/ Chapter 2 Motion and Recombination\

of Electrons and Holes

2.1 Thermal Motion

Average electron or hole kinetic energy = ng = %mv;

L, _ [BAT _ [3x1.38x10 ®JK "*x300 K
"o\ my, 0.26 x 9.1x10 ~* kg

\ =2.3x10°m/s =2.3x10"cm/s j
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/ 2.1 Thermal Motion \
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 Zig-zag motion is due to collisions or scattering
with imperfections in the crystal.

* Net thermal velocity is zero.
» Mean time between collisions is z,,~ 0.1ps

Slide 2-33

02/05/2014



02/05/2014

mt-point Probe can determine sample doing type
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Hot |/ \/ Cold Hot "x-"" \/ Cold distinguishes N
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N P semiconductors.
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2.2.1 Electron and Hole Mobilities
@

—» &

\ « Drift is the motion caused by an electric field. j
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/ 2.2.1 Electron and Hole Mobilities

mpv = q{jfmp
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\ 4, 1s the hole mobility and 4, is the electron mobilityj
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Electron and hole mobilities of selected
semiconductors

cmls cmz}

/ 2.2.1 Electron and Hole Mobilities \

v=u&; u hasthe dimensions of v/& {

viem Vs

Si Ge GaAs InAs
u, (Cm?IV:s) 1400 | 3900 | 8500 | 30000
w1, (cm’/V:s) 470 1900 400 500

Based on the above table alone, which semiconductor and which carriers
(electrons or holes) are attractive for applications in high-speed devices?
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/ Drift Velocity, Mean Free Time, Mean Free Path \

EXAMPLE: Given u, =470 cm?/V's, what is the hole drift velocity at
&= 10° V/iem? What is t,,, and what is the distance traveled between
collisions (called the mean free path)? Hint: When in doubt, use the

MKS system of units.
Solution: v = u,& = 470 cm?/V/-s x 103 V/cm = 4.7x 10° cm/s
7, = m,/q =470 cm?/V -s x 0.39 x 9.1x10°% kg/1.6x10°C
=0.047 m?/V s x 2.2x1012 kg/C = 1x1013s = 0.1 ps

mean free path = t,, v, ~ 1x 1013s x 2.2x107 cm/s

=2.2x108cm =220 A =22 nm

W smaller than the typical dimensions of devices, but getting W
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/ 2.2.2 Mechanisms of Carrier Scattering \

There are two main causes of carrier scattering:

1. Phonon Scattering
2. lonized-Impurity (Coulombic) Scattering

Phonon scattering mobility decreases when temperature rises:

1 1 oc T2

Iup/zomm oC Tp/zomm oC . . . o 1/2
phonon density x carrier thermal velocity T xT

\

U =qTm o T \
\ Vv, € T”Z/
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Impurity (Dopant)-lon Scattering or Coulombic Scatterinh

Boron lon Electron
) @ o F
Electron ]
Arseni
lon
4

There is less change in the direction of travel if the electron zips by
the ion at a higher speed.

3 3/2
u . v, o T
impurity
N,+N, N,+N, j
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Total Mobility \
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/ Temperature Effect on Mobility \

10*
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/ Velocity Saturation \

» When the kinetic energy of a carrier exceeds a critical value, it
generates an optical phonon and loses the kinetic energy.

* Therefore, the kinetic energy is capped at large &, and the
velocity does not rise above a saturation velocity, v, .

* \elocity saturation has a deleterious effect on device speed as
shown in Ch. 6.

- /
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Hall Effect

If a magnetic field is applied perpendicular to the direction in which holes
drift in a p-type bar, the path of the holes tends to be deflected (Fig. 3-25).
Using vector notation, the total force on a single hole due to the electric and
magnetic fields is

F=g(% +v X ®B) 13-40)
In the y-direction the force is
F,= q(‘é’y - v,3,) 13-47)

The important result of Eq. (3-47) is that unless an electrie field €, is
established along the width of the bar, each hole will experience a net force
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(and therefore an acceleration) in the -y-direction due to the gv,%, product.
Therefore, to maintain a steady state flow of holes down the length of the bar,
the electric field €, must just balance the product v,

