Bohr’s Model, Energy Bands,
Electrons and Holes

Dual Character of Material Particles

Experimental physics before 1900 demonstrated that most of the physical phenomena
can be explained by Newton's equation of motion of material particles or bodies and
Maxwell's equation of electromagnetic waves and light. These are known as ‘classical
physics’.

For example, the motion of mechanical objects on earth, celestial bodies, and gas
molecules could all be predicted by Newton's equation of motion and classical
statistical mechanics (the kinetic theory of gases).

For another example, the wave nature of light, suggested by Young's diffraction
experiments in 1803, could be explained by Maxwell's electromagnetic wave
equations which connected the optical phenomena with electrical phenomena.

A list of key advances is given in the next slide.

We will discuss the basic physics and the consequences of the Bohr atom model in
more details. We will give an experimental and physics based derivation of the
Schrodinger wave equation and several solutions that are useful in semiconductor
device analyses.




Experiments on the Dual Properties of Material Particles and Light

Wave or _Page No. of Ref. Books
DESCRIPTION OF EXPERIMENT Particle
LAl 1]
1803 Young Diffraction of Light. w 710-711 994
1912 Lave Diffraction of Light, w 729 1057
1900 Planck Black body radiation, E=hv, P 298-301*  8-21 1091
1904 Einstein Photoelectric effect. P 756-757  31-38 1096
1923 Compton Compton effect (X-ray scattered P 769 3845 1100
electron in graphite target).
1908 Ritz- Combination principle of D 757-759  106-109 1118
Rydberg atomic spectra.
1907 Elnstein Specific heat of crystalline solid D 284-285% 421-425
1912 Debye Specific heat of crystalline solid D
1913 Frank- Frank-Hertz experiments, quantized D 118-121
Hertz atomic states, electron absorption
by gas-vapor.
1913 Bohr Bohr atom. Quantized angular D 759-762 109-118 1105
angular momentum,
1922 Stern- Electron spin. D 296-302 813*
Gerlach
1925 Uhlenbeck  Electron spin. D
Goldsmith
1924 de Broglie de Broglie hypothesis, A=h/p. w.P 769 63,77 117
1925 Pauli Exclusion Principle. D 775 334,346
Atomic Structure. D 775-179
1926 Schrddinger Schrddinger Equation. w (See section 142.)
1927 Helsenberg  Uncertainty Principle and w.P 72-77.85 1125
matrix quantum mechanics.
1927 Davisson- Electron diffraction by crystal w 769 63-70 1118-
Germer 1120
1928 GP Thomson Electron diffraction by crystal w
Description of the abbreviations in the previous slide
W = Wave-like
P = Particle-like
D = Discrete values
SZY = Sears,Zemansky,Young, University Physics, 5th ed. (Freshman-Sophomore
General Physics textbook.)
ER = Eisberg.Resnick, Quantum Ph of Atoms, Molecules, Solids
Nuclel and Pa es, N printing (Sophomore-Junior Modern
ySicS text .
HR = Halliday.Resnick, Ph . 3rd ed. (1978) (Freshman-Sophomore
General Physics tex b
. -

Description of basic physics is inadequate.




Quantum Concept and Blackbody Radiation

It is a well-known fact that a solid object will glow or give off light if it is heated to
a sufficiently high temperature. Actually, solid bodies in equilibrium with their
surroundings emit a spectrum of radiation at all times. When the temperature of the
body is at or below room temperature, however, the radiation is almost exclusively
in the infrared and therefore not detectable by the human eye.

Various attempts to explain the observed blackbody spectrum were made in the
latter half of the 19th century. In 1901 Max Planck provided a detailed theoretical fit
to the observed blackbody spectrum.

The explanation was based on the then-startling hypothesis that the vibrating atoms
in a material could only radiate or absorb energy in discrete packets.

Planck postulated that thermal radiation is emitted from a heated surface
in discrete packets of energy called quanta. The energy of these quanta is

given by E = hv

where v is the frequency of the radiation and h is a constant now know known
as Plank’s constant (h = 6.625 x 10734 J-s).
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Figure 2.1 Wavelength dependence of the radiation emitied by a blackbody heated 10 300 K,
1000 K, and 2000 K. Note that the visible portion of the spectrum is confined to wavelengths
04 pm % A = 0.7 um. The dashed line is the predicted dependence for T = 2000 K based on
classical considerations.




