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Chapter 4   PN Junctions

PN junction is present in perhaps every semiconductor device.
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4.1 Building Blocks of the PN Junction Theory
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4.1.1 Energy Band Diagram of a PN Junction

A depletion layer 
exists at the PN 
junction where n  0 
and p  0.

Ef is constant at 
equilibrium

Ec and Ev are smooth, 
the exact shape to be 
determined.

Ec and Ev are known 
relative to Ef
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4.1.2   Built-in Potential

Can the built-in potential be measured with a voltmeter?
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4.1.2   Built-in Potential
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4.1.3  Poisson’s Equation

Gauss’s Law:

s: permittivity (~12o for Si)
:  charge density (C/cm3)

Poisson’s equation

x

E(x) E(x + x) 

x
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4.2.1  Field and Potential in the Depletion Layer

On the P-side of the 
depletion layer,  = –qNa

On the N-side,   = qNd

4.2  Depletion-Layer Model
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4.2.1  Field and Potential in the Depletion Layer 

The electric field is continuous at x = 0.

Na |xP| = Nd|xN|

Which side of the junction is depleted more?

A one-sided junction is called a N+P junction or P+N junction

N P

  Depletion Layer Neutral Region 

–x
n

 0  xp

Neutral Region 

N P
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4.2.1  Field and Potential in the Depletion Layer

On the P-side,

Arbitrarily choose the 
voltage at x = xP as V = 0.

On the N-side,
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4.2.2  Depletion-Layer Width

V is continuous at x = 0

If Na >> Nd , as in a P+N junction,

What about a N+P junction?
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density dopant lighterNNN ad

1111












da

bis
depNP NNq

Wxx
112 

N
d

bis
dep x

qN
W 

2

qNW bisdep 2

N P

  Depletion Layer Neutral Region 

–x
n

 0  xp

Neutral Region 

0
adNP NNxx| | | |

PN

Slide 1-84 Slide 4-85

EXAMPLE: A P+N junction has Na=1020 cm-3 and Nd 

=1017cm-3. What is a) its built in potential, b)Wdep , c)xN , 
and d) xP ?

Solution:
a) 

b)

c)

d)
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4.3  Reverse-Biased PN Junction

densitydopantlighterNNN ad     

1111


• Does the depletion layer
widen or shrink with
increasing reverse bias?
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4.4  Capacitance-Voltage Characteristics

• Is Cdep a good thing?
• How to minimize junction capacitance?
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Reverse biased PN junction is 
a capacitor.
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4.4  Capacitance-Voltage Characteristics

• From this C-V data can Na and Nd be determined?

222

2

2

)(21

AqN

V

A

W

C S

bi

s

dep

dep 







Vr

 1/C
dep

2

Increasing reverse bias

Slope = 2/qNs
A2 

 – bi

Capacitance data

Slide 1-88 Slide 4-89

EXAMPLE: If the slope of the line in the previous slide is 
2x1023 F-2 V-1, the intercept is 0.84V, and A is 1 m2, find the 
lighter and heavier doping concentrations Nl and Nh .

Solution:
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• Is this an accurate way to determine Nl ?  Nh ?
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4.5  Junction Breakdown

A Zener diode is designed to operate in the breakdown mode.
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4.5.1  Peak Electric Field
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4.5.2  Tunneling Breakdown

Dominant if both sides of 
a junction are very heavily 
doped.
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4.5.3  Avalanche Breakdown 
• impact ionization: an energetic 
electron generating electron and 
hole, which can also cause 
impact ionization.
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• Impact ionization + positive 
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4.6   Forward Bias – Carrier Injection

Minority carrier injection 
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Drift and diffusion cancel out
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4.6   Forward Bias –
Quasi-equilibrium Boundary Condition
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• The minority carrier
densities are raised
by eqV/kT

• Which side gets more
carrier injection?
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4.6  Carrier Injection Under Forward Bias–
Quasi-equilibrium Boundary Condition
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EXAMPLE:  Carrier Injection

A PN junction has Na=1019cm-3 and Nd=1016cm-3.  The applied 
voltage is 0.6 V.  

Question: What are the minority carrier concentrations at the 
depletion-region edges?

Solution:

Question: What are the excess minority carrier concentrations?

