.19)

and $W$ is an $n \times n$ matrix with the weights along the diagonal. These weights are given by
\[ w_{ii}(x) = K_k(X_i - x). \]  

(10.20)

Some of these weights might be zero depending on the kernel that is used. The estimator \( \hat{y} = f(x) \) is the intercept coefficient \( \beta_0 \) of the local fit, so we can obtain the value from

\[ \hat{f}(x) = \mathbf{e}^T_1 \left( \mathbf{X}_1^T \mathbf{W}_1 \mathbf{X}_1 \right)^{-1} \mathbf{X}_1^T \mathbf{W}_1 \mathbf{y} \]  

(10.21)

where \( \mathbf{e}^T_1 \) is a vector of dimension \((d + 1) \times 1\) with a one in the first place and zeroes everywhere else.

**Nadaraya-Watson Estimator**

Some explicit expressions exist when \( d = 0 \) and \( d = 1 \). When \( d \) is zero, we fit a constant function locally at a given point \( x \). This estimator was developed separately by Nadaraya [1964] and Watson [1964]. The Nadaraya-Watson estimator is given below.

**NADARAYA-WATSON KERNEL ESTIMATOR:**

\[ \hat{f}_{NW}(x) = \frac{\sum_{i=1}^{n} K_k(X_i - x)Y_i}{\sum_{i=1}^{n} K_k(X_i - x)}. \]  

(10.22)

Note that this is for the case of a random design. When the design points are fixed, then the \( X_i \) is replaced by \( x_i \), but otherwise the expression is the same [Wand and Jones, 1995].

There is an alternative estimator that can be used in the fixed design case. This is called the Priestley-Chao kernel estimator [Simonoff, 1996].

**PRIESTLEY-CHAO KERNEL ESTIMATOR:**

\[ \hat{f}_{PC}(x) = \frac{1}{h} \sum_{i=1}^{n} (x_i - x_{i-1}) K\left( \frac{x - x_i}{h} \right) y_i, \]  

(10.23)

where the \( x_i, i = 1, \ldots, n \), represent a fixed set of ordered nonrandom numbers. The Nadarya-Watson estimator is illustrated in Example 10.6, while the Priestley-Chao estimator is saved for the exercises.
Example 10.6
We show how to implement the Nadarya-Watson estimator in MATLAB. As in the previous example, we generate data that follows a sine wave with added noise.

```matlab
% Generate some noisy data.
x = linspace(0, 4 * pi, 100);
y = sin(x) + 0.75*randn(size(x));
```

The next step is to create a MATLAB `inline` function so we can evaluate the weights. Note that we are using the normal kernel.

```matlab
% Create an inline function to evaluate the weights.
mystrg = '2*pi*h^2*(-1/2)*exp(-0.5*((x - mu)/h).^2)';
wfun = inline(mystrg);
```

We now get the estimates at each value of \( x \).

```matlab
% Set up the space to store the estimated values.
% We will get the estimate at all values of x.
yhatnw = zeros(size(x));
n = length(x);
% Set the window width.
h = 1;
% find smooth at each value in x
for i = 1:n
 w = wfun(h,x(i),x);
yhatnw(i) = sum(w.*y)/sum(w);
end
```

The smooth from the Nadarya-Watson estimator is shown in Figure 10.10.

\[ \square \]

Local Linear Kernel Estimator
When we fit a straight line at a point \( x \), then we are using a local linear estimator. This corresponds to the case where \( d = 1 \), so our estimate is obtained as the solutions \( \hat{\beta}_0 \) and \( \hat{\beta}_1 \) that minimize the following,

\[
\sum_{i=1}^{n} K_d(X_i - x)(Y_i - \hat{\beta}_0 - \hat{\beta}_1(X_i - x))^2.
\]

We give an explicit formula for the estimator below.
FIGURE 10.10
This figure shows the smooth obtained from the Nadaya-Watson estimator with $h = 1$.

**LOCAL LINEAR KERNEL ESTIMATOR:**

\[
\hat{f}_{LL}(x) = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{\hat{s}_2(x) - \hat{s}_4(x)(X_i - x)}{\hat{s}_2(x)\hat{s}_4(x) - \hat{s}_4(x)^2} \right) K_h(X_i - x) Y_i,
\]

(10.24)

where

\[
\hat{s}_4(x) = \frac{1}{n} \sum_{i=1}^{n} (X_i - x)^t K_h(X_i - x).
\]

As before, the fixed design case is obtained by replacing the random variable $X_i$ with the fixed point $x_i$.

When using the kernel smoothing methods, problems can arise near the boundary or extreme edges of the sample. This happens because the kernel window at the boundaries has missing data. In other words, we have weights from the kernel, but no data to associate with them. Wand and Jones [1995] show that the local linear estimator behaves well in most cases, even at the
tree very large, but this increases the complexity. Thus, we must make a
trade-off between these two criteria.
To select the right sized tree, we must have honest estimates of the true
error $\hat{R}(T)$. This means that we should use cases that were not used to create
the tree to estimate the error. As before, there are two possible ways to ac-
complish this. One is through the use of independent test samples and the other
is cross-validation. We briefly discuss both methods, and the reader is
referred to Chapter 9 for more details on the procedures. The independent
test sample method is illustrated in Example 10.9.
To obtain an estimate of the error $\hat{R}(T)$ using the independent test sample
method, we randomly divide the learning sample $L$ into two sets $L_1$ and $L_2$.
The set $L_1$ is used to grow the large tree and to obtain the sequence of pruned
subtrees. We use the set of cases in $L_2$ to evaluate the performance of each
subtree, by presenting the cases to the trees and calculating the error between
the actual response and the predicted response. If we let $d_i(x)$ represent the
predictor corresponding to tree $T_i$, then the estimated error is

$$
\hat{R}_{TS}^T(T_i) = \frac{1}{n_2} \sum_{(x_i, y_i) \in L_2} (y_i - d_i(x_i))^2,
$$

(10.30)

where the number of cases in $L_2$ is $n_2$.

We first calculate the error given in Equation 10.30 for all subtrees and then
find the tree that corresponds to the smallest estimated error. The error is an
estimate, so it has some variation associated with it. If we pick the tree with
the smallest error, then it is likely that the complexity will be larger than it
should be. Therefore, we desire to pick a subtree that has the fewest number
of nodes, but is still in keeping with the prediction accuracy of the tree with
the smallest error [Breiman, et al. 1984].

First we find the tree that has the smallest error and call the tree $T_0$. We
denote its error by $\hat{R}_{TS}^T(T_0)$. Then we find the standard error for this esti-
mate, which is given by [Breiman, et al., 1984, p. 226]

$$
\hat{SE}(\hat{R}_{min}^T(T_0)) = \frac{1}{\sqrt{n_2}} \left[ \frac{1}{n_2} \sum_{i=1}^{n_2} (y_i - d(x_i))^4 - (\hat{R}_{min}^T(T_0))^4 \right]^{1/2}.
$$

(10.31)

We then select the smallest tree $T_0^*$, such that

$$
\hat{R}_{TS}^T(T_0^*) \leq \hat{R}_{min}^T(T_0) + \hat{SE}(\hat{R}_{min}^T(T_0)).
$$

(10.32)

Equation 10.32 says that we should pick the tree with minimal complexity
that has accuracy equivalent to the tree with the minimum error.

If we are using cross-validation to estimate the prediction error for each
tree in the sequence, then we divide the learning sample $L$ into sets
\( L_1, \ldots, L_V \). It is best to make sure that the \( V \) learning samples are all the same size or nearly so. Another important point mentioned in Breiman, et al. [1984] is that the samples should be kept balanced with respect to the response variable \( Y \). They suggest that the cases be put into levels based on the value of their response variable and that stratified random sampling (see Chapter 3) be used to get a balanced sample from each stratum.

We let the \( v \)-th learning sample be represented by \( L^{(v)} = L - L_v \), so that we reserve the set \( L_v \) for estimating the prediction error. We use each learning sample to grow a large tree and to get the corresponding sequence of pruned subtrees. Thus, we have a sequence of trees \( T^{(v)}(\alpha) \) that represent the mini-

For a discussion of boundary problems with kernel estimators, see Wand and Jones [1995] and Scott [1992]. Both of these references also compare the performance of various kernel estimators for nonparametric regression. When we discussed probability density estimation in Chapter 8, we presented some results from Scott [1992] regarding the integrated squared error that can be expected with various kernel estimators. Since the local kernel estimators are based on density estimation techniques, expressions for the squared error can be derived. Several references provide these, such as Scott [1995], Wand and Jones [1995], and Simonoff [1996].
Exercises

10.1. Generate data according to \( y = 4x^3 + 6x^2 - 1 + \varepsilon \), where \( \varepsilon \) represents some noise. Instead of adding noise with constant variance, add noise that is variable and depends on the value of the predictor. So, increasing values of the predictor show increasing variance. Do a polynomial fit and plot the residuals versus the fitted values. Do they show that the constant variance assumption is violated? Use MATLAB’s Basic Fitting tool to explore your options for fitting a model to these data.

10.2. Generate data as in problem 10.1, but use noise with constant variance. Fit a first-degree model to it and plot the residuals versus the observed predictor values \( X_i \) (residual dependence plot). Do they show that the model is not adequate? Repeat for \( d = 2, 3 \).

10.3. Repeat Example 10.1. Construct box plots and histograms of the residuals. Do they indicate normality?

10.4. In some applications, one might need to explore how the spread or scale of \( Y \) changes with \( X \). One technique that could be used is the following:

   a) determine the fitted values \( \hat{Y}_i \);
   b) calculate the residuals \( \varepsilon_i = Y_i - \hat{Y}_i \);
   c) plot \( |\varepsilon_i| \) against \( X_i \); and
   d) smooth using loess [Cleveland and McGill, 1984].

   Apply this technique to the environ data.

10.5. Use the filip data and fit a sequence of polynomials of degree \( d = 2, 4, 6, 10 \). For each fit, construct a residual dependence plot. What do these show about the adequacy of the models?

10.6. Use the MATLAB Statistics Toolbox graphical user interface polytool with the longley data. Use the tool to find an adequate model.

10.7. Fit a loess curve to the environ data using \( \lambda = 1, 2 \) and various values for \( \alpha \). Compare the curves. What values of the parameters seem to be the best? In making your comparison, look at residual plots and smoothed scatterplots. One thing to look for is excessive structure (wiggliness) in the loess curve that is not supported by the data.

10.8. Write a MATLAB function that implements the Priestley-Chao estimator in Equation 10.23.
10.9. Repeat Example 10.6 for various values of the smoothing parameter \( h \). What happens to your curve as \( h \) goes from very small values to very large ones?

10.10. The human data set [Hand, et al., 1994; Mazess, et al., 1984] contains measurements of percent fat and age for 18 normal adults (males and females). Use loess or one of the other smoothing methods to determine how percent fat is related to age.

10.11. The data set called anaerob has two variables: oxygen uptake and the expired ventilation [Hand, et al., 1994; Bennett, 1988]. Use loess
great, then the length of the chains should be increased [Gilks, et al., 1996b]. Other methods are given in Roberts [1996], Raftery and Lewis [1996], and in the general references mentioned in Section 11.7.

Analyzing the Output

We now discuss how the output from the Markov chains can be used in statistical analysis. An analyst might be interested in calculating means, standard deviations, correlations and marginal distributions for components of \( X \). If we let \( X_{t,j} \) represent the \( j \)-th component of \( X_t \) at the \( t \)-th step in the chain, then using Equation 11.5, we can obtain the marginal means and variances from

\[
\bar{X}_{.,j} = \frac{1}{n-m} \sum_{t=m+1}^{n} X_{t,j},
\]

and

\[
S^2_{.,j} = \frac{1}{n-m-1} \sum_{t=m+1}^{n} (X_{t,j} - \bar{X}_{.,j})^2.
\]

These estimates are simply the componentwise sample mean and sample variance of the sample points \( X_{t} \), \( t = m + 1, ..., n \). Sample correlations are obtained similarly. Estimates of the marginal distributions can be obtained using the techniques of Chapter 8.

One last problem we must deal with to make Markov chains useful is the stationary distribution \( \psi \). We need the ability to construct chains such that the stationary distribution of the chain is the one we are interested in: \( \pi(x) \). In the MCMC literature, \( \pi(x) \) is often referred to as the target distribution. It turns out that this is not difficult and is the subject of the next two sections.

11.3 Metropolis-Hastings Algorithms

The Metropolis-Hastings method is a generalization of the Metropolis technique of Metropolis, et al. [1953], which had been used for many years in the physics community. The paper by Hastings [1970] further generalized the technique in the context of statistics. The Metropolis sampler, the independence sampler and the random-walk are all special cases of the Metropolis-
Hastings method. Thus, we cover the general method first, followed by the special cases.

These methods share several properties, but one of the more useful properties is that they can be used in applications where $\pi(x)$ is known up to the constant of proportionality. Another property that makes them useful in a lot of applications is that the analyst does not have to know the conditional distributions, which is the case with the Gibbs sampler. While it can be shown that the Gibbs sampler is a special case of the Metropolis-Hastings algorithm [Robert and Casella, 1999], we include it in the next section because of this difference.

**Metropolis-Hastings Sampler**

The Metropolis-Hastings sampler obtains the state of the chain at $t + 1$ by sampling a candidate point $Y$ from a proposal distribution $q(., | X_t)$. Note that this depends only on the previous state $X_t$ and can have any form, subject to regularity conditions [Roberts, 1996]. An example for $q(., | X_t)$ is the multivariate normal with mean $X_t$ and fixed covariance matrix. One thing to keep in mind when selecting $q(., | X_t)$ is that the proposal distribution should be easy to sample from.