Photoelectric Effect
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Figure 2.1 (a) The photoelectric eftect and (b} the maximurm Kinetic energy of
the photoclectron as a function of incident frequency.

In 1905, Einstein interpreted the photoelectric results by suggesting that the energy
in a light wave is also contained in discrete packets or bundles. The particle-like
packet of energy is called a photon, whose energy is also given by

A photon with sufficient energy, then, can knock an electron from the surface of
the material. The minimum energy required to remove an electron is called the
work function of the material and any excess photon energy goes into the kinetic
energy of the photoelectron. This result was confirmed experimentally as
demonstrated in the figure above.

The photoelectric effect shows the discrete nature of the photon and demonstrates
the particle-like behaviour of the photon. The maximum kinetic energy of the
photoelectron can be written as

Tiax = §m'u2 = hv — hiy

where hv is the incident photon energy and hiy is the minimum energy, of work
function, required to remove an electron from the surface.
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Figure 2.11{a} The photoelectric eftect and (b} the maximum Kinetic energy of
the photoelectron as a function of incident frequency.

EXAMPLE 2.1

Objective
To calculate the photen energy corresponding to a particular wavelength.
Consider an x-ray with a wavelength of A = 0.708 x 10~% ¢m.

| Solution
The energy is
he  (6.625 x 107™)(3 x 10'Y
E=hv=— —_— =281 x 15
=X 0.708 x 10-% ne =]
This value of energy may be given in the more common unit of electron-volt (see Appendix F).
We have
281 x 107"

E= e = 175 x 10"V

B Comment
The reciprocal relation between photon energy and wavelength is demonstrated: A large en-
ergy corresponds to a short wavelength.
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Figure 2.4 | The electromagnetic frequency spectrum.

Wave-Particle Duality

We have seen that light waves, in the photoelectric effect, behave as if they are
particles. The particle-like behavior of electromagnetic waves was also instru-
mental in the explanation of the Compton effect. In this experiment, an x-ray
beam was incident on a solid. A portion of the x-ray beam was deflected and
the frequency of the deflected wave had shifted compared to the incident wave.
The observed change in frequency and the deflected angle corresponded exactly
to the expected results of a “billiard ball” collision between an x-ray quanta, or
photon, and an electron in which hoth energy and momentum are conserved.

In 1924, De Broglie postulated the existence of matter waves. He suggested that
since waves exhibit particle-like behavior, then particles should be expected to
show wave-like properties. The hypothesis of De Broglie was the existence of a
wave-particle duality principle. The momentum of a photon is given by

_h
P=3

where A is the wavelength of the light wave.




Then, De Broglie hypothesized that the wavelength of a particle can be ex-
pressed as

p  mv

where p is the momentum of the particle and A is known as the De Broglie
wavelength of the matter wave.

The Planck and De Broglie relationships are fundamental in quantum physics
and are valid for all situations and objects, including photons and electrons.
They connect the wave description of phenomena (frequency and wavelength) to
a particle description (energy and momentum). The relation between frequency
and wavelength, known as the dispersion relationship, however, is not the same
for different objects. For example, for photons, the wavelength () is related to
frequency by A = ¢/v, where ¢ is the speed of light. For electrons, it is a different
relationship, known as the band structure, which will be discussed later.

EXAMPLE 2.2 ObjECliVB

To calculate the de Broglie wavelength of a particle.
Consider an electron traveling at a velocity of 107 cmisec = 107 mis.

W Solution
The momentum is given by
p=mv= (01l x 10 (10°) =9.11 2 107 #

Then. the de Broglie wavelength 1s

h o 6625 x 107
A i == 075 1070
P 90l x 10-% wem

or
r=727A
m Comment

This calculation shows the order of magnitude of the de Broglie wavelength for a “typical”
electron.




The Uncertainty Principle

The Heisenberg uncertainty principle, given in 1927, applies primarily to very
small particles, and states that we cannot describe with absolute accuracy the
behaviour of these subatomic particles. The uncertainty principle describes a
fundamental relationship between conjugate variables, including position and
momentum and also energy and time.