Solution:

-311026.06.0
0 cm 1010)(  eenxn kTVq

PP
-314026.06.04

0 cm 1010)(  eepxp kTVq
NN

-31111
0 cm 101010)()(  PPP nxnxn

-314414
0 cm 101010)()(  NNN pxpxp
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4.7   Current Continuity Equation
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4.7  Current Continuity Equation

Minority drift current is negligible;
Jp= –qDpdp/dx

Lp and Ln are the diffusion lengths
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4.8   Forward Biased Junction-- Excess Carriers
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4.8   Excess Carrier Distributions
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EXAMPLE:  Carrier Distribution in Forward-biased PN Diode

• Sketch n'(x) on the P-side.
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• How does Ln compare with a typical device size?

μm  8510236 6  
nnn DL 

• What is p'(x) on the P-side?  

EXAMPLE:  Carrier Distribution in Forward-biased PN Diode
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4.9   PN Diode I-V Characteristics
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The PN Junction as a Temperature Sensor

What causes the IV curves to shift to lower V at higher T ?
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4.9.1 Contributions from the Depletion Region

dep
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Under forward bias, SCR current is an extra 
current with a slope 120mV/decade
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4.10   Charge Storage

What is the relationship between s (charge-storage time)
and  (carrier lifetime)?

x
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4.11   Small-signal Model of the Diode
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What is G at 300K and IDC = 1 mA?

Diffusion Capacitance:
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4.12   Solar Cells
•Solar Cells is also known 
as photovoltaic cells. 

•Converts sunlight to 
electricity with 10-30% 
conversion efficiency. 

•1 m2 solar cell generate 
about 150 W peak or 25 W 
continuous power.

•Low cost and high 
efficiency are needed for 
wide deployment.

Part II: Application to Optoelectronic Devices
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4.12.1   Solar Cell Basics
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Eq.(4.12.1)

N P

-

Short Circuit

light
Isc

+
(a)

E
c

E
v

Slide 1-110

Direct-Gap and Indirect-Gap Semiconductors 

Slide 4-111

•Electrons have both particle and wave properties. 
•An electron has energy E and wave vector k.

indirect-gap semiconductordirect-gap semiconductor
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4.12.2 Light Absorption

)(
24.1

                                

  (eV)Energy Photon 
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hc










x-e (x)intensity Light 

α(1/cm): absorption 
coefficient

1/α :  light penetration 
depth
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A thinner layer of direct-gap semiconductor can absorb most 
of solar radiation than indirect-gap semiconductor. But Si…
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4.12.3 Short-Circuit Current and Open-Circuit Voltage

Slide 4-113

x

p
Jp(x + x) 

x
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a A

Jp(x) 

Volume = A·x

If light shines on the N-type
semiconductor and generates 
holes (and electrons) at the 
rate of G s-1cm-3 ,
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If the sample is uniform (no PN junction), 
d2p’/dx2 = 0  p’ = GLp

2/Dp= Gp
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Solar Cell Short-Circuit Current, Isc
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)1()(
/ pLx

p eGxp
 

0)0( p

Assume very thin P+ layer and carrier generation in N region only.

GAqLAJI ppsc  )0(x

NP+

Isc

0
x

P'

Lp

Gp

0

G is really not uniform. Lp needs be larger than the light 
penetration depth to collect most of the generated carriers.
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Open-Circuit Voltage
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1) e   (assuming /qVoc kT

•Total current is ISC plus the PV diode (dark) current:

•Solve for the open-circuit voltage (Voc) by setting I=0
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N

n
p

kTqV

p

p

d
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2

0

)/ln( 2
idpoc nGN

q

kT
V 

How to raise Voc ?
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4.12.4  Output Power

FFVI ocsc  erOutput Pow

•Theoretically, the highest efficiency (~24%) can be obtained with 
1.9eV >Eg>1.2eV. Larger Eg lead to too low Isc (low light 
absorption); smaller Eg leads to too low Voc.
•Tandem solar cells gets 35% efficiency using large and small Eg 
materials tailored to the short and long wavelength solar light.

A particular operating point on the 
solar cell  I-V curve maximizes the 
output power (I   V).

•Si solar cell with 15-20% efficiency 
dominates the market now
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Light emitting diodes (LEDs)
• LEDs are made of compound semiconductors such as InP 

and GaN.

• Light is emitted when electron and hole undergo radiative 
recombination.

Ec

Ev

Radiative 
recombination

Non-radiative 
recombination 
through traps

4.13  Light Emitting Diodes and Solid-State Lighting
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Direct and Indirect Band Gap

Direct band gap
Example: GaAs

Direct recombination is efficient 
as k conservation is satisfied.