The required regularity conditions for $q(., | X_t)$ are irreducibility and aperiodicity [Chib and Greenberg, 1995]. Irreducibility means that there is a positive probability that the Markov chain can reach any non-empty set from all starting points. Aperiodicity ensures that the chain will not oscillate between different sets of states. These conditions are usually satisfied if the proposal distribution has a positive density on the same support as the target distribution. They can also be satisfied when the target distribution has a restricted support. For example, one could use a uniform distribution around the current point in the chain.

The candidate point is accepted as the next state of the chain with probability given by

$$\alpha(X_t, Y) = \min\left\{1, \frac{\pi(Y)q(X_t | Y)}{\pi(X_t)q(Y | X_t)}\right\}.$$ (11.6)

If the point $Y$ is not accepted, then the chain does not move and $X_{t+1} = X_t$.

The steps of the algorithm are outlined below. It is important to note that the distribution of interest $\pi(x)$ appears as a ratio, so the constant of proportionality cancels out. This is one of the appealing characteristics of the Metropolis-Hastings sampler, making it appropriate for a wide variety of applications.
PROCEDURE - METROPOLIS-HASTINGS SAMPLER

1. Initialize the chain to $X_0$ and set $t = 0$.
2. Generate a candidate point $Y$ from $q(.|X_t)$.
3. Generate $U$ from a uniform $(0, 1)$ distribution.
4. If $U \leq \alpha(X_t, Y)$ (Equation 11.6) then set $X_{t+1} = Y$, else set $X_{t+1} = X_t$.
5. Set $t = t + 1$ and repeat steps 2 through 5.

The Metropolis-Hastings procedure is implemented in Example 11.2, where we use it to generate random variables from a standard Cauchy distribution. As we will see, this implementation is one of the special cases of the Metropolis-Hastings sampler described later.

Example 11.2

We show how the Metropolis-Hastings sampler can be used to generate random variables from a standard Cauchy distribution given by

$$f(x) = \frac{1}{\pi(1 + x^2)}; \quad -\infty < x < \infty.$$  

From this, we see that

$$f(x) \propto \frac{1}{1 + x^2}.$$  

We will use the normal as our proposal distribution, with a mean given by the previous value in the chain and a standard deviation given by $\sigma$. We start by setting up inline MATLAB functions to evaluate the densities for Equation 11.6.

```matlab
% Set up an inline function to evaluate the Cauchy.
% Note that in both of the functions,
% the constants are canceled.
strg = '1./(1+x.^2)';
cauchy = inline(strg,'x');
% set up an inline function to evaluate the Normal pdf
strg = '1/sig*exp(-0.5*(x-mu)/sig).^2';
norm = inline(strg,'x','mu','sig');
```

We now generate $n = 10000$ samples in the chain.

```matlab
% Generate 10000 samples in the chain.
% Set up the constants.
n = 10000;
```
\[
\text{sig} = 2;
\]
\[
x = \text{zeros}(1,n);
\]
\[
x(1) = \text{randn}(1); \% \text{generate the starting point}
\]
\[
\text{for } i = 2:n
\]
\[
\% \text{generate a candidate from the proposal distribution}
\% \text{which is the normal in this case. This will be a}
\% \text{normal with mean given by the previous value in the}
\% \text{chain and standard deviation of } \text{sig}'
\]
\[
y = x(i-1) + \text{sig} \times \text{randn}(1);
\]
\[
\% \text{generate a uniform for comparison}
\]
\[
u = \text{rand}(1);
\]
\[
\alpha = \min([1, \text{cauchy}(y) \times \text{norm}(x(i-1), y, \text{sig})/\ldots
\]
\[
\quad (\text{cauchy}(x(i-1)) \times \text{norm}(y, x(i-1), \text{sig}))]);
\]
\[
\text{if } u \leq \alpha
\]
\[
x(i) = y;
\]
\[
\text{else}
\]
\[
x(i) = x(i-1);
\]
\[
\text{end}
\]
\[
\text{end}
\]

We can plot a density histogram along with the curve corresponding to the true probability density function. We discard the first 500 points for the burn-in period. The plot is shown in Figure 11.1.

\[
\square
\]

**Metropolis Sampler**

The Metropolis sampler refers to the original method of Metropolis, et al. [1953], where only symmetric distributions are considered for the proposal distribution. Thus, we have that

\[
q(Y|X) = q(X|Y).
\]

for all \(X\) and \(Y\). As before, a common example of a distribution like this is the normal distribution with mean \(X\) and fixed covariance. Because the proposal distribution is symmetric, those terms cancel out in the acceptance probability yielding
We generated 10,000 variates from the Cauchy distribution using the Metropolis-Hastings sampler. This shows a density histogram of the random variables after discarding the first 500 points. The curve corresponding to the true probability density function is superimposed over the histogram. We see that the random variables do follow the standard Cauchy distribution.

\[ \alpha(X_t, Y) = \min \left\{ 1, \frac{\pi(Y)}{\pi(X_t)} \right\} \]  \hspace{1cm} (11.7)

**PROCEDURE - METROPOLIS SAMPLER**

1. Initialize the chain to \( X_0 \) and set \( t = 0 \).
2. Generate a candidate point \( Y \) from \( q(.|X_t) \).
3. Generate \( U \) from a uniform \((0, 1)\) distribution.
4. If \( U \leq \alpha(X_t, Y) \) (Equation 11.7) then set \( X_{t+1} = Y \), else set \( X_{t+1} = X_t \).
5. Set \( t = t + 1 \) and repeat steps 2 through 5.

When the proposal distribution is such that \( q(Y|X) = q(|X - Y|) \), then it is called the random-walk Metropolis. This amounts to generating a candidate
point \( Y = X_i + Z \), where \( Z \) is an increment random variable from the distribution \( q \).

We can gain some insight into how this algorithm works by looking at the conditions for accepting a candidate point as the next sample in the chain. In the symmetric case, the probability of moving is \( \pi(Y)/\pi(X_i) \). If \( \pi(Y) \geq \pi(X_i) \), then the chain moves to \( Y \) because \( \alpha(X_i, Y) \) will be equal to 1. This means that a move that climbs up the curve given by the target distribution is always accepted. A move that is worse (i.e., one that goes downhill) is accepted with probability given by \( \pi(Y)/\pi(X_i) \). These concepts are illustrated in Figure 11.2. This is the basic algorithm proposed by Metropolis, et al. [1953], and it is the foundation for other optimization algorithms such as simulated annealing [Kirkpatrick, Gelatt, and Vechi, 1983; Aarts and Korst, 1989].
high, yielding a higher rate at which we accept candidate points. The problem here is that the chain will mix slowly, meaning that the chain will take longer to get to the stationary distribution. On the other hand, if the proposal distribution generates large steps, then the chain could move to the tails, resulting in low acceptance probabilities. Again, the chain fails to mix quickly.

Example 11.3
In this example, we show how to implement the random-walk version of the Metropolis-Hastings sampler [Gilks, et al., 1996a] and use it to generate variates from the standard normal distribution (the target distribution). Of course, we do not have to resort to MCMC methods to generate random variables from this target distribution, but it serves to illustrate the importance of picking the right scale for the proposal distribution. We use the normal as a proposal distribution to generate the candidates for the next value in the chain. The mean of the proposal distribution is given by the current value in the chain $x_i$. We generate three chains with different values for the standard deviation, given by: $\sigma = 0.5, 0.1, 10$. These provide chains that exhibit good mixing, poor mixing due to small step size and poor mixing due to a large step size, respectively. We show below how to generate the three sequences with $n = 500$ variates in each chain.

```matlab
% Get the variances for the proposal distributions.
sig1 = 0.5;
sig2 = 0.1;
sig3 = 10;
% We will generate 500 iterations of the chain.
n = 500;
% Set up the vectors to store the samples.
X1 = zeros(1,n);
X2 = X1;
X3 = X1;
% Get the starting values for the chains.
X1(1) = -10;
X2(1) = 0;
X3(1) = 0;
```

Now that we have everything initialized, we can obtain the chains.

```matlab
% Run the first chain.
for i = 2:n
 % Generate variate from proposal distribution.
y = randn(1)*sig1 + X1(i-1);
 % Generate variate from uniform.
u = rand(1);
 % Calculate alpha.
```
alpha = normpdf(y, 0, 1)/normpdf(X1(i-1), 0, 1);
if u <= alpha
    % Then set the chain to the y.
    X1(i) = y;
else
    X1(i) = X1(i-1);
end
end

% Run second chain.
for i = 2:n
    % Generate variate from proposal distribution.
    y = randn(1)*sig2 + X2(i-1);
    % Generate variate from uniform.
    u = rand(1);
    % Calculate alpha.
    alpha = normpdf(y, 0, 1)/normpdf(X2(i-1), 0, 1);
    if u <= alpha
        % Then set the chain to the y.
        X2(i) = y;
    else
        X2(i) = X2(i-1);
    end
end

% Run the third chain.
for i = 2:n
    % Generate variate from proposal distribution.
    y = randn(1)*sig3 + X3(i-1);
    % Generate variate from uniform.
    u = rand(1);
    % Calculate alpha.
    alpha = normpdf(y, 0, 1)/normpdf(X3(i-1), 0, 1);
    if u <= alpha
        % Then set the chain to the y.
        X3(i) = y;
    else
        X3(i) = X3(i-1);
    end
end

Plots of these sequences are illustrated in Figure 11.3, where we also show horizontal lines at ±2. These lines are provided as a way to determine if most values in the chain are mixing well (taking on many different values) within two standard deviations of zero, since we are generating standard normal variates. Note that the first one converges quite rapidly and exhibits good mixing in spite of an extreme starting point. The second one with σ = 0.1 (small steps) is mixing very slowly and does not seem to have converged to
the target distribution in these 500 steps of the chain. The third sequence, where large steps are taken, also seems to be mixing slowly, and it is easy to see that the chain sometimes does not move. This is due to the large steps taken by the proposal distribution.

![Graph](image)

**FIGURE 11.3**
These are the three sequences from Example 11.3. The target distribution is the standard normal. For all three sequences, the proposal distribution is normal with the mean given by the previous element in the sequence. The standard deviations of the proposal distribution are: $\sigma = 0.5, 0.1, 1.0$. Note that the first sequence approaches the target distribution after the first 50 - 100 iterations. The other two sequences are slow to converge to the target distribution because of slow mixing due to the poor choice of $\sigma$.

**Independence Sampler**

The independence sampler was proposed by Tierney [1994]. This method uses a proposal distribution that does not depend on $X$; i.e., it is generated independently of the previous value in the chain. The proposal distribution is of the form $q(Y|X) = q(Y)$, so Equation 11.6 becomes
\[ \alpha(X, Y) = \min \left\{ 1, \frac{\pi(Y)q(X_i)}{\pi(X_i)q(Y)} \right\}. \]  

(11.8)

This is sometimes written in the literature as

\[ \alpha(X, Y) = \min \left\{ 1, \frac{w(Y)}{w(X_i)} \right\} \]

where \( w(X) = \pi(X)/q(X) \).

Caution should be used when implementing the independence sampler. In general, this method will not work well unless the proposal distribution \( q \) is very similar to the target distribution \( \pi \). Gilks, et al. [1996a] show that it is best if \( q \) is heavier-tailed than \( \pi \). Note also that the resulting sample is still not independent, even though we generate the candidate points independently of the previous value in the chain. This is because the acceptance probability for the next value \( X_{i+1} \) depends on the previous one. For more information on the independence sampler and the recommended usage, see Roberts [1996] or Robert and Casella [1999].

**Autoregressive Generating Density**

Another choice for a candidate generating density is proposed by Tierney [1994] and described by Chib and Greenberg [1995]. This is represented by an autoregressive process of order 1 and is obtained by generating candidates as follows

\[ Y = a + B(X_i - a) + Z, \]  

(11.9)

Casella and George [1992] and Gelfand and Smith [1990] recommend that \( K \) different sequences be generated, each one with length \( n \). Then the last element of each sequence is used to obtain a sample of size \( K \) that is approximately independent for large enough \( K \). We do note that there is some disagreement in the literature regarding the utility of running one really long chain to get better convergence to the target distribution or many shorter chains to get independent samples [Gilks, et al., 1996b]. Most researchers in this field observe that one long run would often be used for exploratory analysis and a few moderate size runs is preferred for inferences.