The first statement of the uncertainty principle is that it is impossible to si-
multaneously describe with absolute accuracy the position and momentum of a
particle. If the uncertainty in the momentum is Ap and the uncertainty in the
position is Az, then the uncertainty principle is stated as

ApAz > h

2
where 1 is defined as i = h/2m = 1.054 x [073* J-s and is called a modified
Planck’s constant. The second statement of the uncertainty principle is that it
is impossible to simultaneously describe with absolute accuracy the energy of a
particle and the instant of time the particle has this energy:

AEAt > g

One way to visualize the uncertainty principle is to consider the simultaneous
measurement of position and momentum, and the simultaneous measurement
of energy and time. The uncertainty principle implies that these simultaneous
measurements are in error to a certain extent. However, the modified Planck’s
constant /i is very small; the uncertainty principle is only significant for sub-
atomic particles. We must keep in mind nevertheless that the uncertainty prin-
ciple is a fundamental statement and does not deal only with measurements.

One consequence of the uncertainty principle is that we cannot, for example,
determine the exact position of an electron. We will, instead, determine the
probability of finding an electron at a particular position.




The Bohr Model

The results of emission spectra experiments led Niels Bohr to construct a model
for the hydrogen atom, based on the mathematics of planetary systems. If the
electron in the hydrogen atom has a series of planetary-type orbits available to
it, it can be excited to an outer orbit and then can fall to any one of the inner
orbits, giving off energy. To develop the model, Bohr made several postulates

1. Electrons exist in certain stable, circular orbits about the nucleus.

2. The electron may shift to an orbit of higher or lower energy, thereby
gaining or losing energy equal to the difference in the energy levels (by
absorption or emission of a photon of energy hv).

3. The angular momentum py of the electron in an orbit is always an integral
multiple of the modified Planck’s constant f,

pe = mur = nh n=12...

The geometrical interpretation is that the electron wave is a standing
wave around the nucleus. Thus, the circumference of the orbit must be
an integer number of wave length, 27r = nA.

If we visualize the electron in a stable orbit of radius r about the proton of the
hydrogen atom, we can equate the electrostatic force between the charges to the

centripetal force:

. mv?

dmeqr? r

Using the angular momentum equation, we arrive at

dregn?h?
Ty = ———— and

U= 4megnh




Therefore, the kinetic energy of the electron is

_Llos__ m¢ _
EK—§m’U —W ...K—47T€U

The potential energy is the product of the electrostatic force and the distance

between the charges

P ¢ o mg
P T K T T K202R?

Thus, the total energy of the electron in the n-th orbit is

mq?

BT

The critical test of the model is whether energy differences between orbits cor-
respond to the observed photon energies of the hydrogen spectrum. The energy
difference between orbits n; and ns is given by

4
mq 1 1
Eﬂz_Em:T o2 2
2K2R° \ny n3

n; are the major quantum numbers.
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Figure 2-8

Electronic structure and energy levels in a Si atom: (a) The orbital model of a Si atom showing the 10
core electrons (n = 1 and 2), and the 4 valence electrons [n = 3); (b) energy levels in the coulombic po-
tential of the nucleus are also shown schematically.
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Schrodinger's Equation
2.4.2 The Schrédinger Wave Equation

There are several ways to develop the wave equation by applying quantum con-
cepts to various classical equations of mechanics. One of the simplest approaches
is to consider a few basic postulates, develop the wave equation from them, and
rely on the accuracy of the results to serve as a justification of the postulates. In
more advanced texts these assumptions are dealt with in more convincing detail.

Basic Postulates

1. Each particle in a physical system is described by a wave function
W(x, 3, z, 1). This function and its space derivative (¥/ax + W/ay +
dW/dz) are continuous, finite, and single valued.

2. Indealing with classical quantities such as energy E and momentum
P, we must relate these quantities with abstract quantum mechanical
operators defined in the following way:

Classical variable Quantum operator
X X
flx) f(x)
p(x) ? %
E -7’? :

and similarly for the other two directions.

