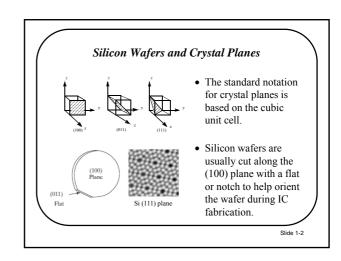
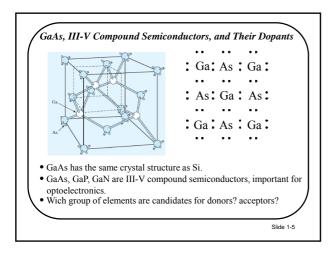
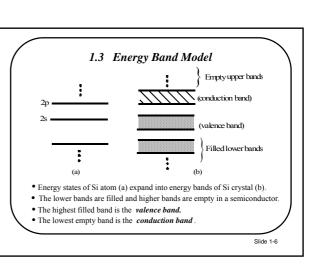
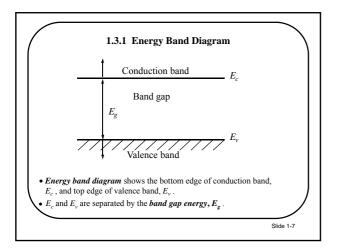
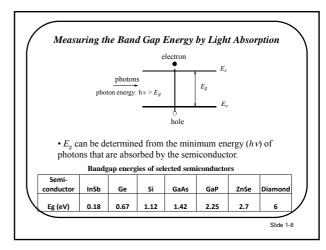
Chapter 1 Electrons and Holes in Semiconductors 1.1 Silicon Crystal Structure • Unit cell of silicon crystal is cubic. • Each Si atom has 4 nearest neighbors. Slide 1-1

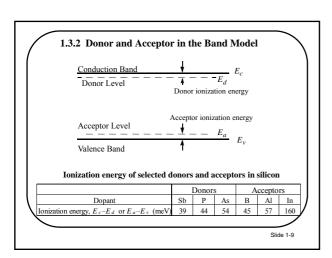


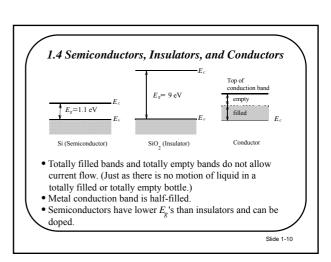


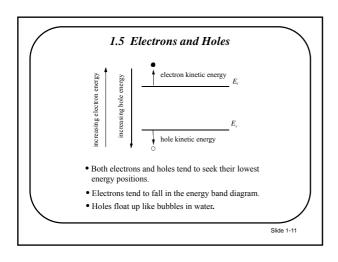


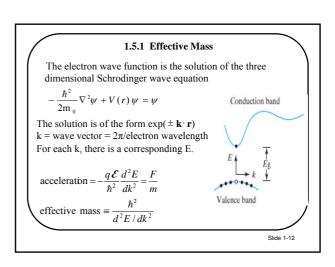












1.5.1 Effective Mass

In an electric field, \mathcal{E} , an electron or a hole accelerates.

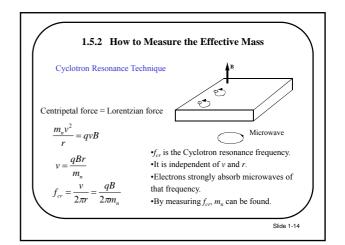
$$a = \frac{-q \, \mathcal{E}}{m_n} \qquad \text{electrons}$$

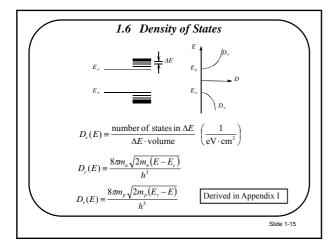
$$a = \frac{q\mathcal{E}}{m_p} \qquad \text{holes}$$

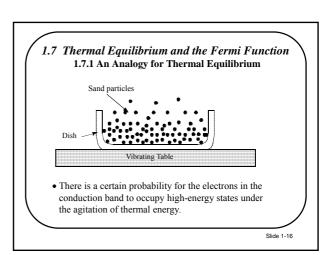
Electron and hole effective masses

		Si	Ge	GaAs	InAs	AlAs
	m _n /m ₀	0.26	0.12	0.068	0.023	2
	m /m.	0.39	0.3	0.5	0.3	0.3

Slide 1-1

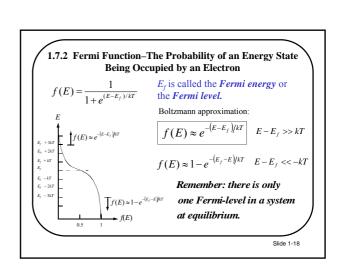






•There are g_1 states at E_1 , g_2 states at E_2 ... There are N electrons, which constantly shift among all the states but the average electron energy is fixed at 3kT/2.