The procedure given below for the general Gibbs sampler is for one chain only. It is easier to understand the basic concepts by looking at one chain, and it is simple to expand the algorithm to multiple chains.
FIGURE 11.6
On the left, we have the estimated probability mass function for the marginal distribution $f(x)$. The mass function on the right is from the true probability mass function. We see that there is close agreement between the two.

\[
f(X_{i,1} | X_{i,2} = x_{i,2}, \ldots, X_{i,d} = x_{i,d}).
\]

Generate a point $X_{i,2}$ from

\[
f(X_{i,2} | X_{i+1,1} = x_{i+1,1}, X_{i,3} = x_{i,3}, \ldots, X_{i,d} = x_{i,d}).
\]

\[\ldots\]

Generate a point $X_{i,d}$ from

\[
f(X_{i,d} | X_{i+1,1} = x_{i+1,1}, \ldots, X_{i+1,d-1} = x_{i+1,d-1}).
\]

3. Set $t = t + 1$ and repeat steps 2 through 3.

**Example 11.7**

We show another example of Gibbs sampling as applied to bivariate normal data. Say we have the same model as we had in Example 11.4, where we
wanted to generate samples from a bivariate normal with the following parameters

\[
\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}
\]

From Gelman, et al. [1995] we know that \(f(x_1|x_2)\) is univariate normal with mean \(\mu_1 + \rho(x_2 - \mu_2)\) and standard deviation \(1 - \rho^2\). Similarly, \(f(x_2|x_1)\) is univariate normal with mean \(\mu_2 + \rho(x_1 - \mu_1)\) and standard deviation \(1 - \rho^2\). With this information, we can implement the Gibbs sampler to generate the random variables.

```matlab
% Set up constants and arrays.
n = 6000;
xgibbs = zeros(n,2);
rho = 0.9;
y = [1;2]; % This is the mean.
sig = sqrt(1-rho^2);
% Initial point.
xgibbs(1,:) = [10 10];
% Start the chain.
for i = 2:n
 mu = y(1) + rho*(xgibbs(i-1,2)-y(2));
xgibbs(i,1) = mu + sig*randn(1);
 mu = y(2) + rho*(xgibbs(i,1) - y(1));
xgibbs(i,2) = mu + sig*randn(1);
end
```

Notice that the next element in the chain is generated based on the current values for \(x_1\) and \(x_2\). A scatterplot of the last 2000 variates generated with this method is shown in Figure 11.7.

We return now to our example described at the beginning of the chapter, where we are investigating the hypothesis that there has been a reduction in coal mining disasters over the years 1851 to 1962. To understand this further, we follow the model given in Roberts [2000]. This model assumes that the number of disasters per year follows a Poisson distribution with a mean rate...
FIGURE 11.10
This is the frequency histogram for the random variables $k$ generated by the Gibbs sampler of Example 11.8. Note the mode at $k = 41$ corresponding to the year 1891.

FIGURE 11.11
This figure shows density histograms for the posterior distributions for $\theta$ and $\lambda$, and there seems to be evidence showing that there was a reduction in the mean rate of disasters per year.
distribution is unimodal. The starting points for these chains are chosen to be widely dispersed in the target distribution. This is important for two reasons. First, it will increase the likelihood that most regions of the target distribution are visited in the simulation. Additionally, any convergence problems are more likely to appear with over-dispersed starting points.

The method is based on the idea that the variance within a single chain will be less than the variance in the combined sequences, if convergence has not taken place. The Gelman-Rubin approach monitors the scalar quantities of interest in the analysis (i.e., $v$).

We start off with $k$ parallel sequences of length $n$ starting from over-dispersed points in the target distribution. The between-sequence variance $B$ and the within-sequence $W$ are calculated for each scalar summary $v$. We denote the $j$-th scalar summary in the $i$-th chain by

$$v_{ij}; \quad i = 1, \ldots, k, \quad j = 1, \ldots, n.$$ 

Thus, the subscript $j$ represents the position in the chain or sequence and $i$ denotes which sequence it was calculated from.

The between-sequence variance is given as

$$B = \frac{n}{k-1} \sum_{i=1}^{k} (\bar{v}_i - \bar{v})^2,$$  \hspace{1cm} (11.11)

where

$$\bar{v}_i = \frac{1}{n} \sum_{j=1}^{n} v_{ij},$$  \hspace{1cm} (11.12)

and

$$\bar{v}_i = \frac{1}{k} \sum_{i=1}^{k} \bar{v}_i.$$  \hspace{1cm} (11.13)

Equation 11.12 is the average of the $i$-th value of the scalar summary in the $j$-th.
Exercises

11.1. The von Mises distribution is given by

\[ f(x) = \frac{1}{2\pi I_0(b)} e^{b \cos(x)} \quad -\pi \leq x \leq \pi, \]

where \( I_0 \) is the modified Bessel function of the first kind and order zero. Letting \( b = 3 \) and a starting point of 1, use the Metropolis random-walk algorithm to generate 1000 random iterations of the chain. Use the uniform distribution over the interval \((-1, 1)\) to generate steps in the walk. Plot the output from the chain versus the iteration number. Does it look like you need to discard the initial values in the chain for this example? Plot a histogram of the sample [Gentle, 1998].

11.2. Use the Metropolis-Hastings algorithm to generate samples from the beta distribution. Try using the uniform distribution as a candidate distribution. Note that you can simplify by canceling constants.

11.3. Use the Metropolis-Hastings algorithm to generate samples from the gamma distribution. What is a possible candidate distribution? Simplify the ratio by canceling constants.

11.4. Repeat Example 11.3 to generate a sample of standard normal random variables using different starting values and burn-in periods.

11.5. Let’s say that \( X_{.1} \) and \( X_{.2} \) have conditional distributions that are exponential over the interval \((0, B)\), where \( B \) is a known positive constant. Thus,

\[
\begin{align*}
  f(x_{.1}|x_{.2}) &\propto x_{.2} e^{-x_{.1}^2} & 0 < x_{.1} < B < \infty \\
  f(x_{.2}|x_{.1}) &\propto x_{.1} e^{-x_{.2}^2} & 0 < x_{.2} < B < \infty
\end{align*}
\]

Use Gibbs sampling to generate samples from the marginal distribution \( f(x_{.1}) \). Choose your own starting values and burn-in period. Estimate the marginal distribution. What is the estimated mean, variance, and skewness coefficient for \( f(x_{.1}) \)? Plot a histogram of the samples obtained after the burn-in period and the sequential output. Start multiple chains from over-dispersed starting points and use the Gelman-Rubin convergence diagnostics for the mean, variance and skewness coefficient [Casella and George, 1992].

11.6. Explore the use of the Metropolis-Hastings algorithm in higher dimensions. Generate 1000 samples for a trivariate normal distribution cen-
Chapter 11: Markov Chain Monte Carlo Methods

tered at the origin and covariance equal to the identity matrix. Thus, each coordinate direction should be a univariate standard normal distribution. Use a trivariate normal distribution with covariance matrix \( \Sigma = 9 \cdot I \) (i.e., 9's are along the diagonal and 0's everywhere else) and mean given by the current value of the chain \( x_i \). Use \( x_{0,i} = 10, \ i = 1, \ldots, 3 \) as the starting point of the chain. Plot the sequential output for each coordinate. Construct a histogram for the first coordinate direction. Does it look like a standard normal? What value did you use for the burn-in period? [Gentle, 1998.]

11.7. A joint density is given by

\[
f(x_1, x_2, x_3) = C \exp\left\{-(x_1 + x_2 + x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3)\right\},
\]

where \( x_i > 0 \). Use one of the techniques from this chapter to simulate samples from this distribution and use them to estimate \( E[X_1 X_2 X_3] \). Start multiple chains and track the estimate to monitor the convergence [Ross, 1997].

11.8. Use Gibbs sampling to generate samples that have the following density

\[
f(x_1, x_2, x_3) = k x_1^3 x_2^2 x_3^2 (1 - x_1 - x_2 - x_3)
\]

where \( x_i > 0 \) and \( x_1 + x_2 + x_3 < 1 \). Let \( B(a, b) \) represent a beta distribution with parameters \( a \) and \( b \). We can write the conditional distributions as

\[
X_1 | X_2, X_3 \sim (1 - X_2 - X_3)Q \quad Q \sim B(5, 2)
\]
\[
X_2 | X_1, X_3 \sim (1 - X_1 - X_3)R \quad R \sim B(4, 2)
\]
\[
X_3 | X_1, X_2 \sim (1 - X_1 - X_2)S \quad S \sim B(3, 2)
\]

where the notation \( Q \sim B(a, b) \) means \( Q \) is from a beta distribution. Plot the sequential output for each \( x_i \) [Arnold, 1993].

11.9. Let's say that we have random samples \( Z_1, \ldots, Z_n \) that are independent and identically distributed from the normal distribution with mean \( \theta \) and variance 1. In the notation of Equation 11.1, these constitute the set of observations \( D \). We also have a prior distribution on \( \theta \) such that

\[
P(\theta) \propto \frac{1}{1 + \theta^2},
\]

We can write the posterior as follows
\[ P(\theta|D) \propto P(\theta)L(\theta;D) = \frac{1}{1 + \theta^2} \times \exp\left\{ -\frac{n(\theta - \bar{z})^2}{2} \right\}. \]

Let the true mean be \( \theta = 0.06 \) and generate a random sample of size \( n = 20 \) from the normal distribution to obtain the \( z_i \). Use Metropolis-Hastings to generate random samples from the posterior distribution and use them to estimate the mean and the variance of the posterior distribution. Start multiple chains and use the Gelman-Rubin diagnostic method to determine when to stop the chains.

11.10. Generate a set of \( n = 2000 \) random variables for the bivariate distribution given in Example 11.4 using the technique from Chapter 4. Create a scatterplot of these data and compare to the set generated in Example 11.4.

11.11. For the bivariate distribution of Example 11.4, use a random-walk generating density \( (Y = X_i + Z) \) where the increment random variable \( Z \) is distributed as bivariate uniform. Generate a sequence of 6000 elements and construct a scatterplot of the last 2000 values. Compare to the results of Example 11.4.

11.12. For the bivariate distribution of Example 11.4, use a random-walk generating density \( (Y = X_i + Z) \) where the increment random variables \( Z \) are bivariate normal with mean zero and covariance

\[
\Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 0.4 \end{bmatrix}.
\]

Generate a sequence of 6000 elements and construct a scatterplot of the last 2000 values. Compare to the results of Example 11.4.

11.13. Use the Metropolis-Hastings sampler to generate random samples from the lognormal distribution

\[
f(x) = \frac{1}{x \sqrt{2\pi}} \exp\left\{ -\frac{(\ln x)^2}{2} \right\}.
\]

Use the independence sampler and the gamma as a proposal distribution, being careful about the tails. Plot the sample using the density histogram and superimpose the true probability density function to ensure that your random variables are from the desired distribution.
Chapter 12

Spatial Statistics

12.1 Introduction

We include this final chapter to illustrate an area of data analysis where the methods of computational statistics can be applied. We do not cover this topic in great detail, but we do present some of the areas in spatial statistics that utilize the techniques discussed in the book. These methods include exploratory data analysis and visualization (see Chapter 5), kernel density estimation (see Chapter 8), and Monte Carlo simulation (see Chapter 6).

What Is Spatial Statistics?

Spatial statistics is concerned with statistical methods that explicitly consider the spatial arrangement of the data. Most statisticians and engineers are familiar with time-series data, where the observations are measured at discrete time intervals. We know there is the possibility that the observations that come later in the series are dependent on earlier values. When analyzing such data, we might be interested in investigating the temporal data process that generated the data. This can be thought of as an unobservable curve (that we would like to estimate) that is generated in relation to its own previous values.

Similarly, we can view spatial data as measurements that are observed at discrete locations in a two-dimensional region. As with time series data, the observations might be spatially correlated (in two dimensions), which should be accounted for in the analysis.

Bailey and Gatrell [1995] sum up the definition and purpose of spatial statistics in this way:

observational data are available on some process operating in space and methods are sought to describe or explain the behaviour of this process and its possible relationship to other spatial phenomena. The object of the analysis is to increase our basic understanding of the process, assess the evidence in favour of various hypotheses concerning it, or possibly to predict values
in areas where observations have not been made. The data with which we are concerned constitute a sample of observations on the process from which we attempt to infer its overall behaviour. [Bailey and Gatrell, 1995, p. 7]

Types of Spatial Data

Typically, methods in spatial statistics fall into one of three categories that are based on the type of spatial data that is being analyzed. These types of data are called: point patterns, geostatistical data, and lattice data. The locations of the observations might be referenced as points or as areal units. For example, point locations might be designated by latitude and longitude or by their x and y coordinates. Areal locations could be census tracts, counties, states, etc.

Spatial point patterns are data made up of the location of point events. We are interested in whether or not their relative locations represent a significant pattern. For example, we might look for patterns such as clustering or regularity. While in some point-pattern data we might have an attribute attached to an event, we are mainly interested in the locations of the events. Some examples where spatial statistics methods can be applied to point patterns are given below.

- We have a data set representing the location of volcanic craters in Uganda. It shows a trend in a north-easterly direction, possibly representing a major fault. We want to explore and model the distribution of the craters using methods for analyzing spatial point patterns.

- In another situation, we have two data sets showing thefts in the Oklahoma City area in the 1970's. One data set corresponds to those committed by Caucasian offenders, and one data set contains information on offences by African-Americans. An analyst might be interested in whether there is a difference in the pattern of offences committed by each group of offenders.

- Seismologists have data showing the distribution of earthquakes in a region. They would like to know if there is any pattern that might help them make predictions about future earthquakes.

- Epidemiologists collect data on where diseases occur. They would like to determine any patterns that might indicate how the disease is passed to other individuals.
the model to predict values of the variable at locations where measurements were not taken. Some examples of geostatistical data analysis include the following:

- Rainfall is recorded at various points in a region. These data could be used to model the rainfall over the entire region.
- Geologists take ore samples at locations in a region. They would like to use these data to estimate the extent of the mineral deposit over the entire region.
- Environmentalists measure the level of a pollutant at locations in a region with the goal of using these data to model and estimate the level of pollutant at other locations in the region.

The third type of spatial data is called lattice data. These data are often associated with areas that can be regularly or irregularly spaced. The objective of the analysis of lattice data is to model the spatial pattern in the attributes associated with the fixed areas. Some examples of lattice data are:

- A sociologist has data that comprises socio-economic measures for regions in China. The goal of the analysis might be to describe and to understand any patterns of inequality between the areas.
- Market analysts use socio-economic data from the census to target a promising new area to market their products.
- A political party uses data representing the geographical voting patterns in a previous election to determine a campaign schedule for their candidate.

