

3

$D_{sc} \xrightarrow{\sim} V_{sc} \xrightarrow{\sim} \alpha_{s} I_{sc}$	BJT Modes of Operation		
Lo +	BE junction	BC junction	Mode
$D_{m} \stackrel{\bullet}{\Sigma} V_{m} \stackrel{\bullet}{\longleftrightarrow} \alpha_{n} I_{n}$ = emitter $\bigcup_{I_{n}}$	Reverse	Reverse	Cutoff (OFF)
Ť	Forward	Reverse	Forward active (FA)
	Forward	Forward	Saturation (SAT)
	Reverse	Forward	Reverse active (RA)

8.12 Chapter Summary

• The base (input) current, I_B , is related to I_C by the common-emitter current gain, β_F . This can be related to the common-base current gain, α_F .

$$\beta_F = \frac{I_C}{I_B} \approx \frac{G_E}{G_B} \qquad \qquad \alpha_F = \frac{I_C}{I_E} = \frac{\beta_F}{1 + \beta_F}$$

- The Gummel plot shows that β_F falls off in the high I_C region due to high-level injection in the base. It also falls off in the low I_C region due to excess base current.
- Base-width modulation by V_{CB} results in a significant slope of the I_C vs. V_{CE} curve in the active region (known as the Early effect).

Modern Semiconductor

