## Kirchhoff's Voltage and Current Laws



















































| Troublesh    | Troubleshooting                                                            |                                                                            |  |
|--------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| The effectiv | The effective troubleshooter must think logically about circuit operation. |                                                                            |  |
| Analysis:    | Und<br>find                                                                | erstand normal circuit operation and out the symptoms of the failure.      |  |
| Planning:    | Dec<br>faul                                                                | ide on a logical set of steps to find the<br>t.                            |  |
| Measurem     | ent:                                                                       | Following the steps in the plan, make measurements to isolate the problem. |  |
|              |                                                                            | Modify the plan if necessary.                                              |  |

| Example:<br>The output<br>Describe h<br>and planni | t of the voltage-divider is 6V.<br>ow you would use analysis<br>ng in finding the fault.<br>$V_{s} = \frac{R_{1}}{330 \Omega} \frac{R_{1}}{2} \frac{A}{470 \Omega} \frac{R_{2}}{2.2 k\Omega}$                                                              |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Analysis:                                          | From an earlier calculation, $V_3$ should equal <b>8.10 V</b> . A low voltage<br>is most likely caused by a low source voltage or incorrect resistors<br>(possibly $R_1$ and $R_2$ reversed). If the circuit is new, incorrect<br>components are possible. |  |  |
| Planning:                                          | Decide on a logical set of steps to locate the fault. You could decide to                                                                                                                                                                                  |  |  |
|                                                    | 1) Check the source voltage,                                                                                                                                                                                                                               |  |  |
|                                                    | 2) Disconnect the load and check the output voltage, and if it is correct,                                                                                                                                                                                 |  |  |
|                                                    | 3) Check the load resistance. If $R_3$ is correct, check other resistors.                                                                                                                                                                                  |  |  |