€, =3, (3-48)

so that the net force F, is zero. Physically, this electric field is set up when the
magnetic field shifts the hole distribution slightly in the -y-direction. Once
the electric field €, becomes as large as v,%,, no net lateral force is experi-
enced by the holes as they drift along the bar. The establishment of the elec-
tric field 8, is known as the Hail effect, and the resulting voltage V5 = €,w
is called the Hall voltage. If we use the expression derived in Eq. (3-37) for
the drift velocity (using +g and p, for holes), the field €, becomes

o5

(3-49)
Py

A
%,="2® =RyJB, Ry=
¥ qpy z H z H

Thus the Hall field is proportional to the product of the current densi-
ty and the magnetic flux density. The proportionality constant Ry = (gpy)™"
is called the Hall coefficient. A measurement of the Hall voltage for a known
current and magnetic field yields a value for the hole concentration p,

1 1B, (Ljwn®, LS, o
g gRy g%, q(Vap/w) qtVug

Since all of the quantities in the right-hand side of Eq. (3-50) can be
measured, the Hall effect can be used to give quite accurate values for car-
rier concentration.
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If a measurement of resistance R is made, the sample resistivity p can
be calculated:
Rwt  Ven/l, &
& =" ="t 3-51
L e e il
Since the conductivity o = 1/p is given by gp,,p,, the mobility is simply
the ratio of the Hall coefficient and the resistivity:
o 1/p Ry

e AR 1S (3-32)

Measurements of the Hall coefficient and the resistivity over a range of
temperatures yield plots of majority carrier concentration and mobility vs.
temperature. Such measurements are extremely useful in the analysis of semi-
conductor materials. Although the discussion here has been related to p-type
material, similar results are obtained for n-type material. A negative value
of g is used for electrons, and the Hall voltage V¥ 45 and Hall coefficient Ry, are
negative. In fact, measurement of the sign of the Hall voltage is a common
technique for determining if an unknown sample is p-type or n-type.
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o

EXAMPLE 3-8 Referring to Fig. 3-25, consider a I ductor bar with w = 0.1 mm,
t=10pm,and L = 5 mm. For % = 10 kg in the direction shown (1 kG = 10°°
Wh/em?) and a current of 1 mA, we have Vi = —2mV, Vep = 100 mV,

Find the type, concentration, and mobility of the majority carrier.

SOLUTION @, = 10 Whlem?

From the sign of V45, we can see that the majority carriers are elec-

trons: |

= q'(ﬁ?;;,) S 6K 151,2;’;2")(;’)( 0% - 3.125 x 10%em™
L I%v? - VZ?::X L 05;3_';1?(_3104 5 ML

g qunré  (0002)(1.6 % 101“’)(3‘125 T R Sue
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/ 2.2.3 Drift Current and Conductivity \

- _ 2 2,
Hole current density | J, = gpv Alcm? or C/cm?-sec

EXAMPLE: If p = 10'cm and v = 10*cm/s, then

J,= 1.6x1019C x 10%5cm x 10%cm/s
\ = 1.6C/s-cm?=1.6 Alcm? /
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/ 2.2.3 Drift Current and Conductivity \

L aript = 4PV = qp4,E€

Jn,drift =—qnv = qn/ung

Jarifi = Dparipe T Iparin = 0 € =(qnpy,+qpu,)€

conductivity (1/ohm-cm) of a semiconductor is

O = qnp, T gpu,
\1/0 = is resistivity (ohm-cm) j
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ﬁelationship between Resistivity and Dopant De@

DOPANT DENSITY cm?3

RESISTIVITY (Q-cm)
p =1lo
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@AMPLE: Temperature Dependence of Resis®

(a) What is the resistivity (p) of silicon doped
with 10"7cm> of arsenic?

(b) What is the resistance (R) of a piece of this
silicon material 1um long and 0.1 um? in cross-
sectional area?

Solution:

(a) Using the N-type curve in the previous
figure, we find that p = 0.084 Q-cm.

(b) R = pL/A = 0.084 Q-cm x 1 pm / 0.1 pm?

=0.084 Q-cm x 104 cm/ 1010 cm?
=84x%x104Q
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@AMPLE: Temperature Dependence of Resist@

By what factor will R increase or decrease from
T=300 K to T=400 K?

