
III. Three-Phase Circuits



Almost all electric power generation and most of the power transmission 
in the world is in the form of three-phase AC circuits. A three-phase AC 
system consists of three-phase generators, transmission lines, and loads.

There are two major advantages of three-phase systems over a single-
phase system:

a)  More power per kilogram of metal form a three-phase machine;
b)  Power delivered to a three-phase load is constant at all time, 

instead of pulsing as it does in a single-phase system.

The first three-phase electrical system was patented in 1882 by John 
Hopkinson - British physicist, electrical engineer, Fellow of the Royal 
Society.

Three-Phase Systems



1. Generation of three-phase voltages 
and currents

A three-phase generator 
consists of three single-
phase generators with 
voltages of equal 
amplitudes and phase 
differences of 120.



Each of three-phase generators can 
be connected to one of three 
identical loads.

This way the system would consist 
of three single-phase circuits 
differing in phase angle by 120.

The current flowing to each load 
can be found as
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Therefore, the currents flowing in each phase are



We can connect the negative (ground) ends of the 
three single-phase generators and loads together, so 
they share the common return line (neutral).



The current flowing through a neutral can be found as
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which is simplified to be



So, as long as the three loads are equal, the return current in the neutral is zero!

Such three-phase power systems (equal magnitude, phase differences of 120, 
identical loads) are called balanced.

In a balanced system, the neutral is unnecessary!

Phase Sequence is the order in which the voltages in the individual phases peak.

abc acb



2. Connection Types
There are two types of connections in three-phase circuits: 

Y (Wye) and Δ (Delta)

Each generator and each load can be either Y- or Δ-connected. Any number of 
Y- and Δ-connected elements may be mixed in a power system.

Phase quantities – voltages and currents in a given phase.
Line quantities  – voltages between the lines and currents in the lines connected 

to the generators.



a) Y-connection

Assuming 
a resistive 
load…



The current in any line is the same as the current in the corresponding phase.

Voltages are:
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Magnitudes of the line-to-line voltages and the line-to-neutral voltages are 
related as:

VVLL 3 

In addition, the line-to-line 
voltages are shifted by 30
with respect to the phase 
voltages.

In a  connection with abc
sequence, the voltage of a 
line leads the phase voltage 
by 30 as shown in the figure.



b) Δ-connection

Assuming a 
resistive load…
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Line-to-line voltage magnitudes are the same as the phase voltages.

Currents are:
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Magnitudes of the line and phase currents are related as:

IIL 3 

For the connections with the 
abc phase sequences, the 
current of a line lags the 
corresponding phase current by 
30 as shwon in the figure.

In addition, the line currents 
are shifted by 30 with 
respect to the phase currents.



Wye (Y) Connected Load

Delta (Δ) Connected Load



• Δ-connected loads are most common to allow  easy addition and 
removal of loads in each phase

• Y-connected sources are most common to avoid circulating currents 
when there is a small imbalance.

Practical Use

What do you want to use in practice? 

[Most common usage]



For a balanced Y-connected load with the impedance Z = Z  and phase 
voltages as:

c) Power relationship
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The currents can be found as:
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Simplify the above equations using 

( ) ( ) ( )p t v t i t

Therefore, the instantaneous power supplied to 
each phase is:
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The instantaneous power is:



The total power on the load is given by

( ) ( )( ) 3 cos( )tot a b cp t p tp t Vp t I   

The pulsing components cancel each other because of 120 phase shifts, so 
the total power on the load is constant.

The figure shows:

a) The instantaneous power 
in each phase.

b) The total power supplied 
to the load (which is 
constant)



Phase quantities in each phase of a Y- or Δ-connection.

23 cos 3 cosP V I I Z    Real Power:

Reactive Power: 23 sin 3 sinQ V I I Z    

Apparent Power:
23 3S V I I Z   

NOTE: These equations are valid for balanced loads only.



Deriving line quantities of a Y-connection.

Power consumed by a load:

since for this load

therefore

NOTE: These equations are valid for balanced loads only.

3 cosP V I  

3L LLI I and V V    
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Finally 3 cosLL LP V I 



Deriving line quantities of a Δ-connection.

Power consumed by a load:

since for this load

therefore

NOTE: These equations are valid for balanced loads only.

3 cosP V I  

3 cos
3
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Finally 3 cosLL LP V I 

3L LLI I and V V    

Same as for a Y-connected load!



Line quantities for a Y- or Δ-connection.

Real Power:

Reactive Power:

Apparent Power:

NOTE: These equations are valid for balanced loads only.

3 cosLL LP V I 

3 sinLL LQ V I 

3 LL LS V I

Reminder:  is the load (or impedance) angle, i.e. the angle between the 
phase voltage and the phase current.



d) Analysis of balanced systems

A Δ-connected circuit can be analyzed via the transform of impedances by the Y-Δ
transform. For a balanced load, it states that a Δ-connected load consisting of three 
equal impedances Z is equivalent to a Y-connected load with the impedances Z/3. 

This equivalence implies that the voltages, currents, and powers supplied to both 
loads would be the same.



Ex. For a 208-V three-phase ideally balanced system shown below, 
Find:

a) The magnitude of the line current IL
b) The magnitude of the load’s line and phase voltages VLL and VL;
c) The real, reactive, and the apparent powers consumed by the load;
d) The power factor of the load.



Both, the generator and the load are Y-
connected, therefore, it’s easy to 
construct a per-phase equivalent circuit.

a) Phase current:
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b) Phase voltage over the load:

0 0 0 0(7.94 37.1 )(12 9) (7.94 37.1 )(15 36.9 ) 119.1 0.2L L LV I Z j V           

and the maignitude of the line voltage on the load:

3 206.3LL LV V V  



c) The real power consumed by the load:

03 cos 3 119.1 7.94cos36.9 2270loadP V I W       

The reactive power consumed by the load:

03 sin 3 119.1 7.94sin 36.9 1702 varloadQ V I       

The apparent power consumed by the load:

3 3 119.1 7.94 2839loadS V I VA      

d) The load power factor:

0cos cos36.9 0.8loadPF lagging   



e) One-line diagrams

Since, in a balanced system, three 
phases are similar except of the 120
phase shift, power systems are 
frequently represented by a single 
line showing all three phases of the 
real system.

This is a one-line diagram.

Such diagrams usually include all the 
major components of a power 
system: generators, transformers, 
transmission lines, loads.



If we can neglect the impedance of the transmission line, an important 
simplification in the power calculation is possible…

If the generator voltage in the system is known, then we can find the current 
and power factor at any point in the system as follows:

1. The line voltages at the generator and the 
loads will be identical since the line is 
lossless.

2. Real and reactive powers on each load.
3. The total real and reactive powers supplied 

to all loads from the point examined.
4. The system power factor at that point using 

the power triangle relationship.
5. Line and phase currents at that point.

We can treat the line voltage as constant and use the power triangle method to 
quickly calculate the effect of adding a load on the overall system and power factor.


