Chapter 2 Motion and Recombination of Electrons and Holes

2.1 Thermal Motion

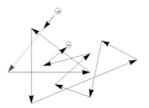
Average electron or hole kinetic energy $=\frac{3}{2}kT=\frac{1}{2}mv_{ih}^{2}$

$$v_{th} = \sqrt{\frac{3 kT}{m_{eff}}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \text{ JK}^{-1} \times 300 \text{ K}}{0.26 \times 9.1 \times 10^{-31} \text{ kg}}}$$

 $= 2.3 \times 10^5 \, \text{m/s} = 2.3 \times 10^7 \, \text{cm/s}$

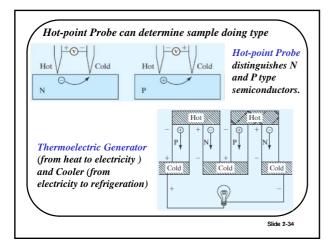
Slide 2-3

2.1 Thermal Motion



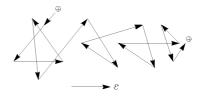
- Zig-zag motion is due to collisions or scattering with imperfections in the crystal.
- Net thermal velocity is zero.
- Mean time between collisions is $\tau_m \sim 0.1 \text{ps}$

Slide 2-33



2.2 Drift

2.2.1 Electron and Hole Mobilities



• Drift is the motion caused by an electric field.

Slide 2-35

2.2.1 Electron and Hole Mobilities

$$m_p v = q \mathcal{E} \tau_{mp}$$

$$v = \frac{q \, \mathcal{E} \tau_{mp}}{m_{p}}$$

$$\mu_p = \frac{q \tau_{mp}}{m_p}$$

$$v = -\mu_n \mathbf{\xi}$$

$$\mu_n = \frac{q \tau_{mn}}{m}$$

• μ_p is the hole mobility and μ_n is the electron mobility

Slide 2-36

2.2.1 Electron and Hole Mobilities

 $v = \mu \, \mathcal{E}$; μ has the dimensions of v/\mathcal{E} $\left[\frac{\text{cm/s}}{\text{V/cm}} = \frac{\text{cm}^2}{\text{V \cdot s}} \right]$

Electron and hole mobilities of selected semiconductors

	Si	Ge	GaAs	InAs
$\mu_n (\text{cm}^2/\text{V}\cdot\text{s})$	1400	3900	8500	30000
$\mu_p (\text{cm}^2/\text{V}\cdot\text{s})$	470	1900	400	500

Based on the above table alone, which semiconductor and which carriers (electrons or holes) are attractive for applications in high-speed devices?

Drift Velocity, Mean Free Time, Mean Free Path

EXAMPLE: Given $\mu_p = 470 \text{ cm}^2/V \cdot \text{s}$, what is the hole drift velocity at $\mathcal{E} = 10^3 \text{ V/cm}$? What is τ_{mp} and what is the distance traveled between collisions (called the **mean free path**)? Hint: When in doubt, use the MKS system of units.

Solution: $v = \mu_p \mathcal{E} = 470 \text{ cm}^2/\text{V} \cdot \text{s} \times 10^3 \text{ V/cm} = 4.7 \times 10^5 \text{ cm/s}$

$$\tau_{mp} = \mu_p m_p / q = 470 \text{ cm}^2 / \text{V} \cdot \text{s} \times 0.39 \times 9.1 \times 10^{-31} \text{ kg} / 1.6 \times 10^{-19} \text{ C}$$

= 0.047 m²/V
$$\cdot$$
s × 2.2×10⁻¹² kg/C = 1×10⁻¹³s = 0.1 ps

mean free path = $\tau_{mh} v_{th} \sim 1 \times 10^{-13} \text{ s} \times 2.2 \times 10^7 \text{ cm/s}$

 $= 2.2 \times 10^{-6} \text{ cm} = 220 \text{ Å} = 22 \text{ nm}$

This is smaller than the typical dimensions of devices, but getting close.