•There are many ways to distribute N among g_1 , g_2 , g_3 ... and satisfy the g_1 and g_2 states at g_3 and g_4 are g_2 states at g_3 and g_4 are g_4 are g_2 states at g_3 and g_4 are g_4



1.8 Electron and Hole Concentrations

1.8.1 Derivation of n and p from D(E) and f(E)

$$n = \int_{E_c}^{\text{top of conduction band}} f(E)D_c(E)dE$$

$$n = \frac{8\pi m_n \sqrt{2m_n}}{h^3} \int_{E_c}^{\infty} \sqrt{E - E_c} e^{-(E - E_f)/kT} dE$$

$$=\frac{8\pi n_n \sqrt{2m_n}}{h^3} e^{-(E_c-E_f)/kT} \int_0^{E-E_c} \sqrt{E-E_c} e^{-(E-E_c)/kT} d(E-Ec)$$

Slide 1-1

Electron and Hole Concentrations

 $n = N_c e^{-(E_c - E_f)/kT}$ $N_c = 2 \left[\frac{2\pi m_n kT}{h^2} \right]^{3/2}$

 N_c is called the *effective* density of states (of the conduction band).

 $p = N_{\nu}e^{-(E_f - E_{\nu})/kT}$ $N_{\nu} = 2 \left[2\pi m_{\rho} kT \right]^3$

 N_{ν} is called the *effective* density of states of the valence band.

Remember: the closer E_f moves up to N_c , the larger n is; the closer E_f moves down to E_v , the larger p is. For Si, $N_c = 2.8 \times 10^{19} \, \mathrm{cm}^3$ and $N_v = 1.04 \times 10^{19} \, \mathrm{cm}^3$.

Slide 1-20

1.8.2 The Fermi Level and Carrier Concentrations

Where is E_f for $n = 10^{17}$ cm⁻³? And for $p = 10^{14}$ cm⁻³?

Solution: (a) $n = N_c e^{-(E_c - E_f)/kT}$

$$E_c - E_f = kT \ln(N_c/n) = 0.026 \ln(2.8 \times 10^{19} / 10^{17}) = 0.146 \text{ eV}$$

(b) For $p = 10^{14} \text{cm}^{-3}$, from Eq.(1.8.8),

 $E_f - E_v = kT \ln(N_v/p) = 0.026 \ln(1.04 \times 10^{19} / 10^{14}) = 0.31 \text{ eV}$

(a) $E_v = \frac{0.31 \text{ eV}}{0.000 \text{ (b)}}$

Slide 1-21

1.8.2 The Fermi Level and Carrier Concentrations E_c 300K 400K $n = N_c e^{-(E_c - E_f)/kT}$ $E_f = E_c - kT \ln(N_c/n)$ 400K E_v $10^{13} \quad 10^{14} \quad 10^{15} \quad 10^{16} \quad 10^{17} \quad 10^{18} \quad 10^{19} \quad 10^{20}$ $N_a \text{ or } N_d \text{ (cm}^3)$ Slide 1-22

1.8.3 The np Product and the Intrinsic Carrier Concentration

Multiply $n = N_c e^{-(E_c - E_f)/kT}$ and $p = N_v e^{-(E_f - E_v)/kT}$

$$np = N_c N_v e^{-(E_c - E_v)/kT} = N_c N_v e^{-E_g/kT}$$

$$np = n_i^2$$

$$n_i = \sqrt{N_c N_v} e^{-E_g/2kT}$$

- In an intrinsic (undoped) semiconductor, $n = p = n_i$.
- n_i is the *intrinsic carrier concentration*, $\sim 10^{10}$ cm⁻³ for Si.

Slide 1-23

EXAMPLE: Carrier Concentrations

Question: What is the hole concentration in an N-type semiconductor with $10^{15}\,\mathrm{cm^{-3}}$ of donors?

Solution: $n = 10^{15} \text{ cm}^{-3}$

$$p = \frac{n_i^2}{n} \approx \frac{10^{20} \text{ cm}^{-3}}{10^{15} \text{ cm}^{-3}} = 10^5 \text{ cm}^{-3}$$

After increasing T by 60 °C, n remains the same at 10^{15} cm⁻³ while p increases by about a factor of 2300 because $n_i^2 \propto e^{-E_g/kT}$.

