## **Mesh and Nodal Analysis**

Here, two very powerful analysis methods will be introduced for analysing any circuit:

1. Node analysis (Node-voltage method)

2. Mesh analysis (Mesh-current method)

These methods are based on the systematic application of Kirchhoff's laws (KVL and KCL).

## **Nodal Analysis**

- Six steps:
  - 1. Chose one node as the reference node
  - 2. Label remaining nodes  $V_1$ ,  $V_2$ , etc.
  - 3. Label any known voltages
  - 4. Apply Kirchhoff's current law to each unknown node
  - 5. Solve simultaneous equations to determine voltages
  - 6. If necessary calculate required currents





Solution: (continued) - solving these two equations gives  $V_2 = 32.34 \text{ V}$   $V_3 = 40.14 \text{ V}$ - and the required current is given by  $I_1 = \frac{V_3}{25 \Omega} = \frac{40.14 \text{ V}}{25 \Omega} = 1.6 \text{ A}$ 





4























## Choice of Techniques How do we choose the right technique? nodal and mesh analysis will work in a wide range of situations but are not necessarily the simplest methods no simple rules

 often involves looking at the circuit and seeing which technique seems appropriate