3. 'The probability of finding a particle with wave function ¥ in the vol-
ume dx dy dz is WV dx dy dz.2 The product ¥"¥ is normalized ac-
cording to Eq. (2-20) so that

I WY drdy dz =1

and the average value (Q) of any variable Q is calculated from the
wave function by using the operator form Q,, defined in postulate 2:

@=[ veo,vadyd

Once we find the wave function W for a particle, we can calculate its
average position, energy, and momentum, within the limits of the uncer-
tainty principle. Thus, a major part of the effort in quantum calculations in-
volves solving for ¥ within the conditions imposed by a particular physical
system. We notice from assumption 3 that the probability density function
is ¥, or [W

11



The Schrodinger equation
is a wave equation. Many
experiments suggested
that particles behave like
waves and this behavior
is more pronounced as
the particles get smaller.
A wave equation taking
into account potential
effects was introduced
by Schrodinger as

Time Dependent Schrodinger
Equation

The time dependent Schrodinger equation for one spatial dimension is of the forr

-0 *W(x,1) . OW(x,1)
—— "+ U(x)W(x,1) = ih————
2m  ox’ ¥ (xn=i or

|For a free particle where U(x) =0 the wavefunction solution can be put in the

fform of a plane wave

‘P(.l’,-“) = Aeikr~iwt

|For other problems, the potential U(x) serves to set boundary conditions on the
|spatial part of the wavefunction and it is helpful to separate the equation into the
{time-independent Schrodinger equation and the relationship for time evolution of
the wavefunction

=it IV o = PR
at 2m  dx*

Time evolution Time independent equation

2.4.3 Potential Well Problem

It is quite difficult to find solutions to the Schrédinger equation for most re-
alistic potential fields. One can solve the problem with some effort for the hy-
drogen atom, for example, but solutions for more complicated atoms are
hard to obtain. There are several important problems, however, which illus-
trate the theory without complicated manipulation. The simplest problem is
the potential energy well with infinite boundaries. Let us assume a particle
is trapped in a potential well with V(x) zero except at the boundaries x =
and L, where it is infinitely large (Fig, 2-5a):

Vix)=0, 0<x<L

2-28
V(x)::e, x=0,L ( )
Inside the well we set V(x) = 0in Eq. (2-27):
d(x)  2m .
Tﬁ”’?‘m’(’):o' 0<x<L (2-29)
T 1
B e o u
=10 x=a
(a)
0 x
0 a

(b}

12
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Figure 2.4 Particle in an infinitcly deep onc-dimensional potential well. (a) Spatial
visualization of the particle confinement. (b) The assumcd potential energy versus position
dependence. (¢) First four allowed energy levels. (d) Wavefunctions and (c) [i¥]* associated with
the first four energy levels. & is proportional to the probability of finding the particic at a given
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Figure 2.5 Allowed infinite-well particle energy versus counterpropagating wave momentum
(discrete points) referenced against the free particle E—(p) relationship.
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2.4.4 Tunneling

The wave functions are relatively easy to obtain for the potential well with
infinite walls, since the boundary conditions force i to zero at the walls. A
slight modification of this problem illustrates a principle that is very im-
portant in some solid state devices —the quantum mechanical tunneling of
an electron through a barrier of finite height and thickness. Let us consid-
er the potential barrier of Fig. 2-6. If the barrier is not infinite, the bound-
ary conditions do not force ¥ to zero at the barrier. Instead, we must use
the condition that s and its slope d/dx are continuous at each boundary of
the barrier (postulate 1). Thus & must have a nonzero value within the bar-
rier and also on the other side. Since W has a value to the right of the barri-
er, " exists there also, implying that there is some probability of finding
the particle beyond the barrier. We notice that the particle does not go over
the barrier; its total energy is assumed to be less than the barrier height Vi,
The mechanism by which the particle “penetrates™ the barrier is called tun-
neling. However, no classical analog, ing classical ip of tun-
neling through barriers, in appropriate for this effect. Quantum mechanical

¥y (x)

Vi)

(a)

(b)

L L+W  x

Exponential decrease
7 inside barrier

‘,_f: #* 0 beyond barrier
- w ol -

(a)

(b)