**Spatial Point Patterns**

In this text, we look at techniques for analyzing spatial point patterns only. A spatial point pattern is a set of point locations \( s_1, \ldots, s_n \) in a study region \( R \). Each point location \( s_i \) is a vector containing the coordinates of the \( i \)-th event,

\[
s_i = \begin{bmatrix} s_{i1} \\ s_{i2} \end{bmatrix}.
\]

The term *event* can refer to any spatial phenomenon that occurs at a point location. For example, events can be locations of trees growing in a forest, positions of cells in tissue or the incidence of disease at locations in a community. Note that the scale of our study affects the reasonableness of the assumption that the events occur at point locations.

In our analysis of spatial point patterns, we might have to refer to other locations in the study region \( R \), where the phenomenon was not observed.
We need a way to distinguish them from the locations where observations were taken, so we refer to these other locations as points in the region.

At the simplest level, the data we are analyzing consist only of the coordinate locations of the events. As mentioned before, they could also have an attribute or variable associated with them. For example, this attribute might be the date of onset of the disease, the species of tree that is growing, or the type of crime.

This type of spatial data is sometimes referred to as a marked point pattern. In our treatment of spatial point patterns, we assume that the data represent a mapped point pattern. This is a region where all relevant events in the study region $R$ have been measured. The study region $R$ can be any shape. However, edge effects can be a problem with many methods in spatial statistics. We describe the ramifications of edge effects as they arise with the various techniques. In some cases, edge effects are handled by leaving a specified guard area around the edge of the study region, but still within $R$. The analysis of point patterns is sensitive to the definition of $R$, so one might want to perform the analysis for different guard areas and/or different study regions.

One way we can think of spatial point patterns is in terms of the number of events occurring in an arbitrary sub-region of $R$. We denote the number of events in a sub-region $A$ as $Y(A)$. The spatial process is then represented by the random variables $Y(A), A \subset R$. Since we have a random process, we can look at the behavior in terms of the first-order and second-order properties. These are related to the expected value (i.e., the mean) and the covariance [Bailey and Gatrell, 1995]. The mean and the covariance of $Y(A)$ depend on the number of events in arbitrary sub-regions $A$, and they depend on the size of the areas and the study region $R$. Thus, it is more useful to look at the first- and second-order properties in terms of the limiting behavior per unit area.

The first-order property is described by the intensity $\lambda(s)$. The intensity is defined as the mean number of events per unit area at the point $s$. Mathematically, the intensity is given by

$$\lambda(s) = \lim_{ds \to 0} \left\{ \frac{E[Y(ds)]}{ds} \right\}, \quad (12.1)$$

where $ds$ is a small region around the point $s$, and $ds$ is its area. If it is a stationary point process, then Equation 12.1 is a constant over the study region. We can then write the intensity as

$$E[Y(A)] = \lambda A, \quad (12.2)$$

where $A$ is the area of the sub-region, and $\lambda$ is the value of the intensity.

To understand the second-order properties of a spatial point process, we need to look at the number of events in pairs of sub-regions of $R$. The second-order property reflects the spatial dependence in the process. We describe
this using the second-order intensity $\gamma(s_i, s_j)$. As with the intensity, this is defined using the events per unit area, as follows,

$$
\gamma(s_i, s_j) = \lim_{ ds_i, ds_j \to 0 } \frac{E[Y(ds_i)Y(ds_j)]}{ds_i ds_j}.
$$

(12.3)

If the process is stationary, then $\gamma(s_i, s_j) = \gamma(s_i - s_j)$. This means that the second-order intensity depends only on the vector difference of the two points. The process is said to be second-order and isotropic if the second-order intensity depends only on the distance between $s_i$ and $s_j$. In other words, it does not depend on the direction.

**Complete Spatial Randomness**

The benchmark model for spatial point patterns is called complete spatial randomness or CSR. In this model, events follow a homogeneous Poisson process over the study region. The definition of CSR is given by the following [Diggle, 1983]:

1. The intensity does not vary over the region. Thus, $Y(A)$ follows a Poisson distribution with mean $\lambda A$, where $A$ is the area of $A$ and $\lambda$ is constant.

2. There are no interactions between the events. This means that, for a given $n$, representing the total number of events in $R$, the events are uniformly and independently distributed over the study region.

In a CSR process, an event has the same probability of occurring at any location in $R$, and events neither inhibit nor attract each other. The methods covered in this chapter are mostly concerned with discovering and modeling...
In this figure, we have the estimate of the intensity for the Uganda crater data. This is obtained using the function `csintkern` with \( h = 220 \).

```matlab
% Flip the colormap so zero is white and max is black.
map = flipud(map);
colormap(map)
shading flat
hold on
plot(ugpoly(:,1),ugpoly(:,2),'k')
hold off
```

Of course, one could also plot this as a surface. The MATLAB code we provide below shows how to combine a surface plot of the intensity with a dot map below. The axes can be rotated using the toolbar button or the `rotate3d` command to look for an interesting viewpoint.
random process. As mentioned previously, we can also plot the function $\hat{L}(d)$. This is shown in Figure 12.12, where we see clustering at all scales.

% Get the Lhat function.
% Positive peaks - clustering at all of these scales.
% Clustering shown at d = 10, showing possible
% clustering at that scale.
% lhat = sqrt(khat/pi) - d;
plot(d,lhat,'k')
xlabel('Distances - d')
ylabel('Lhat')

![Graph showing the function \(\hat{L}(d)\) for the Cardiff data. Note that it is above the curve for a random process, indicating possible clustering.]

**Figure 12.11**
This shows the function $\hat{L}(d)$ for the Cardiff data. Note that it is above the curve for a random process, indicating possible clustering.

### 12.4 Modeling Spatial Point Processes

When analyzing spatial point patterns, we are mainly interested in discovering patterns such as clustering or regularity versus complete spatial randomness. The exploratory methods of the previous section are meant to provide
evidence for a model that might explain the process that generated the spatial point pattern. We now look at ways to use Monte Carlo hypothesis testing to understand the statistical significance of our evidence for departures from CSR. These tests are based on nearest neighbor distances and the $K$-function.

**Nearest Neighbor Distances**

Recall that the theoretical cumulative distribution function (under the CSR model) for the nearest neighbor point-event distance $W$ is given by

$$G(w) = P(W \leq w) = 1 - e^{-\lambda \pi w^2}; \quad w \geq 0,$$

and the cumulative distribution function for the nearest neighbor point-event distance $X$ is

$$F(x) = P(X \leq x) = 1 - e^{-\lambda \pi x^2}; \quad x \geq 0.$$

These distributions can be used to implement statistical hypothesis tests that use summary statistics of the observed nearest neighbor distances. The
% Get the simulations.
B = 20;
% Each row is a Khat from a simulated CSR process.
simul = zeros(B,nd);
for b = 1:B
    [xt,yt] = csbinproc(cardpoly(:,1),...
                        cardpoly(:,2), nx);
    temp = cskhat([xt,yt],cardpoly, d);
simul(b,:) = sqrt(temp/pi) -d;
end

We then get the upper and lower simulation envelopes as before. The plot is shown in Figure 12.16. From this, we see that there seems to be compelling evidence that this is a clustered process.

% Get the envelopes.
ihatup = max(simul);
ihatlo = min(simul);
plot(d,ihatobs,'k',d,ihatup,'k--',d,ihatlo,'k--')

FIGURE 12.16
The upper and lower envelopes were obtained using 20 simulations from a CSR process. Since the $L$-function lies above the upper envelope, the clustering is significant.
12.5 Simulating Spatial Point Processes

Once one determines that the model for CSR is not correct, then the analyst should check to see what other model is reasonable. This can be done by simulation as shown in the previous section. Instead of simulating from a CSR process, we can simulate from one that exhibits clustering or regularity. We now discuss other models for spatial point processes and how to simulate them. We include methods for simulating a homogeneous Poisson process with specified intensity, a binomial process, a Poisson cluster process, an inhibition process, and a Strauss process. Before continuing, we note that simulation requires specification of all relevant parameters. To check the adequacy of a model by simulation one has to "calibrate" the simulation to the data by estimating the parameters that go into the simulation.

Homogeneous Poisson Process

We first provide a method for simulating a homogeneous Poisson process with no conditions imposed on the number of events $n$. Unconditionally, a homogeneous Poisson process depends on the intensity $\lambda$. So, in this case, the number of events $n$ changes in each simulated pattern.

We follow the fanning out procedure given in Ross [1997] to generate such a process for a circular region. This technique can be thought of as fanning out from the origin to a radius $r$. The successive radii where events are encountered are simulated by using the fact that the additional area one needs to travel to encounter another event is exponentially distributed with rate $\lambda$. The steps are outlined below.

**PROCEDURE - SIMULATING A POISSON PROCESS**

1. Generate independent exponential variates $X_1, X_2, \ldots$, with rate $\lambda$, stopping when

   \[ N = \min\{ n : X_1 + \ldots + X_n > \pi r^2 \} . \]

2. If $N = 1$, then stop, because there are no events in the circular region.

3. If $N > 1$, then for $i = 1, \ldots, N - 1$, find

   \[ R_i = \frac{X_1 + \ldots + X_i}{n} . \]
4. Generate \( N - 1 \) uniform (0,1) variates, \( U_1, \ldots, U_{N-1} \).

5. In polar coordinates, the events are given by \( (r, 2\pi U_i) \).

Ross [1997] describes a procedure where the region can be somewhat arbitrary. For example, in Cartesian coordinates, the region would be defined between the \( x \) axis and a nonnegative function \( f(x) \), starting at \( x = 0 \). A rectangular region with the lower left corner at the origin is an example where this can be applied. For details on the algorithm for an arbitrary region, we refer the reader to Ross [1997]. We show in Example 12.10 how to implement the procedure for a circular region.

**Example 12.10**

In this example, we show how to generate a homogeneous Poisson process for a given \( \lambda \). This is accomplished using the given MATLAB commands.

```matlab
% Set the lambda.
lambda = 2;
r = 5;
tol = 0;
i=1;
% Generate the exponential random variables.
while tol < pi*r^2
 x(i) = exprnd(1/lambda,1,1);
tol = sum(x);
i=i+1;
end
x(end)=[];
N = length(x);
% Get the coordinates for the angles.
th = 2*pi*rand(1,N);
R = zeros(1,N);
% Find the R_i.
for i = 1:N
 R(i) = sqrt(sum(x(i:i))/pi);
end
[Xc,Yc]=pol2cart(th,R);
```

The \( x \) and \( y \) coordinates for the generated locations are contained in \( Xc \) and \( Yc \). The radius of our circular region is 5, and the intensity is \( \lambda = 2 \). The result of our sampling scheme is shown in Figure 12.17. We see that the locations are all within the required radius. To verify the intensity, we can estimate it by dividing the number of points in the sample by the area.

```matlab
% estimate the overall intensity
lamhat = length(Xc)/(pi*r^2);
```
Our estimated intensity is \( \hat{\lambda} = 2.05 \).

**Binomial Process**

We saw in previous examples that we needed a way to simulate realizations from a CSR process. If we condition on the number of events \( n \), then the locations are uniformly and independently distributed over the study region. This type of process is typically called a *binomial process* in the literature [Ripley, 1981]. To distinguish this process from the homogeneous Poisson process, we offer the following:

1. When generating variates from the homogeneous Poisson process, the intensity is specified. Therefore, the number of events in a realization of the process is likely to change for each one generated.

2. When generating variates from a binomial process, the number of events in the region is specified.

To simulate from a binomial process, we first enclose the study region \( R \) with a rectangle given by
\{(x, y) : x_{\text{min}} \leq x \leq x_{\text{max}}, y_{\text{min}} \leq y \leq y_{\text{max}}\}.

(12.26)

We can generate the \(x\) coordinates for an event location from a uniform distribution over the interval \((x_{\text{min}}, x_{\text{max}})\). Similarly, we generate the \(y\) coordinates from a uniform distribution over the interval \((y_{\text{min}}, y_{\text{max}})\). If the event is within the study region \(R\), then we keep the location. These steps are outlined in the following procedure and are illustrated in Example 12.11.

**PROCEDURE - SIMULATING A BINOMIAL PROCESS**

1. Enclose the study region \(R\) in a rectangle, given by Equation 12.26.
2. Obtain a candidate location \(s_i\) by generating an \(x\) coordinate that is uniformly distributed over \((x_{\text{min}}, x_{\text{max}})\) and a \(y\) coordinate that is uniformly distributed over \((y_{\text{min}}, y_{\text{max}})\).
3. If \(s_i\) is within the study region \(R\), then retain the event.
4. Repeat steps 2 through 3 until there are \(n\) events in the sample.

**Example 12.11**

In this example, we show how to simulate a CSR point pattern using the region given with the **uganda** data set. First we load up the data set and find a rectangular region that bounds \(R\).

```matlab
load uganda
% loads up x, y, ugpoly
xp = ugpoly(:,1);
yp = ugpoly(:,2);
n = length(x);
xg = zeros(n,1);
yg = zeros(n,1);
% Find the maximum and the minimum for a 'box' around % the region. Will generate uniform on this, and throw % out those points that are not inside the region. % Find the bounding box.
minx = min(xp);
maxx = max(xp);
miny = min(yp);
maxy = max(yp);
```

Now we are ready to generate the locations, as follows.

```matlab
% Now get the points.
i = 1;
cx = maxx - minx;
cy = maxy - miny;
while i <= n
```
xt = rand(1)*cx + minx;
yt = rand(1)*cy + miny;
k = inpolygon(xt, yt, xp, yp);
if k == 1
    % it is in the region
    xg(i) = xt;
    yg(i) = yt;
    i = i+1;
end
end

In Figure 12.18, we show a realization of this process. Note that this does look like a CSR process generated these data, unlike the point pattern for the actual crater locations.

