

$v = \mu \mathcal{E}$; μ has the dimensions of $v/\mathcal{E}\left[\frac{\mathrm{cm/s}}{\mathrm{V/cm}} = \frac{\mathrm{cm}^2}{\mathrm{V} \cdot \mathrm{s}}\right]$. Electron and hole mobilities of selected				
	semicon		Cata	InAg
μ_n (cm ² /V·s)	1400	3900	8500	30000
$\frac{1}{(cm^2/V_{eff})}$	470	1900	400	500

Total Current – Review of Four Current Components
$$J_{TOTAL} = J_n + J_p$$
 $J_n = J_{n,drift} + J_{n,diffusion} = qn\mu_n \mathcal{E} + qD_n \frac{dn}{dx}$ $J_p = J_{p,drift} + J_{p,diffusion} = qp\mu_p \mathcal{E} - qD_p \frac{dp}{dx}$ Slide 2-55

Rate of recombination (s⁻¹cm⁻³)

$$\frac{dn'}{dt} = -\frac{n'}{\tau}$$
 $n' = p'$
 $\frac{dn'}{dt} = -\frac{n'}{\tau} = -\frac{p'}{\tau} = \frac{dp'}{dt}$

 Slide 2-65

EXAMPLE: Photoconductors

A bar of Si is doped with boron at 10^{15} cm⁻³. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of $10^{20}/\text{s} \cdot \text{cm}^3$. The recombination lifetime is $10\mu\text{s}$. What are (a) p_0 , (b) n_0 , (c) p', (d) n', (e) p, (f) n, and (g) the np product?

Slide 2-66