Question: What is n if $p = 10^{17} \text{cm}^{-3}$ in a P-type silicon wafer?

Solution: $n = \frac{n_i^2}{p} \approx \frac{10^{20} \,\mathrm{cm}^{-3}}{10^{17} \,\mathrm{cm}^{-3}} = 10^3 \,\mathrm{cm}^{-3}$

1.9 General Theory of n and p

EXAMPLE: Complete ionization of the dopant atoms

 $N_d = 10^{17}$ cm⁻³. What fraction of the donors are not ionized?

Solution: First assume that all the donors are ionized.

$$n = N_d = 10^{17} \text{ cm}^{-3} \Rightarrow E_f = E_c - 146 \text{meV}$$

$$\frac{\sqrt{45 \text{meV}} \sqrt{146 \text{ meV}}}{-1 - 1 - 1 - 1 - 1 - 1} \frac{146 \text{ meV}}{E_f}$$

Probability of not being ionized
$$\approx \frac{1}{1 + \frac{1}{2}e^{(E_d - E_f)/kT}} = \frac{1}{1 + \frac{1}{2}e^{((146 - 45)\text{meV})/26\text{meV}}} = 0.04$$

Therefore, it is reasonable to assume complete ionization, i.e., $n = N_d$

Slide 1-25

Slide 1-27

1.9 General Theory of n and p

Charge neutrality:
$$n + N_a = p + N_d$$

$$np = n_i^2$$

$$p = \frac{N_a - N_d}{2} + \left[\left(\frac{N_a - N_d}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$n = \frac{N_d - N_a}{2} + \left[\left(\frac{N_d - N_a}{2} \right)^2 + n_i^2 \right]^{1/2}$$

Slide 1-26

1.9 General Theory of on n and p

I.
$$N_d - N_a \gg n_i$$
 (i.e., N-type)
$$n = N_d - N_a$$
$$p = n_i^2 / n$$

If $N_d >> N_a$, $n = N_d$ and $p = n_i^2 / N_d$

II.
$$N_a - N_d \gg n_i$$
 (i.e., P-type)
$$p = N_a - N_d$$

$$n = n_i^2 / p$$

If $N_a >> N_d$, $p = N_a$ and $n = n_i^2 / N_a$

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

EXAMPLE: Dopant Compensation

What are n and p in Si with (a) $N_d=6\times10^{16}~{\rm cm}^{-3}$ and $N_a=2\times10^{16}~{\rm cm}^{-3}$ and (b) additional $6\times10^{16}~{\rm cm}^{-3}$ of N_a ?

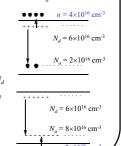
(a)
$$n = N_d - N_a = 4 \times 10^{16} \,\mathrm{cm}^{-3}$$

 $p = n_i^2 / n = 10^{20} / 4 \times 10^{16} = 2.5 \times 10^3 \text{ cm}^{-3}$

(b) $N_a = 2 \times 10^{16} + 6 \times 10^{16} = 8 \times 10^{16} \text{ cm}^{-3} > N_d$

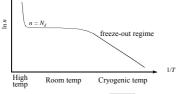
 $p = N_a - N_d = 8 \times 10^{16} - 6 \times 10^{16} = 2 \times 10^{16} \,\mathrm{cm}^{-3}$

 $n = n_i^2 / p = 10^{20} / 2 \times 10^{16} = 5 \times 10^3 \,\mathrm{cm}^{-3}$



Slide 1-28

1.10 Carrier Concentrations at Extremely High and Low Temperatures



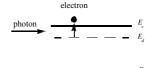
high T: $n = p = n_i = \sqrt{N_c N_v} e^{-E_g/2kT}$

low T: $n = \left[\frac{N_c N_d}{2} \right]^{1/2} e^{-(E_c - E_d)/2kT}$

Slide 1-29

Infrared Detector Based on Freeze-out

- •To image the black-body radiation emitted by tumors requires a photodetector that responds to $h\nu$'s around 0.1 eV.
- •In doped Si operating in the freeze-out mode, conduction electrons are created when the infrared photons provide the energy to ionized the donor atoms.



1.11 Chapter Summary

Energy band diagram. Acceptor. Donor. m_n, m_p . Fermi function. E_f .

$$n = N_c e^{-(E_c - E_f)/kT}$$

$$p = N_v e^{-(E_f - E_v)/kT}$$

$$n = N_d - N_a$$

$$p = N_a - N_d$$

$$np = n_i^2$$