![Generated Data Using Binomial Process](image)

**FIGURE 12.18**
This shows a point pattern generated according to a binomial process.

**Poisson Cluster Process**

We can generate a Poisson cluster process by including a spatial clustering mechanism into the model. First, parent events form a homogeneous Poisson process. Each parent gives rise to a random number of offspring according to some probability distribution $f$. The positions of the children relative to their
parents are independently distributed according to a bivariate distribution \( g \). The events retained in the final pattern are the child events only. The resulting process is isotropic if \( g \) is radially symmetric.

To simulate this type of pattern, we first simulate the parents from a homogeneous Poisson process. Note that the parents should be simulated over a region that is larger than the study region. This is to ensure that edge effects are avoided. Parents outside the study region can have offspring that are in \( R \), so we want to account for those events. For each parent event, we determine the number of offspring by randomly sampling from \( f \). The next step is to locate the number of children around each parent event according to \( g \). The steps for this procedure are outlined here.

**PROCEDURE - SIMULATING A POISSON CLUSTER PROCESS**

1. Simulate the desired number of parents over a region that is slightly larger than the study region \( R \). The parents are generated according to a CSR process.

2. Generate the number of children for each parent according to a probability distribution \( f \). One reasonable choice is to have a Poisson number of children.

3. Generate the locations for each child around the parent according to a bivariate probability distribution \( g \). For example, \( g \) could be multivariate normal, with the mean given by the parent location.

4. Save only the child events that are within the study region.
\[
\text{lam} = 15;
\]
\[
\% \text{ Get the number of children per parent.}
\]
\[
nchild = \text{poissrnd(lam,}1,\text{npar)};
\]

Now we find the locations of the children around the parent using a bivariate normal distribution that is centered at each parent. The covariance of the distribution is given by \( \sigma^2 \mathbf{I} \), where \( \mathbf{I} \) is a \( 2 \times 2 \) identity matrix. The value given to the variance \( \sigma^2 \) would govern the spread of the cluster of children around the parent.

\[
X = [];
\]
\[
sig = r*\text{eye(}2\text{)};
\]
\[
r = 0.05;
\]
\[
\% \text{ Locate the children.}
\]
\[
\text{for } i = 1:\text{npar}
\]
\[
\quad \text{xc} = \text{randn(nchild(i),}2\text{)*sig + ...}
\]
\[
\quad \text{repmat([xp(i) yp(i)],nchild(i),}1);\]
\[
\quad X = [X; xc];
\]
\[
\text{end}
\]

To get the final events for our sample, we need to determine which ones are inside the study region \( R \). We do this using the MATLAB function \text{inpolygon}. In Figure 12.19, we show the resulting spatial sample. We provide a function called \text{csclustproc} that will generate patterns that follow a Poisson cluster process.

\[
\% \text{ Find the ones that are in the region of interest.}
\]
\[
\text{ind} = \text{find(inpolygon(X(:,}1), X(:,}2), \text{rx, ry))};
\]
\[
\% \text{ Those are the children for the sample.}
\]
\[
\text{x} = X(\text{ind},1);
\]
\[
\text{y} = X(\text{ind},2);
\]

\[\square\]

\textbf{Inhibition Process}

An inhibition process is one that often shows regularity. To simulate this type of process, we include a mechanism in the model that stipulates a minimum distance between two events. We call this distance the \textit{inhibition distance} \( \delta \).

One way to obtain such a process is to first generate a homogeneous Poisson process over the region. The events are then thinned by deleting all pairs of events that are closer than \( \delta \). Implementing this procedure in MATLAB is left as an exercise.

Another method is to generate a homogeneous Poisson process one event at a time and discard candidate events if they are within distance \( \delta \) of any previously retained event. This type of process is sometimes referred to as \textit{Sequential Spatial Inhibition} or SSI [Ripley, 1981]. It is important to keep in mind that if the inhibition distance is too large for the region \( R \), then it might
be difficult (if not impossible) to generate the required number of points. In Example 12.13, we provide the MATLAB code to generate an inhibition spatial point pattern using this procedure.

Example 12.13
To start the procedure, we set the boundary for the region and the inhibition distance.

\[
\text{delta} = 0.1;
\]
% Get the vertices for the regions.
\[
\text{rx} = [02200];
\]
\[
\text{ry} = [00220];
\]
\[
\text{n} = 100;
\]
We generate the initial event from a CSR process. Subsequent events are generated and kept if they are not closer than \(\delta\) to any existing events.

\[
\text{X} = \text{zeros(n,2)};
\]
% Generate the first event.
\[
\text{X(1,:) = csbinproc(rx,ry,1)};
\]
\[
i = 1;
\]
% Generate the other events.
while \(i<n\)
\[ [sx, sy] = csbinproc(rx, ry, 1); \]
\[ xt = [sx sy; X(1:i,:)]; \]
% Find the distance between the events
\[ dist = pdist(xt); \]
% Find the distance between the candidate event
% and the others that have been generated already.
\[ ind = find(dist(1:i) <= delta); \]
if isempty(ind)
    % Then we keep the event.
    i = i+1;
    X(i,:) = [sx, sy];
end
end

To verify that no two events are closer than \( \delta \), we find the smallest distance as follows.

% Verify that all are no closer than the
% inhibition distance.
\[ dist = pdist(X); \]
\[ delhat = min(dist); \]

For this spatial point pattern, we get a minimum distance of 0.1008. A point pattern generated according to this procedure is shown in Figure 12.20.

\[ \]

FIGURE 12.20
This spatial point pattern was generated under the SSI inhibition process.
Strauss Process

The Strauss process [Ripley, 1981] is a point pattern where a specified fraction of events is allowed within a distance $\delta$ of any given event. To generate such a pattern, the first event is located uniformly in $R$. Other event locations are generated sequentially, similar to the SSI process. If there are existing events within radius $\delta$ of the candidate location, then it is accepted with probability $c^m$, with $m$ representing the number of events closer than $\delta$. The inhibition parameter is given by $c$, which can take on values in the interval $[0, 1]$.

The inhibition parameter specifies the fraction of events allowed within the inhibition distance. If $c = 0$, then the resulting process is the same as SSI. As with the SSI process, care should be taken when specifying the parameters for the process to ensure that the required number of events can be generated. We outline below the steps to generate a spatial point pattern that follows a Strauss process.

PROCEDURE - SIMULATING A STRAUSS PROCESS

1. Choose the parameters $n$, $c$, and $\delta$.
2. Generate the first event location $s_1$ uniformly on $R$ (from a CSR process).
3. Generate a candidate location $s_i$ uniformly on $R$.
4. If $m = 0$
   accept the candidate event $s_i$
Else if $U \leq c^m$
   accept the candidate event $s_i$
5. Repeat steps 3 and 4 until there are $n$ locations in the sample.

It should be noted that we are conditioning on the number of points $n$ in the region. So, in this case, we should consider this a conditional Strauss process.

Example 12.14

We now implement the above procedure in MATLAB. We generate a spatial point pattern of size 100 from a Strauss process over a rectangular region. The inhibition distance is $\delta = 0.1$, and the inhibition parameter is $c = 0.5$. We start by setting these parameters and the boundary of the study region.

```matlab
delta = 0.1;
% Get the vertices for the regions.
rx = [0 1 1 0 0];
ry = [0 0 2 2 0];
% Set number of data points.
n = 100;
% Set the inhibition parameter.
```
c = 0.5;
X = zeros(n,2);
% Generate the first point.
X(1,:) = csbinproc(rx,ry,1);

The following code is similar to the SSI process, except that we now have a
mechanism for accepting points that are closer than the inhibition distance.

i = 1;
while i<n
    [sx,sy] = csbinproc(rx,ry,1);
    xt = [sx sy ; X(1:i,:)];
    % Find the distance between the events.
    dist = pdist(xt);
    % Find the distance between the candidate event
    % and the points that have been generated already.
### TABLE A.1
**File Management Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dir, ls</code></td>
<td>Shows the files in the present directory.</td>
</tr>
<tr>
<td><code>delete filename</code></td>
<td>Deletes <em>filename</em>.</td>
</tr>
<tr>
<td><code>cd, pwd</code></td>
<td>Show the present directory.</td>
</tr>
<tr>
<td><code>cd dir, chdir</code></td>
<td>Changes the directory. In MATLAB 6, there is a pop-up menu on the toolbar that allows the user to change directory.</td>
</tr>
<tr>
<td><code>type filename</code></td>
<td>Lists the contents of <em>filename</em>.</td>
</tr>
<tr>
<td><code>edit filename</code></td>
<td>Brings up <em>filename</em> in the editor.</td>
</tr>
<tr>
<td><code>which filename</code></td>
<td>Displays the path to <em>filename</em>. This can help determine whether a file is part of the standard MATLAB package.</td>
</tr>
<tr>
<td><code>what</code></td>
<td>Lists the <code>.m</code> files and <code>.mat</code> files that are in the current directory.</td>
</tr>
</tbody>
</table>

### TABLE A.2
**MATLAB Commands for Workspace Management**

<table>
<thead>
<tr>
<th>Command</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>who</code></td>
<td>Lists all variables in the workspace.</td>
</tr>
<tr>
<td><code>whos</code></td>
<td>Lists all variables in the workspace along with the size in bytes, array dimensions, and object type.</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>Removes all variables from the workspace.</td>
</tr>
<tr>
<td><code>clear x y</code></td>
<td>Removes variables <code>x</code> and <code>y</code> from the workspace.</td>
</tr>
</tbody>
</table>
and edited in a spreadsheet-like window format by double-clicking on the variable name.

The commands contained in Table A.2 help manage the workspace. It is important to be able to get data into MATLAB and to save it. We outline below some of the ways to get data in and out of MATLAB. These are not the only options for file I/O. For example, see help on fprintf, fscanf, and textread for more possibilities.

- **Command Line:** The `save` and `load` commands are the main way to perform file I/O in MATLAB. We give some examples of how to use the `save` command. The `load` command works similarly.

<table>
<thead>
<tr>
<th>Command</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>save filename</code></td>
<td>Saves all variables in <code>filename.mat</code>.</td>
</tr>
<tr>
<td><code>save filename var1 var2</code></td>
<td>Saves only variables <code>var1</code> and <code>var2</code> in <code>filename.mat</code>.</td>
</tr>
<tr>
<td><code>save filename var1 -ascii</code></td>
<td>Saves <code>var1</code> in ASCII format in <code>filename</code>.</td>
</tr>
</tbody>
</table>

- **File Menu:** There are commands in the File menu for saving and loading the workspace.
- **Import Wizard:** In MATLAB 6, there is a spreadsheet-like window for inputting data. To execute the wizard, type `uimport` at the command line.

### A.4 Punctuation in MATLAB

Table A.3 contains some of the common punctuation characters in MATLAB, and how they are used.

### A.5 Arithmetic Operators

Arithmetic operators (`*, /, +, -` and `^`) in MATLAB follow the convention in linear algebra. If we are multiplying two matrices, `A` and `B`, they must be dimensionally correct. In other words, the number of columns of `A` must be equal to the number of rows of `B`. To multiply, we simply use `A*B`. It is important
### TABLE A.3
List of MATLAB Punctuation

<table>
<thead>
<tr>
<th>Punctuation</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>A percent sign denotes a comment line. Information after the % is ignored.</td>
</tr>
<tr>
<td>,</td>
<td>A comma tells MATLAB to display the results. A blank</td>
</tr>
<tr>
<td></td>
<td>character will cause MATLAB to display the current elements</td>
</tr>
<tr>
<td></td>
<td>(e.g., list of matrices, cell arrays, etc.).</td>
</tr>
</tbody>
</table>
of the basic uses of \texttt{plot} for plotting 2-D graphics and \texttt{plot3} for plotting 3-D graphics. The reader is strongly urged to view the \texttt{help} file for more information and options for these functions.

When the function \texttt{plot} is called, it opens a Figure window, if one is not already there, scales the axes to fit the data and plots the points. The default is to plot the points and connect them using straight lines. For example,

\begin{verbatim}
plot(x, y)
\end{verbatim}

plots the values in vector \texttt{x} on the horizontal axis and the values in vector \texttt{y} on the vertical axis, connected by straight lines. These vectors must be the same size or you will get an error.

Any number of pairs can be used as arguments to \texttt{plot}. For instance, the following command plots two curves,

\begin{verbatim}
plot(x, y1, x, y2)
\end{verbatim}

on the same axes. If only one argument is supplied to \texttt{plot}, then MATLAB plots the vector versus the index of its values.

The default is a solid line, but MATLAB allows other choices. These are given in Table A.6.

\begin{table}[h]
\centering
\caption{Line Styles for Plots}
\label{tab:line_styles}
\begin{tabular}{ll}
\hline
Notation & Line Type  \\
\hline
- & Solid Line  \\
: & Dotted Line  \\
- & Dash-dot Line  \\
-- & Dashed line  \\
\hline
\end{tabular}
\end{table}

If several lines are plotted on one set of axes, then MATLAB plots them as different colors. The predefined colors are listed in Table A.7.