Figure 2.9 (a) Sketch of the wavefunction associated with the lowest energy state of a particle
in a finite potential well. The sketch emphasizes (he finite value of the wavefunction external to

the well. (b) Visualization of tunneling through a thin barrier.
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2.5.1 The Hydrogen Atom

Finding the wave functions for the hydrogen atom requires a solution of the
Schrédinger equation in three dimensions for a coulombic potential field.
Since the problem is spherically symmetric, the spherical coordinate system
is used in the calculation (Fig. 2-7). The term V(x, y, z) in Eq. (2-24) must be
replaced by V(r, 8, $), representing the Coulomb potential which the electron
experiences in the vicinity of the proton. The Coulomb potential varies only
with r in spherical coordinates

2
V(r, 8, 6) =V(r) = — (dme,) ! i,- (2-36)
as in Eq. (2-14).

Figure 2-7
The spherical co-
ordinate system

When the separation of variables is made, the time-independent equa-
tion can be written as

ulr, 8. ) = RINO(B)D(4) (2-37)

By similar treatments, the functions R(r) and ©(8) can be obtained,
each being quantized by its own selection rule. For the r-dependent equa-
tion, the quantum number n can be any positive integer (not zero), and for
the 6-dependent equation the quantum number / can be zero or a positive
integer. However, there are interrelationships among the equations which
restrict the various quantum numbers used with a single wave function W,,,:

Yol 8, 6) = R, (19,(8)d, () (2-45)

These restrictions are summarized as follows:
n=1,23,... (2-46a)
1=0,1,2,...,(n—1) (2-46b)
m=—4...,,-2,~-1,0,+1,+2,...,+1 (2-46¢)

In addition to the three quantum numbers arising from the three parts
of the wave equation, there is an important quantization condition on the
“spin” of the electron. Investigations of electron spin employ the theory of
relativity as well as quantum mechanics; therefore, we shall simply state that
the intrinsic angular momentum s of an electron with \s,,,, specified is

fi
e
2
‘That is, in units of #, the electron has a spin of % and the angular mo-
mentum produced by this spin is positive or negative depending on whether
the electron is “spin up” or “spin down.” The important point for our dis-
cussion is that each allowed energy state of the electron in the hydrogen
atom is uniquely described by four quantum numbers:n,{, m and s.*

s= (2-47)

15



Table 2-1 Quantum numbers to n = 3 and allowable states for the electron in a
hydrogen atom: The first four columns show the various combinations of quantum
numbers allowed by the selecfion rules of Eg [2-46); the last two columns indicate
the number of allowed states (combinations of n, 2, m, and s) for each I (subshell)
and n (shell, or Bohr orbit).

Allowable states Allowable states !
n T m s/t in subshell in complete shell |
1 0 0 +1 2 2
2 0 0 L 2
1
1 1 x3 8
0 2% 6
1
} 1 + =
3 0 0 +1 2
+1
1 ) * 12
0 = % 6
1 =3
i 1
2 -2 = 15 1
+1 |
-1 > ZI
| 0 = f 10
| 1 - %
2 x5

electronic structures which is commonly used instead of such a table. The only
new convention to remember in this notation is the naming of the I values:

electronic structures which is commonly used instead of such a table. The only
new convention to remember in this notation is the naming of the I values:

1=0,1,2,3.4,...
s.p.d.fg.-..

This convention was created by early spectroscopists who referred to
the first four spectral groups as sharp, principal, diffuse, and fundamental.
Alphabetical order is used beyond f£ With this convention for I, we can write
an electron state as follows:

—6 electrons in the 3p subshell
/3p°

m=3 L@=1

For example, the total electronic configuration for Si (Z = 14) in the
ground state is

15%25%2p%35%3p°

16



Table 2-2  Electronic configurations for atoms in the ground state.