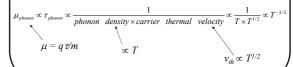
Slide 2-38

2.2.2 Mechanisms of Carrier Scattering

There are two main causes of carrier scattering:

- 1. Phonon Scattering
- 2. Ionized-Impurity (Coulombic) Scattering

Phonon scattering mobility decreases when temperature rises:



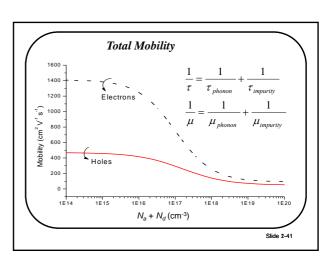
Slide 2-39

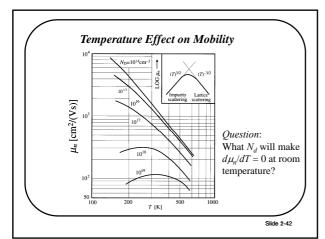
Impurity (Dopant)-Ion Scattering or Coulombic Scattering

There is less change in the direction of travel if the electron zips by the ion at a higher speed.

$$\mu_{\rm impurity} \propto \frac{v_{\rm th}^3}{N_a + N_d} \propto \frac{T^{3/2}}{N_a + N_d}$$

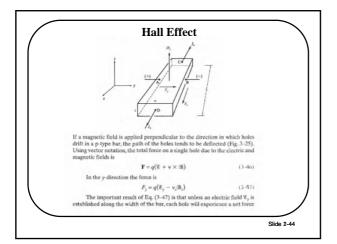
Slide 2-40





Velocity Saturation

- When the kinetic energy of a carrier exceeds a critical value, it generates an optical phonon and loses the kinetic energy.
- Therefore, the kinetic energy is capped at large ${\cal E}_{\rm s}$, and the velocity does not rise above a saturation velocity, v_{sat} .
- \bullet Velocity saturation has a deleterious effect on device speed as shown in Ch. 6.



(and therefore an acceleration) in the -y-direction due to the $qv_z @_t p roduct$. Therefore, to maintain a steady state flow of holes down the length of the bar, the electric field \mathcal{C}_p must just balance the product $v_z @_t$:

 $\mathcal{E}_{y} = v_{x} \mathcal{B}_{z}$ (3-48)

so that the net force F_s is zero. Physically, this electric field is set up when the magnetic field shifts the hole distribution slightly in the y-direction. Once the electric field ξ_s becomes as large as $y_0 \xi_s$, no net lateral force is experienced by the holes as they drift along the bar. The establishment of the electric field ξ_s is known as the Hall effect, and the resulting voltage $V_{AB} = \xi_s W$ is called the Hall voltage V_{AB} we see the expression derived in Eq. (3–37) for the drift velocity (using +q and p_0 for holes), the field ξ_s becomes

$$\mathcal{E}_y = \frac{J_x}{qp_0} \mathcal{B}_z = R_H J_x \mathcal{B}_z, \quad R_H = \frac{1}{qp_0}$$
 (3-49)

Thus the Hall field is proportional to the product of the current density and the magnetic flux density. The proportionality constant $R_{H}=(q_p)^{-1}$ is called the Hall conflictor. A neassurement of the Hall voltage for a known current and magnetic field yields a value for the hole concentration p_θ

$$p_0 = \frac{1}{qR_H} = \frac{J_x \Re_z}{q \mathcal{E}_y} = \frac{(I_s/wt) \Re_z}{q(V_{AB}/w)} = \frac{I_x \Re_z}{qt V_{AB}}$$
 (3-50)

Since all of the quantities in the right-hand side of Eq. (3-50) can be measured, the Hall effect can be used to give quite accurate values for carrier concentration.

Slide 2-45

If a measurement of resistance R is made, the sample resistivity ρ can be calculated:

$$p(\Omega-cm) = \frac{Rwt}{L} = \frac{V_{CD}/I_s}{L/wt}$$
(3-51)

Since the conductivity $\sigma=1/\rho$ is given by $q\mu_{\nu}p_{0}$, the mobility is simply the ratio of the Hall coefficient and the resistivity:

$$\mu_p = \frac{\sigma}{qp_0} = \frac{1/\rho}{q(1/qR_H)} = \frac{R_H}{\rho}$$
(3-52)

Measurements of the Hall coefficient and the resistivity over a range of temperatures yield plots of majority carrier concentration and mobility setemperature. Such measurements are extremely useful in the analysis of semi-conductor materials. Although the discussion here has been related to p-type material, a legality value of q is used for electrons, and the Hall voltage V_{an} and Hall coefficient R_B are negative. In fact, measurement of the sign of the Hall voltage is a common technique for determining if an unknown sample is p-type or a type.

Slide 2-46

Slide 2-48

EXAMPLE 3-8 Referring to Fig. 3-25, consider a semi-conductor bar with w = 0.1 mm. $t = 10 \, \mu m$, and $L = 5 \, mm$. For $\beta = 10 \, kg$ in the direction shown (1 kG = $10^3 \, \text{Wh/cm}^3$) and a current of 1 mA, we have $V_{AB} = -2 \, \text{mV}$, $V_{CD} = 100 \, \text{mV}$. Find the type, concentration, and mobility of the majority carrier.