Plotting symbols (e.g., \texttt{*}, \texttt{x}, \texttt{o}, etc.) can be used for the points. Since the list of plotting symbols is rather long, we refer the reader to the online \texttt{help} for \texttt{plot} for more information. To plot a curve where both points and a connected curve are displayed, use

\begin{verbatim}
plot(x, y, x, y, 'b*')
\end{verbatim}

This command first plots the points in \texttt{x} and \texttt{y}, connecting them with straight lines. It then plots the points in \texttt{x} and \texttt{y} using the symbol \texttt{*} and the color blue.

The \texttt{plot3} function works the same as \texttt{plot}, except that it takes three vectors for plotting:

\begin{verbatim}
plot3(x, y, z)
\end{verbatim}
TABLE A.7
Line Colors for Plots

<table>
<thead>
<tr>
<th>Notation</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>blue</td>
</tr>
<tr>
<td>g</td>
<td>green</td>
</tr>
<tr>
<td>r</td>
<td>red</td>
</tr>
<tr>
<td>c</td>
<td>cyan</td>
</tr>
<tr>
<td>m</td>
<td>magenta</td>
</tr>
<tr>
<td>y</td>
<td>yellow</td>
</tr>
<tr>
<td>k</td>
<td>black</td>
</tr>
<tr>
<td>w</td>
<td>white</td>
</tr>
</tbody>
</table>

All of the line styles, colors and plotting symbols apply to `plot3`. Other forms of 3-D plotting (e.g., `surf` and `mesh`) are covered in Chapter 5. Titles and axes labels can be created for all plots using `title`, `xlabel`, `ylabel` and `zlabel`.

Before we finish this discussion on simple plotting techniques in MATLAB, we present a way to put several axes or plots in one `figure` window. This is
% get the necessary constants
[n,p] = size(Z);
maxiter = 1500;
cs = c;
cstop = 0.00001;
cstop = 0.01;
as = zeros(p,1); % storage for the information
bs = zeros(p,1);
ppm = realmin;

% find the probability of bivariate standard normal
% over each radial box.
% NOTE: the user could put the values in to ck to
% prevent re-calculating each time. We thought the
% reader would be interested in seeing how we did
% it.
% NOTE: MATLAB 5 users should use the function
% quad8 instead of quadl.
fnr = inline('r.*exp(-0.5*r.^2)', 'r');
ck = ones(1,40);
ck(1:8) = quadl(fnr,0,sqrt(2*log(6))/5)/8;
ck(9:16) = quadl(fnr,sqrt(2*log(6))/5,...
2*sqrt(2*log(6))/5)/8;
ck(17:24) = quadl(fnr,2*sqrt(2*log(6))/5,...
3*sqrt(2*log(6))/5)/8;
ck(25:32) = quadl(fnr,3*sqrt(2*log(6))/5,...
4*sqrt(2*log(6))/5)/8;
ck(33:40) = quadl(fnr,4*sqrt(2*log(6))/5,...
5*sqrt(2*log(6))/5)/8;

for i=1:m
% generate a random starting plane
% this will be the current best plane
a = randn(p,1);
mag = sqrt(sum(a.^2));
as = a/mag;
b = randn(p,1);
bb = b-(astar'*b)*astar;
mag = sqrt(sum(bb.^2));
bastar = bb/mag;
clear a mag b bb
% find the projection index for this plane
% this will be the initial value of the index
ppimax = csppind(Z,astar,bastar,n,ck);
% keep repeating this search until the value
% c becomes less than cstop or until the
% number of iterations exceeds maxiter
mi = 0;
% number of iterations without increase in index
h = 0;
c = cs;
while (mi < maxiter) & (c > cstop)
    % generate a p-vector on the unit sphere
    v = randn(p,1);
    mag = sqrt(sum(v.^2));
    v1 = v/mag;
    % find the a1,b1 and a2,b2 planes
    t = astar+c*v1;
    mag = sqrt(sum(t.^2));
    a1 = t/mag;
    t = astar-c*v1;
    mag = sqrt(sum(t.^2));
    a2 = t/mag;
    t = bstar-(a1'*bstar)*a1;
    mag = sqrt(sum(t.^2));
    b1 = t/mag;
    t = bstar-(a2'*bstar)*a2;
    mag = sqrt(sum(t.^2));
    b2 = t/mag;
    ppi1 = cspind(Z,a1,b1,n,ck);
    ppi2 = cspind(Z,a2,b2,n,ck);
    [mp,ip] = max([ppi1,ppi2]);
    if mp > ppi max
        % then reset plane and index to this value
        eval(['ast ar=a' int2str(ip) ');']);
        eval(['bs tar=b' int2str(ip) ');']);
        eval(['ppi max=ppi' int2str(ip) ');']);
    else
        h = h+1; % no increase
    end
    mi = mi+1;
    if h=half% then decrease the neighborhood
        c = c*.5;
        h = 0;
    end
end
if ppi max > ppm
    % save the current projection as a best plane
    as = astar;
    bs = bstar;
    ppm = ppi max;
end
end

Finally, we provide the following function for removing the structure from a projection found using PPEDA.

function X = csppstrtrem(Z,a,b)

% maximum number of iterations allowed
maxiter = 5;
[n,d] = size(Z);

% find the orthonormal matrix needed via Gram-Schmidt
U = eye(d,d);
U(1,:) = a'; % vector for best plane
U(2,:) = b';
for i = 3:d
  for j = 1:(i-1)
    U(i,:) = U(i,:) - (U(i,:)'*U(j,:))'*U(j,:);
  end
  U(i,:) = U(i,:)/sqrt(sum(U(i,:).^2));
end

% Transform data using the matrix U.
% To match Friedman's treatment: T is d x n.
T = U*Z';
% These should be the 2-d projection that is 'best'.
x1 = T(1,:);
x2 = T(2,:);

% Gaussianize the first two rows of T.
% set of vector of angles
gam = [0,pi/4, pi/8, 3*pi/8];
for m = 1:maxiter
  % gaussianize the data
  for i=1:4
    % rotate about origin
    xp1 = x1*cos(gam(i)) + x2*sin(gam(i));
    xp2 = x2*cos(gam(i)) - x1*sin(gam(i));
    % Transform to normality
    [m, rnk1] = sort(xp1); % get the ranks
    [m, rnk2] = sort(xp2); % get the arguments
    arg1 = (rnk1-0.5)/n; % get the arguments
    arg2 = (rnk2-0.5)/n;
    x1 = norminv(arg1,0,1); % transform to normality
    x2 = norminv(arg2,0,1);
  end
end

% Set the first two rows of T to the
% Gaussianized values.
T(1,:) = x1;
T(2,:) = x2;
X = (U'*T)';
Appendix D

MATLAB Code

In this appendix, we provide the MATLAB functions for some of the more complicated techniques covered in this book. This includes code for the bootstrap $BC_a$ confidence interval, the adaptive mixtures algorithm for probability density estimation, classification trees, and regression trees.

D.1 Bootstrap $BC_a$ Confidence Interval

function [blo, bhi, bvals, z0, ahat] = ...
  csbootbca(data, fname, B, alpha)
  thetahat = feval(fname, data);
  [bh, se, bt] = csboot(data, fname, 50);
  [n, d] = size(data);
  bvals = zeros(B, 1);
  % Loop over each resample and
  % calculate the bootstrap replicates.
  for i = 1:B
    % generate the indices for the B bootstrap
    % resamples, sampling with
    % replacement using the discrete uniform.
    ind = ceil(n.*rand(n, 1));
    % extract the sample from the data
    % each row corresponds to a bootstrap resample
    xstar = data(ind,:);
    % use feval to evaluate the estimate for
    % the i-th resample
    bvals(i) = feval(fname, xstar);
  end
  numless = length(find(bvals<thetahat));
  z0 = norminv(numless/B, 0, 1);
  % find the estimate for acceleration using jackknife
  jvals = zeros(n, 1);
for i = 1:n
    % use feval to evaluate the estimate
    % with the i-th observation removed
    % These are the jackknife replications.
    jvals(i) =...
    feval(fname, [data(1:(i-1));data((i+1):n)]);
end
num = (mean(jvals)-jvals).^3;
den = (mean(jvals)-jvals).^2;
ahat = sum(num)/(6*sum(den).^1/2);
zlo = norminv(alpha/2,0,1); % this is the z^(a/2)
zup = norminv(1-alpha/2,0,1); % this is the z^((1-a)/2)
% Equation 14.10, E & T
arg = z0 + (z0 + zlo)/(1-ahat*(z0+zlo));
alphal = normcdf(arg,0,1);
arg = z0 + (z0 + zup)/(1-ahat*(z0+zup));
alphal = normcdf(arg,0,1);
k1 = floor(((B+1)*alphal));
k2 = ceil(((B+1)*alphal)); % ???
sbval = sort(bvals);
bl0 = sbval(k1);
bhi = sbval(k2);

D.2 Adaptive Mixtures Density Estimation

First we provide some of the helper functions that are used in csadpmix. This first function calculates the estimated posterior probability, given the current estimated model and the new observation.

    % function post=rpostup(x,pies,mus,vars,nterms)
    % This function will return the posterior.

    function post = rpostup(x,pies,mus,vars,nterms)
    f = exp(-.5*(x-mus(1:nterms)).^2./... 
    vars(1:nterms)).*pies(1:nterms);
    f = f/sum(f);
    post = f;

Next we need a function that will update the mixing coefficients, the means and the variances using the posteriors and the new data point.

    % This function will update all of the parameters for
    % the adaptive mixtures density estimation approach
function [piess,muss,varss]=...
csrup(x,piess,mus,vars,posterior,nterms,n)
inertvar = 10;
betan = 1/(n);
piess = piess(1:nterms);
muss = mus(1:nterms);
varss = vars(1:nterms);
post = posterior(1:nterms);
% update the mixing coefficients
piess = piess+(post-piess)*betan;
% update the means
muss = muss+betan*post.*(x-muss)./piess;
% update the variances
denom = (1/betan)*piess+inertvar;
varss = varss+post.*((x-muss).^2-varss)../denom;

Finally, the following function will set the initial variance for newly created terms.

% This function will update the variances
% in the ADME. Call with nterms-1,
% since new term is based only on previous terms

function newvar = cssetvar(mus,piess,vars,x,nterms)
f=exp(-.5*(x-mus(1:nterms)).
     .^2./vars(1:nterms)).*piess(1:nterms);
f = f/sum(f);
f = f.*vars(1:nterms);
newvar = sum(f);

Here is the main MATLAB function csadmix that ties everything together.
For brevity, we show only the part of the function that corresponds to the
univariate case. View the M-file for the multivariate case.

function [piess,mus,vars] = csadmix(x,maxterms)
n = length(x);
mus = zeros(1,maxterms);
vars = zeros(1,maxterms);
piess = zeros(1,maxterms);
posterior = zeros(1,maxterms);
tc = 1;
% lower bound on new pies
minpie = .00001;
% bound on variance
sievebd = 1000;
% initialize density to first data point
nterms = 1;
mus(1) = x(1);
% rule of thumb for initial variance - univariate
vars(1) = (std(x))^2/2.5;
pies(1) = 1;
% loop through all of the data points
for i = 2:n
    md = ((x(i)-mus(1:nterms)).^2)./vars(1:nterms);
    if min(md)>tc & nterms<maxterms
        create = 1;
    else
        create = 0;
    end
    if create == 0 % update terms
        posterior(1:nterms) = ...
        csrpostup(x(i),pies,mus,vars,nterms);
        [pies(1:nterms),mus(1:nterms),...
            vars(1:nterms)] = csrup(x(i),pies,mus,...
            vars,posterior,nterms,i);
    else % create a new term
        nterms = nterms+1;
        mus(nterms) = x(i);
        pies(nterms) = max([1/(1),minpie]);
        % update pies
        pies(1:nterms-1) = ...
            pies(1:nterms-1)*(1-pies(nterms));
        vars(nterms) = ...
            cssetvar(mus,pies,vars,x(i),nterms-1);
    end % end if statement
% to prevent spiking of variances
    index = find(vars(1:nterms)<1/(sievebd*nterms));
    vars(index) = ones(size(index))/(sievebd*nterms);
end % for i loop
% clean up the model - get rid of the 0 terms
mus([nterms+1:maxterms]) = [1];
pies([nterms+1:maxterms]) = [1];
vars([nterms+1:maxterms]) = [1];

D.3 Classification Trees

In the interest of space, we only include (in the text) the MATLAB code for growing a classification tree. All of the functions for working with trees are included with the Computational Statistics Toolbox, and the reader can easily view the source code for more information.
function tree = csgrowc(X,maxn,clas,Nk,pies)

[n,dd] = size(X);
if nargin == 4 then estimate the pies
    pies = Nk/n;
end

% The tree will be implemented as a structure.
% get the initial tree - which is the data set itself
tree.pies = pies;
% need for node impurity calcs:
tree.class = clas;
tree.Nk = Nk;
% maximum number to be allowed in the terminal nodes:
tree.maxn = maxn;
% number of nodes in the tree - total:
tree.numnodes = 1;
% vector of terminal nodes:
tree.termnodes = 1;
% l=terminal node, 0=not terminal:
tree.node.term = 1;
% total number of points in the node:
tree.node.nt = sum(Nk);
tree.node.impurity = impure(pies);
tree.node.misclass = 1-max(pies);
% prob it is node t:
tree.node.pt = 1;
% root node has no parent
tree.node.parent = 0;
% This will be a 2 element vector of
% node numbers to the children.
tree.node.children = [ ];
% pointer to sibling node:
tree.node.sibling = [ ];
% the class membership associated with this node:
tree.node.class = [ ];
% the splitting value:
tree.node.split = [ ];
% the variable or dimension that will be split:
tree.node.var = [ ];
% number of points from each class in this node:
tree.node.nkt = Nk;
% joint prob it is class k and it falls into node t
tree.node.pjoint = pies;
% prob it is class k given node t
tree.node.pclass = pies;
% the root node contains all of the data:
tree.node.data = X;

% Now get started on growing the very large tree.
% first we have to extract the number of terminal nodes
% that qualify for splitting.
% get the data needed to decide to split the node
[term,nt,imp]=getdata(tree);
% find all of the nodes that qualify for splitting.
tree.node.impurity = sqrre(y, tree.n);
tree.node.parent = 0;
tree.node.children = [];
tree.node.sibling = [];
tree.node.yhat = mean(y);
tree.node.split = [];
tree.node.var = [];
tree.node.x = X;
tree.node.y = y;

% Now get started on growing the tree very large
[term, nt, imp] = getdata(tree);
% find all of the nodes that qualify for splitting
ind = find((term==1) & (imp>0) & (nt>maxn));
% now start splitting
while ~isempty(ind)
  for i = 1:length(ind)
    % get split
    [split, dim] = splitnoder(...
      tree.node(ind(i)).x, ...;
      tree.node(ind(i)).y, ...;
      tree.node(ind(i)).impurity, ...;
      tree.n);
    % split the node
    tree = addnode(tree, ind(i), dim, split);
  end % end for loop
[term, nt, imp] = getdata(tree);
tree.terminal = find(term==1);
ind = find((term==1) & (imp>0) & (nt>maxn));
end % end while loop
Appendix E

MATLAB Statistics Toolbox

The following tables list the functions that are available in the MATLAB Statistics Toolbox, Version 3.0. This toolbox is available for purchase from The MathWorks, Inc.