]
n=1 2 3 4
1=0 0L|o 1 2]01
Atomic Is | 252p | 3s3p 3d|d4sdp
number Ele-
(Z) ment Number of electrons Shorthand notation
1 H 1 1s!
2 He 2 152
3 Li 1 152 251
4 Be 2 152 252
s B 21 152 252 2p!
6 C helium core, | 2 2 152 252 2p?
Fl N 2electrons | 2 3 152 252 2p3
8 O 2 4 1s? 252 2p*
9 F % 5 152 252 2pS
10 Ne 26 152 252 2p6
|
| 11 Na 1 [Ne] 3!
2 M 2 3s
5 A z 1 3s2 3p!
4 S neon core, 2 2 352 3p2
15 P | 10 electrons 23 352 3p3
6 s | 2 4 352 3p4
17 a 25 352 3ps
18 Ar 2 6 3s2 3pé
l 19 K ! (A 45!
W Ca 2 a2
21 Se 1]2 34 4s2
2 T 2| 2 3d? 45
23 v ij2 3d3 452
24 Cr 511 3d5 45!
25 Mn 512 3d5 4s?
2% Fe 6|2 3dS 452
277 Co argon core, 712 3d7 452
28 Ni 18 electrons 8|2 3d8 452
29 Cu 10 |1 3d10 451
30 Zn 10 |2 3d10 452
3 Ga 1021 3d10 452 4p1
32 Ge 102 2 3d0 452 4p2
33 As 10 2 3 3d'0 452 4p3
34 Se 102 4 3d10 452 4pt
LS 1025 3d10 452 4p°
1026 3d10 452 4p°
Ionization or Zero Energy Lovel
Distance
| i
Valence
‘/" Orbits
\
R First Excitation Level - Vlence Level
= Orbits —
!
~.

=~ First
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~
Nudleus i
+14
+14
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Figure 2-8

Electronic structure and energy levels in a Si atom: (a) The orbital model of a Si atom showing the 10
core electrons (n = 1 and 2), and the 4 valence electrons [n = 3); [b) energy levels in the coulombic po-
tenticl of the nucleus are also shown schematically.
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* Thus, the operation of interchanging two particles is represented

by multiplying the wave function by a phase factor, ®.
However, if we interchange the particles twice, we get back to
the exact situation we started with. This implies that:

e?®=1  and hence ed=4]

Both cases ¢® = +1 and e'®=—1 are realized in nature: in the first
case, we say that the wave function is symmetric with respect to
the interchange of two particles; in the second case, we say that
the wave function is anti symmetric. Note that the wave function
only need be symmetric or anti symmetric if the two particles
are indistinguishable.

Particles for which the wave function is antisymmetric under
interchange of any two of the particles are called fermions.
Particles for which the wave function is symmetric under
interchange of any two of the particles are called bosons.

It can be shown, from quantum field theory, that particles with
half-integer spin are always fermions, whereas particles with
integer spin are always bosons.

Conclusion: when 2 atoms with the same states come together
the Schrodinger eqn. shows that the Pauli Exclusion principle
is valid in that a band of 2 states is formed as shown by their
two separate wave functions.
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Figure 3.1  (a) One-dimensional erystalline lattice. (b—d) Potential energy of an electron inside
the lattice considering (b) only the atomic core at x = 0, (¢} the atomic cores at both x = 0 and
x = a, and (d) the entire lattice chain.
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Figure 3-3

Energy levels in Si as a function of interatomic spacing. The core levels (n = 1,2) in Si are completely
filled with electrons. At the actual atomic spacing of the crystal, the 2N electrons in the 3s subshell and
the 2N electrons in the 3p subshell undergo sp* hybridization, and all end up in the lower 4N stales [va-
lence band), while the higherlying 4N states (conduction band) are empty, separated by a band gap.
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Figure 3-4
Typical band
struciures at O K.

Empty

Partially
filled

Insulator Semiconductor Metal

Direct and Indirect Bandgaps

* The band gaps in semiconductors come in two flavors —
direct and in direct. An indirect band gap material like Si
usually releases energy as heat while a direct band gap
material releases energy as light. In III - V ternary and
quaternary alloys we can get both behaviors as the alloy
composition is varied.

E E Figure 3-5
T Direct and indi-

rect electron
transilions in
semiconducors:
{a) direct transi
fion with occom-

E; é ponying photon
¢

emission; (b} indi-
rect transifion via
a delect level.

(a) Direct (b) Indirect
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* For GaAs and AlAs we can create a ternary compound
Al Ga, As and vary the % x to go from the first to the
second giving

* For small Al % I' is the min
energy while at about 37%

Band gap coergy (V)

X becomes minimal.