SOUTION $3_c = 10^{-4} \, \text{Wb/cm}^2$ From the sign of V_{AB} , we can see that the majority carriers are electrons: $n_0 = \frac{I_c 3 k_c}{q \, \text{V}_{CD} \, I_c} = \frac{(10^{-3}) (10^{-4})}{1.6 \times 10^{-3} (10^{-3}) (2 \times 10^{-3})} = 3.125 \times 10^{17} \, \text{cm}^{-3}$ $\rho = \frac{R}{L/\text{red}} = \frac{V_{CD} \, I_c}{L/\text{red}} = \frac{0.110^{-3}}{0.50.01 \times 10^{-3}} = 0.002 \, \Omega \cdot \text{cm}$ $\mu_n = \frac{1}{10^{-6}} = \frac{1}{(0.002)(1.6 \times 10^{-18})(3.125 \times 10^{17})} = 10.000 \, \text{cm}^2 (V \cdot s)^{-1}$ Slide 2-47

2.2.3 Drift Current and Conductivity

E

J

A/cm² or C/cm²·sec

EXAMPLE: If $p = 10^{15} \text{cm}^{-3}$ and $v = 10^4 \text{ cm/s}$, then $J_p = 1.6 \times 10^{-19} \text{C} \times 10^{15} \text{cm}^{-3} \times 10^4 \text{cm/s}$ = $1.6 \text{ C/s} \cdot \text{cm}^2 = 1.6 \text{ A/cm}^2$

2.2.3 Drift Current and Conductivity

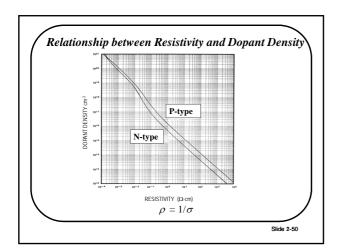
$$J_{p,drift} = qpv = qp\mu_p \mathcal{E}$$

$$J_{n,drift} = -qnv = qn\mu_n \mathcal{E}$$

$$J_{drift} = J_{n,drift} + J_{p,drift} = \sigma \mathcal{E} = (qn\mu_n + qp\mu_p)\mathcal{E}$$

: conductivity (1/ohm-cm) of a semiconductor is $\sigma = qn\mu_n + qp\mu_p$

 $1/\sigma$ = is resistivity (ohm-cm)



EXAMPLE: Temperature Dependence of Resistance

(a) What is the resistivity (ρ) of silicon doped with 10^{17}cm^{-3} of arsenic?

(b) What is the resistance (R) of a piece of this silicon material 1 µm long and 0.1 µm² in cross-sectional area?

Solution:

(a) Using the N-type curve in the previous figure, we find that $\rho = 0.084~\Omega$ -cm.

(b) $R = \rho L/A = 0.084~\Omega$ -cm $\times 1~\mu$ m / $0.1~\mu$ m² = $0.084~\Omega$ -cm $\times 10^{-4}~\text{cm} / 10^{-10}~\text{cm}^2$ = $8.4 \times 10^{-4}~\Omega$

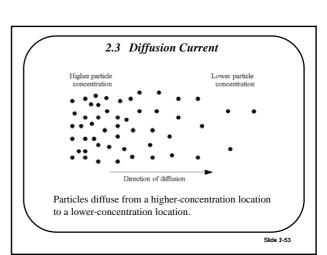
Slide 2-51

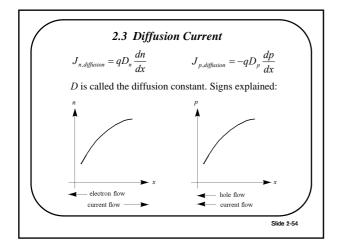
EXAMPLE: Temperature Dependence of Resistance

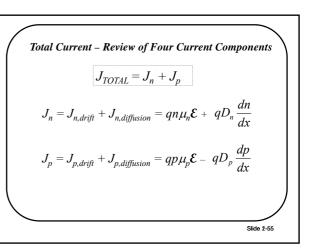
By what factor will R increase or decrease from T=300~K to T=400~K?