### TABLE E.1

Functions for Parameter Estimation (fit) and Distribution Statistics - Mean and Variance (stat)

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>betafit, betastat</td>
<td>Beta distribution.</td>
</tr>
<tr>
<td>binofit, binostat</td>
<td>Binomial distribution.</td>
</tr>
<tr>
<td>expfit, expstat</td>
<td>Exponential distribution.</td>
</tr>
<tr>
<td>fstat</td>
<td>F distribution</td>
</tr>
<tr>
<td>gamfit, gamstat</td>
<td>Gamma distribution.</td>
</tr>
<tr>
<td>geostat</td>
<td>Geometric distribution</td>
</tr>
<tr>
<td>hygestat</td>
<td>Hypergeometric distribution</td>
</tr>
<tr>
<td>lognstat</td>
<td>Lognormal distribution</td>
</tr>
<tr>
<td>mle</td>
<td>Maximum likelihood parameter estimation.</td>
</tr>
<tr>
<td>nbinstat</td>
<td>Negative binomial distribution</td>
</tr>
<tr>
<td>ncfstat</td>
<td>Noncentral F distribution</td>
</tr>
<tr>
<td>nctstat</td>
<td>Noncentral t distribution</td>
</tr>
<tr>
<td>ncx2stat</td>
<td>Noncentral Chi-square distribution</td>
</tr>
<tr>
<td>normfit, normstat</td>
<td>Normal distribution.</td>
</tr>
<tr>
<td>poissfit, poistat</td>
<td>Poisson distribution.</td>
</tr>
<tr>
<td>raylfit</td>
<td>Rayleigh distribution.</td>
</tr>
<tr>
<td>tstat</td>
<td>T distribution</td>
</tr>
<tr>
<td>unidstat</td>
<td>Discrete uniform distribution</td>
</tr>
<tr>
<td>unifit, unifstat</td>
<td>Uniform distribution.</td>
</tr>
<tr>
<td>weibfit, weibstat</td>
<td>Weibull distribution.</td>
</tr>
</tbody>
</table>
TABLE E.2
Probability Density Functions (pdf) and Cumulative Distribution Functions (cdf)

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>betapdf, betaqdf</td>
<td>Beta distribution</td>
</tr>
<tr>
<td>binopdf, binocdf</td>
<td>Binomial distribution</td>
</tr>
<tr>
<td>chi2pdf, chi2cdf</td>
<td>Chi-square distribution</td>
</tr>
<tr>
<td>exppdf, expcdf</td>
<td>Exponential distribution</td>
</tr>
<tr>
<td>fpdf, fcdf</td>
<td>F distribution</td>
</tr>
<tr>
<td>gampdf, gamcdf</td>
<td>Gamma distribution</td>
</tr>
<tr>
<td>geopdf, geocdf</td>
<td>Geometric distribution</td>
</tr>
<tr>
<td>hygepdf, hygecdf</td>
<td>Hypergeometric distribution</td>
</tr>
<tr>
<td>lognpdf, logncdf</td>
<td>Log normal distribution</td>
</tr>
<tr>
<td>nbinpdf, nbincdf</td>
<td>Negative binomial distribution</td>
</tr>
<tr>
<td>ncfpdf, ncfcdf</td>
<td>Noncentral F distribution</td>
</tr>
<tr>
<td>nctpdf, nctcdf</td>
<td>Noncentral t distribution</td>
</tr>
<tr>
<td>ncx2pdf, ncx2cdf</td>
<td>Noncentral chi-square distribution</td>
</tr>
<tr>
<td>normpdf, normcdf</td>
<td>Normal distribution</td>
</tr>
<tr>
<td>pdf, cdf</td>
<td>Probability density/Cumulative distribution</td>
</tr>
<tr>
<td>poisspdf, poisscdf</td>
<td>Poisson distribution</td>
</tr>
<tr>
<td>raylpdf, raylcdf</td>
<td>Rayleigh distribution</td>
</tr>
<tr>
<td>tpdf, tcdf</td>
<td>T distribution</td>
</tr>
<tr>
<td>unidpdf, unidcdf</td>
<td>Discrete uniform distribution</td>
</tr>
<tr>
<td>unifpdf, unifcdf</td>
<td>Continuous uniform distribution</td>
</tr>
<tr>
<td>weibpdf, weibcdf</td>
<td>Weibull distribution</td>
</tr>
</tbody>
</table>
### TABLE E.3
Critical Values (*inv*) and Random Number Generation (*rnd*) for Probability Distribution Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>betainv, betarnd</td>
<td>Beta distribution</td>
</tr>
<tr>
<td>binoinv, binornd</td>
<td>Binomial distribution</td>
</tr>
<tr>
<td>chi2inv, chi2rnd</td>
<td>Chi-square distribution</td>
</tr>
<tr>
<td>expinv, exprnd</td>
<td>Exponential distribution</td>
</tr>
<tr>
<td>finv, frnd</td>
<td>F distribution</td>
</tr>
<tr>
<td>gaminv, gamrnd</td>
<td>Gamma distribution</td>
</tr>
<tr>
<td>geoinv, geornd</td>
<td>Geometric distribution</td>
</tr>
<tr>
<td>hygeinv, hygernd</td>
<td>Hypergeometric distribution</td>
</tr>
<tr>
<td>loginv, lognrnd</td>
<td>Log normal distribution</td>
</tr>
<tr>
<td>nbininv, nbinrnd</td>
<td>Negative binomial distribution</td>
</tr>
<tr>
<td>ncfinv, ncfrnd</td>
<td>Noncentral F distribution</td>
</tr>
<tr>
<td>nctinv, nctrnd</td>
<td>Noncentral t distribution</td>
</tr>
<tr>
<td>ncx2inv, ncx2rnd</td>
<td>Noncentral chi-square distribution</td>
</tr>
<tr>
<td>norminv, normrnd</td>
<td>Normal distribution</td>
</tr>
<tr>
<td>poisinv, poissrnd</td>
<td>Poisson distribution</td>
</tr>
<tr>
<td>raylinv, raylrnd</td>
<td>Rayleigh distribution</td>
</tr>
<tr>
<td>tinv, trnd</td>
<td>T distribution</td>
</tr>
<tr>
<td>unidinv, unidrnd</td>
<td>Discrete uniform distribution</td>
</tr>
<tr>
<td>unifinv, unifrnd</td>
<td>Continuous uniform distribution</td>
</tr>
<tr>
<td>weibinv, weibrnd</td>
<td>Weibull distribution</td>
</tr>
<tr>
<td>icdf</td>
<td>Specified inverse cdf</td>
</tr>
</tbody>
</table>
### TABLE E.4
Descriptive Statistics

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootstrap</td>
<td>Bootstrap statistics for any function.</td>
</tr>
<tr>
<td>corrcoef</td>
<td>Correlation coefficient - also in standard MATLAB</td>
</tr>
<tr>
<td>cov</td>
<td>Covariance - also in standard MATLAB</td>
</tr>
<tr>
<td>crosstab</td>
<td>Cross tabulation</td>
</tr>
<tr>
<td>geomean</td>
<td>Geometric mean</td>
</tr>
<tr>
<td>grpstats</td>
<td>Summary statistics by group</td>
</tr>
<tr>
<td>harmmean</td>
<td>Harmonic mean</td>
</tr>
<tr>
<td>iqr</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>kurtosis</td>
<td>Kurtosis</td>
</tr>
<tr>
<td>mad</td>
<td>Median absolute deviation</td>
</tr>
<tr>
<td>mean</td>
<td>Sample average - also in standard MATLAB</td>
</tr>
<tr>
<td>median</td>
<td>Second quartile (50th percentile) of a sample - also in standard MATLAB</td>
</tr>
<tr>
<td>moment</td>
<td>Moments of a sample</td>
</tr>
<tr>
<td>nanmax, nanmin</td>
<td>Maximum/minimum - ignoring NaNs</td>
</tr>
<tr>
<td>nanmean, nanmedian</td>
<td>Mean/median - ignoring NaNs</td>
</tr>
<tr>
<td>nanstd, nansum</td>
<td>Standard deviation/sum - ignoring NaNs</td>
</tr>
<tr>
<td>prctile</td>
<td>Percentiles</td>
</tr>
<tr>
<td>range</td>
<td>Range</td>
</tr>
<tr>
<td>skewness</td>
<td>Skewness</td>
</tr>
<tr>
<td>std</td>
<td>Standard deviation - also in standard MATLAB</td>
</tr>
<tr>
<td>tabulate</td>
<td>Frequency table</td>
</tr>
<tr>
<td>trimmean</td>
<td>Trimmed mean</td>
</tr>
<tr>
<td>var</td>
<td>Variance - also in standard MATLAB</td>
</tr>
<tr>
<td>Function</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>anova1</td>
<td>One-way analysis of variance</td>
</tr>
<tr>
<td>anova2</td>
<td>Two-way analysis of variance</td>
</tr>
<tr>
<td>anovan</td>
<td>n-way analysis of variance</td>
</tr>
<tr>
<td>aoctool</td>
<td>Interactive tool for analysis of covariance</td>
</tr>
<tr>
<td>dummyvar</td>
<td>Dummy-variable coding</td>
</tr>
<tr>
<td>friedman</td>
<td>Friedman's test</td>
</tr>
<tr>
<td>glmfit</td>
<td>Generalized linear model fitting</td>
</tr>
<tr>
<td>kruskalwallis</td>
<td>Kruskal-Wallis test</td>
</tr>
<tr>
<td>lscov</td>
<td>Least-squares estimates with known covariance matrix</td>
</tr>
<tr>
<td>manoval</td>
<td>One-way multivariate analysis of variance</td>
</tr>
<tr>
<td>manovacluster</td>
<td>Draw clusters of group means for manova1</td>
</tr>
<tr>
<td>multcompare</td>
<td>Multiple comparisons of means and other estimates</td>
</tr>
<tr>
<td>polyconf</td>
<td>Polynomial evaluation and confidence interval estimation</td>
</tr>
<tr>
<td>polyfit</td>
<td>Least-squares polynomial fitting- also in standard MATLAB</td>
</tr>
<tr>
<td>polyval</td>
<td>Predicted values for polynomial functions- also in standard MATLAB</td>
</tr>
<tr>
<td>rcoplot</td>
<td>Residuals case order plot</td>
</tr>
<tr>
<td>regress</td>
<td>Multivariate linear regression</td>
</tr>
<tr>
<td>regstats</td>
<td>Regression diagnostics</td>
</tr>
<tr>
<td>ridge</td>
<td>Ridge regression</td>
</tr>
<tr>
<td>robustfit</td>
<td>Robust regression model fitting</td>
</tr>
<tr>
<td>rstool</td>
<td>Multidimensional response surface visualization</td>
</tr>
<tr>
<td>stepwise</td>
<td>Interactive tool for stepwise regression</td>
</tr>
<tr>
<td>x2fx</td>
<td>Factor setting matrix (x) to design matrix (fx)</td>
</tr>
</tbody>
</table>
### TABLE E.6

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nlinf</code></td>
<td>Nonlinear least-squares data fitting (Newton’s Method)</td>
</tr>
<tr>
<td><code>nlintool</code></td>
<td>Interactive graphical tool for prediction in nonlinear models</td>
</tr>
</tbody>
</table>
cereal
These data were obtained from ratings of eight brands of cereal [Chakrapani and Ehrenberg, 1981; Venables and Ripley, 1994]. The cereal file contains a matrix where each row corresponds to an observation and each column represents one of the variables or the percent agreement to statements about the cereal. It also contains a cell array of strings (labs) for the type of cereal.

c coal
The coal data set contains the number of coal mining disasters (y) over 112 years (year) [Raftery and Akman, 1986].

counting
In the counting data set, we have the number of scintillations in 72 second intervals arising from the radioactive decay of polonium [Rutherford and Geiger, 1910; Hand, et al., 1994]. There are a total of 10097 scintillations and 2608 intervals. Two vectors, count and freqs, are included in this file.