Solution: The temperature dependent factor in o (and
therefore p) is p,. From the mobility vs. temperature
curve for 10" cm3, we find that u, decreases from 770
at 300K to 400 at 400K. As a result, R increases by

170 103

400

N /
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/ 2.3 Diffusion Current \

Higher particle Lower particle
concentration concentration
Py L J *
e ®0 % e Lo e o
[ X J
* * * [ ] [ L ]
s e e, .
®
L R * L ] . * L 4
s o0 b hd
s® e M .
- ®
. @ Py ° L ] L ]
:
Direction of diffusion

\Particles diffuse from a higher-concentration location

to a lower-concentration location. /

Slide 2-53

02/05/2014

11



/ 2.3 Diffusion Current \

dn dp
Jn,difﬁtsion = an a Jp,dlﬁi[sion = _qu E

D is called the diffusion constant. Signs explained:

n p

‘ X ‘ X

—f—— clectron flow - hole flow
current flow ——m ~-€— current flow
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/I’otal Current — Review of Four Current Componenh

Jrorar =Jn T Jp

Jn - Jn,drift T Jn,difﬁtsion - C[I’Z/,lng + an T

Jp - Jp,dl”iﬁ T Jp,difusion = qp/’lpe - qu a

N /
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/ 2.4 Relation Between the Energy
Diagram and V, E

28]

(I).7eV
|

0.7
£
—
L{ N type Si }J o]

E_.and E, vary in the opposite

the voltage is lower. -

\_

dx_qu_qg > .

direction from the voltage. That "o
is, E. and E, are higher where / Ep()
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/2.5 Einstein Relationship between D and u \

N-type semiconductor n= Nce
Decreasing donor concentration E T
Ee)  —_ M dE,
kT dx
_________________ Ef
n
E) kT

\Z

Consider a piece of non-uniformly doped semiconductor.
~(E,~E;)/kT

dn — _&e—(EC—E_,»)/kT dE,

dx

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
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/2.5 Einstein Relationship between D and u \

dn n
_=— 8
ax k!
<
_ dn _ R
J, =qnu,€ +gD,— =0 atequilibrium.
dx
_ gD,
0=gnu€ — &
i€ —qn”
kT . kT
D =—pu Similarly, Dp =—Mu,
q
\ These are known as the Einstein relationship. /
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/ EXAMPLE: Diffusion Constant \

What is the hole diffusion constant in a piece of
silicon with p,= 410 cm? Vs ?

Solution:

D, = [k_TJyp =(26 mV)-410cm?*V s =11cm?/s
q

Remember: kT/g =26 mV at room temperature.

- /
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/ 2.6 Electron-Hole Recombination \

*The equilibrium carrier concentrations are denoted with
ny and py.

*The total electron and hole concentrations can be different
from ngy and p, .

*The differences are called the excess carrier

concentrations»” and p .

n=ny+n
P=potp

N /
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/ Charge Neutrality \

*Charge neutrality is satisfied at equilibrium
(n'=p'=0).

» When a non-zero »'is present, an equal p’ may

be assumed to be present to maintain charge

equality and vice-versa.

«If charge neutrality is not satisfied, the net charge

will attract or repel the (majority) carriers through

the drift current until neutrality is restored.

4

"’ Y,
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/ Recombination Lifetime \

*Assume light generates »'and p". If the light is
suddenly turned off, »"and p' decay with time
until they become zero.

*The process of decay is called recombination.
*The time constant of decay is the recombination
time or carrier lifetime, 7.

*Recombination is nature’s way of restoring
equilibrium (n' = p’' = 0).

N /
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Recombination Lifetime

7 ranges from 1ns to 1ms in Si and depends on
the density of metal impurities (contaminants)
such as Au and Pt.

*These deep traps capture electrons and holes to
facilitate recombination and are called
recombination centers.

E, ® ®
Direct '
Recombination — Y Recombination
is unfavorable in J'_ centers
silicon

N /
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Conduction band

.

Eg

(.

e T ey

Valence band

Lo,

Direct band gap

/ Direct and Indirect Band Gap \

—_ Conduction band

) Trap I%

-.—O‘-
.' ..