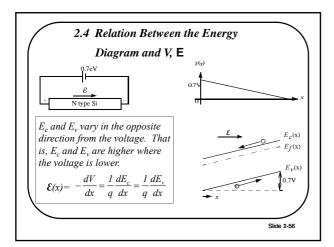
Solution: The temperature dependent factor in σ (and therefore ρ) is μ_n . From the mobility vs. temperature curve for $10^{17} {\rm cm}^3$, we find that μ_n decreases from 770 at 300K to 400 at 400K. As a result, R increases by

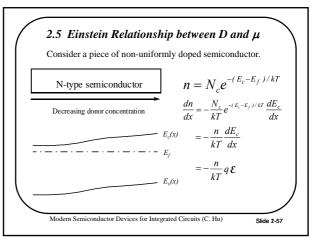
$$\frac{770}{400} = 1.93$$











2.5 Einstein Relationship between D and μ $\frac{dn}{dx} = -\frac{n}{kT}q\mathcal{E}$ $J_n = qn\mu_n\mathcal{E} + qD_n\frac{dn}{dx} = 0 \quad \text{at equilibrium.}$ $0 = qn\mu_n\mathcal{E} - qn\frac{qD_n}{kT}\mathcal{E}$ $D_n = \frac{kT}{q}\mu_n \quad \text{Similarly,} \quad D_p = \frac{kT}{q}\mu_p$ These are known as the Einstein relationship.

silicon with $\mu_p = 410 \text{ cm}^2 V^{-1} \text{s}^{-1}$?

Solution: $D_p = \left(\frac{kT}{q}\right) \mu_p = (26 \text{ mV}) \cdot 410 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1} = 11 \text{ cm}^2/\text{s}$ Remember: kT/q = 26 mV at room temperature.

What is the hole diffusion constant in a piece of

EXAMPLE: Diffusion Constant

Slide 2-59

2.6 Electron-Hole Recombination

- •The equilibrium carrier concentrations are denoted with n_0 and p_0 .
- •The total electron and hole concentrations can be different from n_0 and p_0 .
- The differences are called the *excess carrier* concentrations n' and p'.

$$n \equiv n_0 + n'$$

$$p \equiv p_0 + p'$$

Slide 2-60

Slide 2-58

Charge Neutrality

- •Charge neutrality is satisfied at equilibrium (n'=p'=0).
- When a non-zero *n'* is present, an equal *p'* may be assumed to be present to maintain charge equality and vice-versa.
- •If charge neutrality is not satisfied, the net charge will attract or repel the (majority) carriers through the drift current until neutrality is restored.

$$n'=p'$$

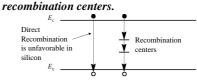
Recombination Lifetime

- •Assume light generates n' and p'. If the light is suddenly turned off, n' and p' decay with time until they become zero.
- •The process of decay is called *recombination*.
- •The time constant of decay is the *recombination* time or carrier lifetime, τ .
- •Recombination is nature's way of restoring equilibrium (n' = p' = 0).

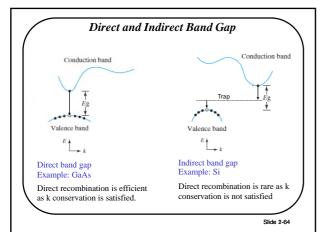
Slide 2-63

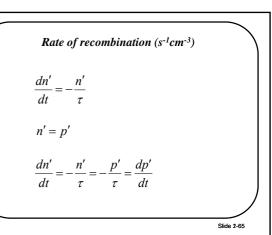
Recombination Lifetime

- •τ ranges from 1ns to 1ms in Si and depends on the density of metal impurities (contaminants) such as Au and Pt.
- •These *deep traps* capture electrons and holes to facilitate recombination and are called



Slide 2-63





EXAMPLE: Photoconductors

A bar of Si is doped with boron at 10^{15} cm⁻³. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of 10^{20} /s·cm³. The recombination lifetime is 10μ s. What are (a) p_0 , (b) n_0 , (c) p', (d) n', (e) p, (f) n, and (g) the np product?

Slide 2-66

EXAMPLE: Photoconductors

Solution:

- (a) What is p_0 ? $p_0 = N_a = 10^{15} \text{ cm}^{-3}$
- (b) What is n_0 ? $n_0 = n_i^2/p_0 = 10^5 \text{ cm}^{-3}$
- (c) What is p'?
 In steady-state, the rate of generation is equal to the rate of recombination.

$$10^{20}$$
/s-cm³ = p'/τ
.: p' = 10^{20} /s-cm³ · 10^{-5} s = 10^{15} cm⁻³

EXAMPLE: Photoconductors

- (d) What is n'? $n' = p' = 10^{15} \,\mathrm{cm}^{-3}$
- (e) What is p? $p = p_0 + p' = 10^{15} \text{cm}^{-3} + 10^{15} \text{cm}^{-3} = 2 \times 10^{15} \text{cm}^{-3}$
- (f) What is n? $n = n_0 + n' = 10^5 \text{cm}^{-3} + 10^{15} \text{cm}^{-3} \sim 10^{15} \text{cm}^{-3} \text{ since } n_0 << n'$
- (g) What is np? $np \sim 2 \times 10^{15} \text{cm}^{-3} \cdot 10^{15} \text{cm}^{-3} = 2 \times 10^{30} \text{ cm}^{-6} >> n_i^2 = 10^{20} \text{ cm}^{-6}.$ The np product can be very different from n_i^2 .