erelderly
The elderly data set contains the height measurements (in centimeters) of 351 elderly females [Hand, et al., 1994]. The variable that is loaded is called heights.

environ
This data set was analyzed in Cleveland and McGill [1984]. They represent two variables comprising daily measurements of ozone and wind speed in New York City. These quantities were measured on 111 days between May and September 1973. One might be interested in understanding the relationship between ozone (the response variable) and wind speed (the predictor variable).

environ
These data are used as a standard to test the results of least squares calculations. The file contains two vectors x and y.

c flea
The flea data set [Hand, et al., 1994; Lubischew, 1962] contains measurements on three species of flea beetle: Chaetocnema concinna (conc), Chaetocnema heikertingeri (heik), and Chaetocnema heptapotamica (hept). The features for classification are the maximal width of aedeagus in the forepart (microns) and the front angle of the aedeagus (units are 7.5 degrees).

forearm
These data [Hand, et al., 1994; Pearson and Lee, 1903] consist of 140 measurements of the length (in inches) of the forearm of adult males. The vector x


References


References


References


References


Index

A
adaptively mixedtures density estimation, 301, 540
adjacent values, 133
agglomerative clustering, 369
alternative hypothesis, 193
Andres curves, 157, 163, 164
aperiodicity, 431
autoregressive generating density, 439
average linkage, 371
averaged shifted histogram, 274

B
backsplash operator, 387
bagplot, 183
bar, 267
Bayes Decision Rule, 323
Bayes decision theory, 319
Bayes’ Theorem, 19, 320, 426
Bayesian inference, 426
Bernoulli random variable, 24
beta, 40
beta distribution, 40
random number generation, 95
betainc, 41
betapdf, 41
betarnd, 96, 445
bias, 61
binocdf, 26
binomial distribution, 24
random number generation, 100
binomial process, 497
binomialness plot, 129
binopdf, 26, 446
binornd, 445
bisquare method, 396
bootfun, 226
bootstrap, 214, 221
bias, 219
bias corrected interval, 247, 539
confidence interval, 220
jackknife-after-bootstrap, 251
parametric bootstrap, 216
percentile interval, 224, 247
standard error, 216
t-interval, 221
bootstrap, 218, 223, 225, 252
box plot, 132, 186
boxplot, 133
brushing, 185
BUGS, 460
burn-in, 429

C
Cauchy distribution, 432
cdfplot, 76, 183
Central Limit Theorem, 59, 168
centroid linkage, 371
char, 516
Chernoff faces, 185
chi-square distribution, 37
random number generation, 93
chi-square index, 169
city block distance, 368
class-conditional probability, 320
estimating, 321
nonparametric estimation, 322
classification trees, 342
choosing the tree, 356
cost complexity measure, 352
cross-validation, 361
growing the tree, 347
impurity, 349
independent test sample, 357
MATLAB code, 542
notation, 345
pruning process, 352
splitting rule, 349
clustering, 367
hierarchical methods, 369
linkage methods, 370
clustering, spatial, 469
complete linkage, 370
complete spatial randomness, 469
computational statistics, 1
Computational Statistics Toolbox, 7
conditional probability, 17
confidence intervals, 201
contour, 138  
contour plots, 138  
contour3, 138  
contourf, 138  
convergence monitoring  
   Gelman and Rubin method, 453  
   Raftery and Lewis method, 458  
convhull, 474  
cophenetic correlation  
   coefficient, 373  
corr, 242  
corrcorrf, 57, 241  
correlation, 56, 241  
cov, 57  
covariance, 56  
covariance matrix, 41  
critical region, 194  
critical value, 194  
cross-validation, 233  
   K-fold, 237  
   pattern recognition, 335  
csadpmix, 304  
csbmncb, 482  
csbm, 101  
cschirn, 94  
cscblindcluster, 501  
csdplot, 294  
csdunr, 89, 105  
cscvalnorm, 43, 325  
csgelrub, 457  
csgetregion, 508  
csgrowc, 351  
csgrowr, 411, 417  
csintenkbm, 476  
csjack, 242  
cskerm, 323  
cskhat, 484  
csloess, 396  
csloessenv, 401  
csloese, 400  
csmrnb, 98  
csplitreeec, 351  
csplitree, 103  
csprunbc, 355  
csprunb, 417  
csqantiles, 121  
cspmrnb, 100  
cstemle, 117  
cstree, 418  
cumulative distribution function, 15  

D  
data sets, 563  
   abrasion, 423  
   anaerob, 423  
   anscomb, 243  
   bank, 189, 381  
   biology, 188  
   bodmin, 480, 489, 492  
   boston, 423  
   brownlee, 423  
   cardiff, 472, 484, 493  
   cement, 57  
   cereal, 156  
   counting, 188  
   elderly, 316  
   environ, 395, 422  
   filip, 386, 399, 422  
   flea, 382  
   forearm, 113, 115, 217, 220, 222, 225, 228, 316  
   geyser, 266, 271, 309, 315  
   helmets, 423  
   household, 381  
   human, 423  
   insect, 146, 319  
   insulate, 256  
   law, 241, 245, 252, 257  
   lawpop, 228  
   longley, 387  
   measure, 381  
   moths, 188  
   nfl, 316  
   okblack, 473  
   okwhite, 473  
   peanuts, 256  
   quakes, 229  
   remiss, 228  
   snowfall, 278, 314, 315  
   steam, 234, 236  
   thrombos, 188  
   tibetan, 117, 381  
   uganda, 471, 476, 498  
   whisky, 229  
degree of model, 233  
dendrogram, 371  
d' plot, 291  
digidot plot, 185
Index

discrete uniform distribution, random number generation, 104
dissimilarity, 367
distance, 367
disttool, 50
divisive clustering, 369
dot map, 471
double, 516

g
gamma distribution, 36, 66
random number generation, 91
gammainc, 37
gampdf, 37
gamrnd, 452
geostatistical data, 466
Gibbs sampler, 443
Gini index, 349
grand tour, 178

E
efficiency, 62
EM algorithm, 296
iterative, 299
recursive, 301
empirical distribution function, 69
entropy index, 530
equal likelihood model, 14
erf, 32
error complexity measure, 411
errorbar, 183
estimator, 61
Euclidean distance, 367
event, spatial, 467
expected value, 21
experiment, 12
exploratory data analysis, 111, 259
expocdf, 35
exponential distribution, 33
random number generation, 89
exprnd, 428
eye, 517

F
features, 318
finite mixtures, 287
dF plot, 291
EM algorithm, 296
mixing coefficient, weight, 289
multivariate, 293
posterior probabilities, 297
frequency polygon, 269
asymptotic MISE, 269
multivariate, 272
normal reference rule, 270
skewness factor, 270
Friedman-Tukey index, 529

H
help, 512
hist, 113, 263, 266
histc, 266, 278
histfit, 76
histogram, 113, 261
asymptotic MISE, 264
bin width, 261
bivariate, 141
density histogram, 114
Freedman-Diaconis rule, 265
frequency histogram, 113
mean squared error, pointwise, 263
normal reference rule, 265
relative frequency histogram, 113
Scott's rule, 265
skewness factor, 266
Sturge's rule, 264
histogram, multivariate, 267
asymptotic MISE, 268
normal reference rule, 268
hypothesis testing, 192
critical value approach, 195
Monte Carlo approach, 205
p-value approach, 200

I
iid, 52
independence sampler, 438
independent events, 18
inferential statistics, 52
inhibition distance, 501
inhibition parameter, 504
inhibition process, 501
inline, 278, 405, 432, 442, 519
inpolygon, 273, 501
integrated squared error, 260
intensity
  estimation of, 475
  second-order, 469
  spatial, 468
internet sources, 7
interp1, 72, 271
interp2, 274
interquartile range, 71, 132
irreducibility, 451
isocaps, 153
isosurface, 149
isotropic, 469
likelihood function, 64
limits, lower and upper, 133
linkage, 370
linkage methods, 369
load, 514
local linear estimator, 405
local polynomial kernel estimators, 402
loess, 391
  envelopes, 400
  robust, 396
lower tail test, 195

M
Mahalanobis distance, 302, 367
mapped point pattern, 468
marked point pattern, 468
Markov chain, 429
Markov chain Monte Carlo
  burn-in, 429
  convergence monitoring, 452
MATLAB
  cell arrays, 517
  control flow, 520
  data constructs, 516
  file I/O, 514
  graphing techniques, 521
  help, 512
  inline function object, 519
  internet resources, 7
  operators, 514
  product information, 524
  programs, 518
  structures, 518
  workspace, 512
maximum likelihood estimation, 63
mean integrated absolute error, 260
mean integrated squared error, 260
mean squared error, 61, 260
median, 70, 246
mesh, 138
method of moments, 66
Metropolis sampler, 433
Metropolis-Hastings, 430
Minkowski distance, 368
model-based clustering, 380
mom, 223
moment index, 530

J
jackknife, 220, 239, 248
  bias, 240
  jackknife-after-bootstrap, 251
  pseudo-values, 243
  standard error, 240
joint probability, 18

K
k nearest neighbors, 383
kernel density estimation, 280
  asymptotic MISE, univariate, 282
  choice of kernel, 284
  multivariate, 285
  normal reference rule, multivariate, 286
  normal reference rule, univariate, 283
  window width, 282
K-function, 482, 490
k-means clustering, 373
kurtosis, 23, 54

L
lattice data, 467
least squares, 386
L-function, 484, 491
likelihood, 426
moments, 22
Monte Carlo integration, 427
Monte Carlo methods, 191
   Type I error, 210
   Type II error, 211
multiplication rule, 18
mutually exclusive, 14

N
Nadaraya-Watson estimator, 404
nearest neighbor event-event distance, 478, 486
nearest neighbor point-event distance, 478, 486
normal distribution, 31
   random number generation, 89
normal distribution,
multivariate, 41
   random number generation, 96
normcdf, 32, 198, 200
norminv, 124, 196, 203, 212, 332
normpdf, 290
normplot, 123, 207
normspec, 32
notation, 5
null hypothesis, 192

O
ones, 517
order of model, 233
order statistic, 69
outliers, 133

P
parallel coordinates, 162, 168
parameter space, 60
parametric bootstrap, 216
patch, 151
pattern recognition, 317
   classification rate, 333
   cross-validation, 335, 339
false alarms, 330
hypothesis testing, 329
   independent test sample, 333
likelihood ratio, 329
pcolor, 138
pdist, 369
peaks, 139
pie, 183
plot, 136, 522
plot3, 145, 522
plotmatrix, 148
points, spatial, 468
poisscdf, 28
Poisson distribution, 26, 448
   random number generation, 102
Poisson process, cluster, 499
Poisson process, homogeneous, 495
Poissonness plot, 126
polyfit, 121, 234, 388
polyval, 236
population, 52
posterior probability, 301, 320, 426
power, 197
prediction error, 236
predictor variable, 233
Priestley-Chao estimator, 404
principal component analysis, 168
prior probability, 320, 426
probability, 14
   axioms, 17
   conditional probability, 17
   distribution, 14
   posterior, 19
   prior, 19
probability density function, 14
probability mass function, 14
product kernel, 285
projection pursuit, 168, 186
   notation, 170
proposal distribution, 431
p-value, 199

Q
quad, 48
quad1, 48
quadrats, 475
quantile plots, 119
   binomialness plot, 129
   normal probability plot, 123
   Poissonness plot, 126
   probability plot, 123
q-q plot, 119, 387
quantiles, 70, 195
quartiles, 70

R
rand, 80
randn, 89
random number generation
  acceptance-rejection method, 85
discrete uniform
distribution, 104
  from density estimates, 306
inversed transform method, 82
variates on a sphere, 99
random sample, 52
random variable, 13
  continuous, 13
discrete, 13
random-walk Metropolis, 434
randperm, 107
randtool, 110
receiver operating characteristic
curve, 337
regression, 385
regression trees, 407
cross-validation, 416
error complexity measure, 411
growing a tree, 410
MATLAB code, 544
notation, 408
pruning a tree, 411
selecting a tree, 412
regression, parametric, 233, 385
regularity, spatial, 469
rejection region, 194
relative frequency method, 14
residual dependence plot, 388
residual squared error, 234
response variable, 233
rotate3d, 145, 477
sample moments, 54
sample space, 12
sample variance, 54
sampling distribution, 58, 204
save, 514
scatter, 136
scatter3, 145
scatterplot, 135, 186, 231
trivariate, 145
scatterplot matrix, 148
sequential spatial inhibition, 501
shading, 138, 189
significance level, 195
simple random sample, 52
ing single linkage, 370
skewness, 23, 54, 217
skewness, quartile coefficient of, 77
slice, 149
smoothing, 390
  kernel methods, 401
spatial point patterns, 466
spatial statistics, 465
splines, 419
squareform, 369
stairs, 183, 279
standard error, 62
star plots, 155
stationary point process, 468
statistic, 53
stem, 183
stem-and-leaf, 117, 185
stratified random sampling, 53
Strauss process, 504
structure removal, 174
Sturges' rule, 264
subplot, 523
supervised learning, 318
surf, 138
surface plots, 138

T
target distribution, 430
trapez, 272, 314
two-tail test, 195
Type I error, 195
Type II error, 195

S
sample, 52
sample mean, 53
Index

U
unidrnd, 89, 217
unifcdf, 29
uniform distribution, 29, 431
random number generation, 79
unsupervised learning, 319
upper tail test, 195

W
Ward's linkage, 371
weibcdf, 40
weibplot, 123
Weibull distribution, 38
Workspace Browser, 512

V
variance, 21

Z
zeros, 517