Indirect band gap
Example: Si

Direct recombination is rare as k 
conservation is not satisfied

Trap
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4.13.1  LED Materials and Structure

)(

24.1

energy photon

24.1
  m) ( h wavelengtLED

eVEg
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4.13.1  LED Materials and Structure

)(eVEg

red
yellow
blue

Wavelength 
(μm) Color

Lattice 
constant 

(Å)

InAs 0.36 3.44 6.05

InN 0.65 1.91 infrared 3.45

InP 1.36 0.92

violet

5.87

GaAs 1.42 0.87 5.66

GaP 2.26 0.55 5.46

AlP 3.39 0.51 5.45

GaN 2.45 0.37 3.19

AlN 6.20 0.20 UV 3.11

Light-emitting diode materials

compound semiconductors

binary semiconductors:
- Ex: GaAs, efficient emitter

ternary semiconductor :
- Ex: GaAs1-xPx , tunable Eg (to 

vary the color)

quaternary semiconductors:
- Ex: AlInGaP , tunable Eg and 
lattice constant (for growing high 
quality epitaxial films on 
inexpensive substrates)

Eg(eV)

Red
Yellow
Green
Blue
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Common LEDs

Spectral 
range

Material 
System

Substrate Example Applications

Infrared InGaAsP InP Optical communication

Infrared
-Red

GaAsP GaAs
Indicator lamps. Remote 
control

Red-
Yellow

AlInGaP
GaA or 

GaP

Optical communication. 
High-brightness traffic 
signal lights

Green-
Blue

InGaN
GaN or 

sapphire

High brightness signal 
lights. 
Video billboards

Blue-UV AlInGaN
GaN or 

sapphire Solid-state lighting

Red-
Blue

Organic 
semicon-
ductors

glass Displays

AlInGaP 
Quantun Well
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4.13.2 Solid-State Lighting

Incandescent 
lamp

Compact 
fluorescent 
lamp

Tube 
fluorescent 
lamp

White 
LED

Theoretical limit at 
peak of eye sensitivity 
( λ=555nm)

Theoretical limit 
(white light)

17 60 50-100 90-? 683 ~340

luminosity (lumen, lm): a measure of visible light energy 
normalized to the sensitivity of the human eye at 
different wavelengths

Luminous efficacy of lamps in lumen/watt

Terms: luminosity measured in lumens. luminous efficacy, 

Organic Light Emitting Diodes (OLED) : 
has lower efficacy than nitride or aluminide based compound semiconductor LEDs.
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4.14  Diode Lasers

(d) Net Light 
Absorption

(e) Net Light 
Amplification

Stimulated emission: emitted photon has identical frequency and 
directionality as the stimulating photon; light wave is amplified.

(b) Spontaneous 
Emission

(c) Stimulated 
Emission

(a) Absorption

4.14.1 Light Amplification

Light amplification requires
population inversion: electron 
occupation probability is 
larger for higher E states than 
lower E states.

Slide 1-123
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4.14.1 Light Amplification in PN Diode

gfpfn EEEqV 

Population inversion 
is achieved when

Population inversion, qV > Eg

Equilibrium, V=0
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121  GRR

•R1, R2: reflectivities of the two ends
•G : light amplification factor (gain) 
for a round-trip travel of the light 
through the diode

Light intensity grows until                         , when the light intensity 
is just large enough to stimulate carrier recombinations at the same 
rate the carriers are injected by the diode current.

121  GRR

4.14.2   Optical Feedback and Laser

light
out

Cleaved
crystal
plane

P+

N+

Laser threshold is reached (light 
intensity grows by feedback) 
when
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4.14.2   Optical Feedback and Laser Diode
• Distributed Bragg 
reflector (DBR) reflects 
light with multi-layers of 
semiconductors.
•Vertical-cavity surface-
emitting laser (VCSEL) is 
shown on the left.
•Quantum-well laser has 
smaller threshold current 
because fewer carriers 
are needed to achieve 
population inversion in 
the small volume of the 
thin small-Eg well. 
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4.14.3 Laser  Applications

Red diode lasers: CD, DVD reader/writer

Blue diode lasers: Blu-ray DVD (higher storage density)

1.55 m infrared diode lasers: Fiber-optic communication

Photodiodes: Reverse biased PN diode. Detects  photo-
generated current (similar to Isc of solar cell) for optical 
communication, DVD reader, etc.
Avalanche photodiodes: Photodiodes operating near 
avalanche breakdown amplifies photocurrent by impact 
ionization.

4.15 Photodiodes

Slide 1-127
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Tunnel Diode
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