Contents

AC-DC Load Lines of BJT Circuits

BJT AC Analysis
DC Load Line
Distortion
AC Load Line
AC-DC Load Lines

BJT AC Analysis

1. Draw the AC equivalent circuit (signal frequency is infinity, i.e., $f=\infty$)
a) Capacitors are short circuit, i.e., $X_{C} \rightarrow 0$.
b) Kill the DC power sources (short-circuit DC voltage sources and open-circuit DC current sources).
2. Write KVL for the loop which contains $C E$ terminals
a) Develop $A C$ load-line equation.
3. Draw AC-DC load lines
a) Find available swings for a given input or find maximum undistorted swings.

Consider the common-emitter BJT circuit shown above where $v_{i}=V_{m} \sin (\omega t)$. Its DC and $A C$ are shown below ${ }^{\text {, }}$

Dr. U. Sezen \& Dr. D. Gö $\overline{\bar{k}}$ ẹen (Hacettepe Uni.) ELE230 Electronics I

DC Load Line

DC equivalent circuit shown above, let us first define the equivalent output-loop ($C E$-loop) DC resistance $R_{D C}$ and $V_{C E}$ as follows

$$
\begin{aligned}
R_{D C} & =R_{C}+R_{E} \\
V_{C E} & =V_{C C}-I_{C} R_{D C}
\end{aligned}
$$

Thus, the rearranged DC load line equation (DC output equation) is given by

$$
I_{C}=\frac{-1}{R_{D C}} V_{C E}+\frac{V_{C C}}{R_{D C}}
$$

Note that, AC swings are around the Q-points. Here, input swing $v_{b e}=v_{i}$ on the left below is around the input Q-point ($I_{B Q}, V_{B E Q}$), and output swing $v_{o}=v_{c e}$ on the right below is around the output Q-point ($I_{C Q}, V_{C E Q}$).

Distortion

If the Q-point is incorrect as shown on the left below, or if the input is too high as shown on the right below, then the output swings (for a sinusoidal input) as shown in the figures below will be distorted, i.e., not the same shape as the input waveform.
NOTE: Load-lines shown in the figures below are the AC load-lines which we will derive in the next slides.

AC Load Line

AC equivalent circuit shown above, let us first define the equivalent output-loop (CE-loop) AC resistance $R_{a c}$ and output v_{o} as follows

$$
\begin{aligned}
R_{a c} & =R_{C} \| R_{L} \\
v_{o} & =v_{c e}=-i_{c} R_{a c}
\end{aligned}
$$

Let us now define the $\mathrm{AC}+\mathrm{DC}$ output signals i_{C} and $v_{C E}$ as follows

$$
\begin{aligned}
i_{C} & =i_{c}+I_{C Q} \\
v_{C E} & =v_{c e}+V_{C E Q}
\end{aligned}
$$

Now let us express the AC output equation $v_{c e}=-i_{c} R_{a c}$ in terms of $v_{C E}$ and i_{C} so that we can draw this equation over the output characteristics curve as the AC load line equation.

$$
\begin{aligned}
v_{c e} & =-i_{c} R_{a c} \\
v_{C E}-V_{C E Q} & =-\left(i_{C}-I_{C Q}\right) R_{a c} \\
v_{C E} & =-i_{C} R_{a c}+V_{C E Q}+I_{C Q} R_{a c}
\end{aligned}
$$

Thus, the rearranged AC load line equation (AC output equation) is given by

$$
i_{C}=\frac{-1}{R_{a c}} v_{C E}+I_{C Q}+\frac{V_{C E Q}}{R_{a c}}
$$

AC-DC Load Lines

Let us draw $\mathrm{DC}\left(V_{C E}=v_{c e}+V_{C E Q}\right)$ and $\mathrm{AC}\left(v_{C E}=-i_{C} R_{a c}+V_{C E Q}+I_{C Q} R_{a c}\right)$ load lines together as shown below.

Output swings are defined with respect to the \boldsymbol{Q}-point ($I_{C Q}, V_{C E Q}$) and the AC load line end points on the axes.

Homework 1: Show that AC and DC load lines are the same if $R_{D C}=R_{a c}$.
Dr. U. Sezen \& Dr. D. Gökc̣en (Hacettepe Uni.) ELE230 Electronics I

Once the Q-point is known, i.e., the resistor values are given, peak values of the maximum undistorted voltage and current swings $v_{c e(p)(\max)}$ and $i_{c(p)(\max)}$ are given by

$$
v_{c e(p)(\max)}=\min \left(V_{C E Q}, I_{C Q} R_{a c}\right)
$$

and

$$
i_{c(p)(\max)}=\min \left(I_{C Q}, \frac{V_{C E Q}}{R_{a c}}\right)
$$

Maximum Symmetric Undistorted Swing Design

If we want design our circuit (i.e., select appropriate values for the resistors) in order to obtain the maximum available undistorted swing, i.e., to obtain $\max \left(\min \left(V_{C E Q}, I_{C Q} R_{a c}\right)\right)$, then we obtain the following condition

$$
V_{C E Q}=I_{C Q} R_{a c}
$$

Thus, \boldsymbol{Q}-point must be in the middle of the $\mathbf{A C}$ load line. In other words, maximum available negative and positive swings are symmetric.

Combining this AC load line requirement with the DC load-line equation $V_{C E}=V_{C C}-I_{C} R_{D C}$, we find that we have to select the Q-point collector current as

$$
I_{C Q}=\frac{V_{C C}}{R_{D C}+R_{a c}}
$$

In order to attain this Q-point, we need to select appropriate values for the resistors in the $B E$ loop to obtain $I_{B Q}=\frac{I_{C Q}}{\beta}$.

Once we obtained the desired Q-point in the middle of the AC load line, then the maximum available undistorted output swings will be obtained as shown below.