2.7 Thermal Generation

If n' is negative, there are fewer electrons than the equilibrium value.

As a result, there is a net rate of *thermal generation* at the rate of $|n'|/\tau$.

2.8 Quasi-equilibrium and Quasi-Fermi Levels

• Whenever $n' = p' \neq 0$, $np \neq n_i^2$. We would like to preserve and use the simple relations:

$$n = N_c e^{-(E_c - E_f)/kT}$$

$$p = N_{\nu} e^{-(E_f - E_{\nu})/kT}$$

• But these equations lead to $np = n_i^2$. The solution is to introduce two quasi-Fermi levels E_{fn} and E_{fp} such that

$$n = N_c e^{-(E_c - E_{fn})/kT}$$

$$p = N_{\nu} e^{-(E_{fp} - E_{\nu})/kT}$$

Even when electrons and holes are not at equilibrium, within each group the carriers can be at equilibrium. Electrons are closely linked to other electrons but only loosely to holes

Slide 2-70

EXAMPLE: Quasi-Fermi Levels and Low-Level Injection

Consider a Si sample with $N_d=10^{17}$ cm⁻³ and $n'=p'=10^{15}$ cm⁻³.

(a) Find
$$E_f$$
.
 $n = N_d = 10^{17} \text{ cm}^{-3} = N_c \exp[-(E_c - E_f)/kT]$
 $\therefore E_c - E_f = 0.15 \text{ eV}.$ (E_f is below E_c by 0.15 eV.)

Note: n' and p' are much less than the majority carrier concentration. This condition is called low-level iniection.

Slide 2-71

EXAMPLE: Quasi-Fermi Levels and Low-Level Injection

Now assume $n' = p' = 10^{15} \text{ cm}^{-3}$. (b) Find E_{fn} and E_{fp} .

$$n = 1.01 \times 10^{17} \text{cm}^{-3} = N_c e^{-(E_c - E_{fa})/kT}$$

$$\begin{array}{l} \therefore \ E_c - E_{fn} = kT \times \ln(N_c/1.01 \times 10^{17} \text{cm}^{-3}) \\ = \ 26 \ \text{meV} \times \ln(2.8 \times 10^{19} \text{cm}^{-3}/1.01 \times 10^{17} \text{cm}^{-3}) \\ = \ 0.15 \ \text{eV} \end{array}$$

 E_{fn} is nearly identical to E_f because $n \approx n_0$.

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Slide 2-72

EXAMPLE: Quasi-Fermi Levels

$$p = 10^{15} \,\mathrm{cm}^{-3} = N_{\nu} e^{-(E_{fp} - E_{\nu})/kT}$$

$$\therefore E_{fp} - E_v = kT \times \ln(N_v / 10^{15} \text{cm}^{-3})$$
= 26 meV \times \ln(1.04 \times 10^{19} \text{cm}^{-3} / 10^{15} \text{cm}^{-3})
= 0.24 eV

2.9 Chapter Summary

$$v_{p} = \mu_{p} \mathcal{E}$$

$$v_{n} = -\mu_{n} \mathcal{E}$$

$$J_{p,drift} = qp \mu_{p} \mathcal{E}$$

$$J_{n,drift} = qn \mu_{n} \mathcal{E}$$

$$J_{n,diffusion} = qD_n \frac{dn}{dx}$$

$$J_{p,diffusion} = -qD_p \frac{dp}{dx}$$

$$D_n = \frac{kT}{q} \mu_n$$

$$D_p = \frac{kT}{q} \mu_p$$

Slide 2-74

2.9 Chapter Summary

au is the recombination lifetime.

 n^\prime and p^\prime are the *excess carrier concentrations*.

$$n = n_0 + n'$$

$$p = p_0 + p'$$

Charge neutrality requires n'=p'.

rate of recombination = $n'/\tau = p'/\tau$

 E_{fn} and E_{fp} are the quasi-Fermi levels of electrons and holes.

$$n = N_c e^{-(E_c - E_{fn})/kT}$$

$$p = N_v e^{-(E_{fp} - E_v)/kT}$$