Valence band

gy

Indirect band gap

Example: GaAs Example: Si
Direct recombination is efficient Direct recombination is rare as k
as k conservation is satisfied. conservation is not satisfied
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/ Rate of recombination (sicm) \

an’ _ _n

dt T
nl:pf
an’ _ n'_ P
dt T
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/ EXAMPLE: Photoconductors \

A bar of Si is doped with boron at 107°cm™. It is
exposed to light such that electron-hole pairs are
generated throughout the volume of the bar at the
rate of 10°%/s-cm3. The recombination lifetime is
10us. What are (a) py, (b) ny, (c)p’, (d)n', (e) p,
(f) n, and (g) the np product?

N /
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/ EXAMPLE: Photoconductors \

Solution:

(a) What is p,?
po=N,=10%cm?3

(b) What is ny ?
ny = n?/p, = 10°cm3

(c) What is p' ?
In steady-state, the rate of generation is equal to the
rate of recombination.

10%%/s-cm? = p'/t
\ .2 p'=10%%/s-cm3 - 10-5s = 10%cm-3 /
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18



/ EXAMPLE: Photoconductors

(d) What is n'?
n'=p'=10%cm3

(e) What is p?
p=po +p'=10%cm3+ 10%5cm=3 = 2x10'5cm-3

(f) What is n?

(g) What is np?

The np product can be very different from n?.

n=ny +n'=10%m3+ 10%cm=3 ~ 10%cm3 since ny <<n’

np ~ 2x10%c¢cm2 -10%cm2 = 2x10% cm6 >> 2 = 102 cm?S.

~

/
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/ 2.7 Thermal Generation

If n’ is negative, there are fewer
electrons than the equilibrium value.

As a result, there is a net rate of
thermal generation at the rate of |»'|/< .

~

/
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/2.8 Quasi-equilibrium and Quasi-Fermi Lev%
* Whenever n’=p’ = 0, np # n?. We would like to preserve
and use the simple relations:

—(E.—E;)IkT
n=N_. (Be=E7)

p= Nve—(E,»—EV)/kT
* But these equations lead to np = n?. The solution is to introduce
two quasi-Fermi levels £, and £, such that

—(E,—E ;)IkT
n=Ne

~(E,,~E,)IkT

p=Ne
Even when electrons and holes are not at equilibrium, within

each group the carriers can be at equilibrium. Electrons are
closely linked to other electrons but only loosely to holes.
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@AMPLE: Quasi-Fermi Levels and Low-Level Injectim

Consider a Si sample with N,=10""cm?3 and n' =p' =10"cm.

(a) Find E,.
n =N, =10 cm3= N_exp[-(E~ E)/kT]
S E—~E, =0.15eV. (E; is below E, Dby 0.15 eV.)

Note: n'and p' are much less than the majority carrier
concentration. This condition is called low-level
injection.

N /
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@AMPLE: Quasi-Fermi Levels and Low-Level Injectim

Now assume n’=p’= 10" cm™.
(b) Find Ej; and E, .

n=1.01x107cm?3 = N ¢ L L)kl

c

- E~E; = kT x In(N,/1.01x10'"cm3)
=26 meV x In(2.8x10%cm3/1.01x101cm-3)
=0.15eV

Ej, is nearly identical to £,because n ~ n, .

N /

Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-72

/ EXAMPLE: Quasi-Fermi Levels \

p=108cm3=N ¢ "r B
S Ey-E, = kT x In(N,/10%5¢cm-3)
=0.24eV
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2.9 Chapter Summary

v, = €
v, =-H1E
Jpvdrlﬁ - qpﬂp£

Jn,dr{ft = qnﬂng

~

I digiusion = 4D, %
S p.agision = ~4D, %
D, = k—Tﬂn
q
D,= k?T M

/
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2.9 Chapter Summary

n=ngtn'
pP=potp

7 is the recombination lifetime.
n'and p’ are the excess carrier concentrations.

Charge neutrality requires n'= p".

rate of recombination = n'/t=p'/t ‘

-

n=N_e
p=Ne

—(E.~Eg ) kT

~(E;,~E,)IkT

~

Ej; and E, are the quasi-Fermi levels of electrons and
holes.

/
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