&

[] 02 [ [ 08 10
Aluminum fraction, x

Energy Band Model

® Energy states of Si atom (a) expand into energy bands of Si crystal (b).
® The lower bands are filled and higher bands are empty in a semiconductor.

® The highest filled band is the valence band.
® The lowest empty band is the conduction band .
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Energy Band Diagram

Conduction band

By

Band gap

Y

Valence band

¢ Energy band diagram shows the bottom edge of conduction band,
E. , and top edge of valence band, E, .

e E; and E, are separated by the band gap energy, E, .

Measuring the Band Gap Energy by Light Absorption

photon energy: hv > Eg4

electron
.

photons

hole

Ec

* B4 can be determined from the minimum energy (hv) of
photons that are absorbed by the semiconductor.

Bandgap energies of selected semiconductors

Semi-
conductor InSb Ge Si GaAs GaP ZnSe |Diamond
Eg (eV) 0.18 0.67 1.12 1.42 2.25 2.7 6
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Donor and Acceptor in the Band Model

Conduction Band ¢ E.
DonorLevel A "Ed
Donor ionization energy

Acceptor ionization energy
Acceptor Level

f =
Valence Band

lonization energy of selected donors and acceptors in silicon

Donors Acceptors

Dopant Sb P As B Al In

Tonization energy, E .—E 4 orE ;—Ey (meV) 39 44 54 45 57 | 160

Semiconductors, Insulators, and Conductors

E.
Top of
conduction band
E. Eg=9eV empty
Es=1.1eV filled
Ev Ev e E
Si (Semiconductor) SiO2 (Insulator) Conductor

® Totally filled bands and totally empty bands do not allow
current flow. (Just as there is no motion of liquid in a
totally filled or totally empty bottle.)

® Metal conduction band is half-filled.

® Semiconductors have lower E 's than insulators and can be
doped. g




Electrons and Holes

o
[ .
T electron kinetic energy

increasing electron energy
increasing hole energy

l hole kinetic energy
' o

® Both electrons and holes tend to seek their lowest
energy positions.

¢ Electrons tend to fall in the energy band diagram.
® Holes float up like bubbles in water.

* For a semiconductor like Si at 0°k, the valence band is full and

the conduction band is empty. As we increase the temperature,
some electrons will acquire enough energy (on avg.) to reach
the conduction band leaving a hole behind. We have thus
formed an electron-hole pair.

If a field is applied
Electrons -> current in the conduction band
Holes  -> - current in the valence band
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» The one to one nature of things shows there is no net current in
this situation.

* Thus in Si at various temperatures there is an avg. number of
Electron (n) — Hole (p) pairs formed and

n=p-=n,
where 1 stands for intrinsic (un doped) Si.

+ Since we have said there is no net current this is not very
helpful. To get a current requires doping - later.

» Some other thoughts on intrinsic Si are that the rate of
generation of E-H pairs and their ultimate re combination rate
should be equal at a given temp.

* Note the term generation means generation over and above the
equilibrium value which would be the intrinsic number.

* As aside note it must be made clear that masses when used in
the Quantum mechanical form are now effective masses. We
should also note that effective masses are slightly different for
electrons and holes but this difference is small enough such
that we ignore it.
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Intrinsic Material

Since the electrons and holes are created in pairs, the conduction band
electron concentration # (electrons per cm?) is equal to the concentration of
holes in the valence band p (holes per cm®). Each of these intrinsic carrier
concentrations is commonly referred 10 as n, Thus for intrinsic material

n=p=n, (3-6)

Al a given temperature there is a certain concentration of electron -
hole pairs n;, Obviously, if a steady state carrier concentration is maintained,
there must be recombinarion of EHPs at the same rate at which they are gen-
erated. Recombination occurs when an electron in the conduction band
makes a transition (direct or indirect) to an empty state (hole) in the valence
band, thus annihilating the pair. If we denote the generation rate of EHPs as
¢ (EHP/cm*-s) and the recombination rate as r,, equilibrium requires that

n=g (3-Ta)

Each of these rates is temperature dependent. For example, g,(7) in-
creases when the temperature is raised, and a new carrier concentration »; is
established such that the higher recombination rate 7,(T) just balances gen-
eration. At any temperature, we can predict that the rate of recombination
of electrons and holes r; is proportional to the equilibrium concentration of
electrons ny and the concentration of holes pg:

T = aopy = onf = g (3-7h)

The factor «, is a constant of proportionality which depends on the particu-
lar mechanism by which recombination takes place. We shall discuss the cal-
culation of #; as a function of temperature in Section 3.3.3; recombination
processes will be discussed in Chapter 4.

Figure 3-12 - f o e
gy bond [ - I gy
model and chemi « "E"‘"_"-_—_—_“_ VT
cal bond model of i d

dopants in semi-
conduclors: (a)
donalion of elec-
trons from donor
level to conduc-
tion band; (b) ac-
ceplance of
valence band
electrons by an
acceptor level,
and the resulting
creation of holes;
() donor and ac-
ceptor atoms in
the covalent bond-
ing model of a Si
crystal.

(2)

(b)
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Thermal Equilibrium and the Fermi Function

An Analogy for Thermal Equilibrium

Sand particles

e There is a certain probability for the electrons in the
conduction band to occupy high-energy states under
the agitation of thermal energy.

Probability of a State at E being Occupied

*There are g, states at E,, g, states at #| %« | LI

E,... There are N electrons, which .
constantly shift among all the states

but the average electron energy is

fixed at 3kT/2. S L)L
*There are many ways to distribute |- L1101

N among n,, n,, n,....and satisfy the [ & 0 Q0

3kT/2 condition. 1234 ...g

*The equilibrium distribution is the distribution that
maximizes the number of combinations of placing n, in g,

slots, n, in g, slots.... : . I
ni/gi = 1 + o E-EJ/KT

Ep is a constant determined by the condition Z”: =N
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Fermi Function—The Probability of an Energy State Being
Occupied by an Electron

f(E) = 1 E; is called the Fermi energy or
1y RN the Fermi level.

Boltzmann approximation:

E
| e By~ BN g
-
= F(EY~1- o B BN E_E <<—kT
g |
Z* 32:: - Remember: there is only
L If @~1- | e Fermi-levelin a system

f( at equilibrium.

E)

Figure 3-14
The Fermi-Dirac
distribution
function

_/"T"
& E ;‘f E
B } VT e 4
. j F— \/ Vi ~ "
B l/ ~ | Nt )T i
el | L
/ | | |
A T — L E,
Lo Lo j
S . e ST
Gy 1 120 f(By 1 12 0
(a) Ini (b) n-type

ARl
Figure 3-15 ﬂ I P-El E,
The Fermi distribu- ( :._L,[—J
tion function \ / /
applied to ".’_/\\“tg_:/ - ;
semiconduclors: .

(a) intrinsic materi- e T

al; [b) ntype ma- —_—

terial; (c) p-type HE) 1 0
malerial (€ piype
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E
Electrons
E. - —-E,
|
E, ' ---E,
~Holes
(a) Intrinsic L
E, - —-E,
el e e e A T R g i i E,
(b) n-type 3
NE)FE)
E. E.
E, —-—-F,
N(E)[1-f(E)]
il Carrier
N(E) f(E) concentration
Figure 3-16

Schematic band diagram, density of states, Fermi-Dirac distribution, and the carrier concentrations for
{a) infrinsic, (b) n-type, and (c) ptype semiconductors at thermal equilibrium.

Effective Mass

The electron wave function is the solution of the three
dimensional Schrodinger wave equation
h 2
-—Viy+V Ny =y Conduction band
2m o
The solution is of the form exp( £ k- r)
k = wave vector = 2n/electron wavelength

For each k, there is a corresponding E. R T
ton E L E
g
. qe d’E _F 18 kg
acceleration = YTy = -~ e
2 Valence band
effective mass = ——
d°E/dk

29



In an electric field, E, an electron or a hole accelerates.

a=—— electrons
m’i
€
a= kA holes
m

p

Electron and hole effective masses

Si Ge GaAs InAs AlAs
m,/m, 0.26 0.12 0.068 0.023 2
mp/mn 0.39 0.3 0.5 0.3 0.3
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