Other Amplifier Configurations

We developed and plotted AC-DC load lines for the common-emitter configuration. Now, let us look at other configurations.

- Common-base (CB) configuration

1. Obtain $R_{a c}$ from the $C B$ loop.
2. Obtain $R_{D C}$ from the $C E$ loop.
3. Draw the AC-DC load lines i_{C} vs. $v_{C E}$ as before.

NOTE: You can also draw the AC-DC load lines as i_{C} vs. $v_{C B}$ by shifting the voltage axis by $V_{B E(O N)}$ volts to the left as $V_{C B Q}=V_{C E Q}-V_{B E(O N)}$. Thus, current axis will be drawn at $V_{C B(s a t)}=V_{C E(s a t)}-V_{B E(O N)}=0-V_{B E(O N)}=-V_{B E(O N)}$ volts not at 0 V .

- Common-collector (CC) configuration (also known as emitter-follower)

1. Obtain $R_{a c}$ and $R_{D C}$ from the $C E$ loop as before.
2. Draw the AC-DC load lines i_{E} vs. $v_{C E}$.

NOTE: As $i_{E} \cong i_{C}$, it will be the same as drawing i_{C} vs. $v_{C E}$.

- For $p n p$ transistors, we express the currents in the reverse direction (i.e., having positive current values) and reverse the polarity of the terminal voltages (i.e., having positive voltage values), and then draw the AC-DC load lines, e.g., i_{C} vs. $v_{E C}$.

Example 1: Consider the circuit above with $I_{B Q}=50 \mu \mathrm{~A}, I_{C Q}=13 \mathrm{~mA}$ and $\alpha \cong 1$.
a) If $i_{i}=50 \mu \mathrm{~A} \sin (\omega t)$, find i_{C} and $v_{C E}$.
b) Plot $A C$ and DC load lines together with the output voltage and current swings.

Solution: Here $\beta_{a c}=\beta_{D C}=\beta=\frac{I_{C Q}}{I_{B Q}}=\frac{13 m}{50 \mu}=260$,
$R_{D C}=R_{C}+R_{E}=1 k+0.47 k=1.47 \mathrm{k} \Omega$ and $R_{a c}=R_{C}\left\|R_{L}=1 k\right\| 1 k=0.5 \mathrm{k} \Omega$.
So, we can find $V_{C E Q}$ as

$$
\left.V_{C E Q}=V_{C C}-I_{C Q} R_{D C}=30-(13 m)(1.47 k)=10.89 \mathrm{~V} \sin (\omega t)\right)
$$

As $i_{b} \cong i_{i}$, we can find i_{c} and $v_{c e}$ as

$$
\begin{aligned}
i_{c} & =\beta_{a c} i_{b} \cong \beta i_{i}=(260)(50 \mu)=13 \mathrm{~mA} \sin (\omega t) \\
v_{c e} & \left.=-i_{c} R_{a c}=-(13 m)(0.5 k)=-6.5 \mathrm{~V} \sin (\omega t)\right)
\end{aligned}
$$

We find i_{C} and $v_{C E}$ as

$$
\begin{aligned}
i_{C} & =I_{C Q}+i_{c}=13 \mathrm{~mA}+13 \mathrm{~mA} \sin (\omega t) \\
v_{C E} & =V_{C E Q}+v_{c e}=10.89 \mathrm{~V}-6.5 \mathrm{~V} \sin (\omega t)
\end{aligned}
$$

Thus, the AC-DC load-lines are shown below

Example 2: Consider the circuit above with $\alpha \cong 1$.
a) Determine the Q-point in order to obtain maximum undistorted current swing.
b) Draw AC and DC load lines.

Solution: We can design this circuit to have maximum symmetric undistorted output swing and select R_{1} and R_{2} values accordingly. So, from the figure
$R_{D C}=R_{C}+R_{E}=1 k+0.5 k=1.5 \mathrm{k} \Omega$ and $R_{a c}=R_{C}=1 \mathrm{k} \Omega$. Thus,

$$
\begin{aligned}
I_{C Q} & =\frac{V_{C C}}{R_{D C}+R_{a c}}=\frac{15}{1.5 k+1 k}=6 \mathrm{~mA} \\
V_{C E Q} & =V_{C C}-I_{C Q} R_{D C}=15-(6 m)(1.5 k)=6 \mathrm{~V}
\end{aligned}
$$

Maximum available swings i_{c} and $v_{c e}$ are given as

$$
\begin{aligned}
i_{c} & =6 \mathrm{~mA} \sin (\omega t) \\
v_{c e} & =-6 \mathrm{~V} \sin (\omega t)
\end{aligned}
$$

Consequently, the AC-DC load-lines are shown below

AC-DC Load Lines of BJT Circuits BJT AC Analysis

Example 3: (2004-2005 MI) Consider the common-emitter BJT amplifier in the figure above.
a) Explain briefly the effects of the capacitors C_{1}, C_{2} and C_{3} on DC biasing and AC operation.
b) Design the DC bias ($I_{C Q}$ and $V_{C E Q}$) for the maximum undistorted output swing and then find the values of R_{1} and R_{2} which satisfies this condition. Take $\beta R_{E} \geq 10\left(R_{1} \| R_{2}\right), V_{B E(O N)}=0.7 \mathrm{~V}$ and $\beta=100$.
c) Draw the DC and AC load lines for this circuit and show the maximum voltage and current swings on the graph. Also, express these current and voltage swings in written form with their AC and DC components.

Solution: a. Capacitors are open-circuit in DC operation. Thus, C_{1} and C_{2} are called the coupling capacitors for the protection of the Q-point of the amplifier from the input and output circuitries by preventing the circulation/leakage of DC signals and enabling only AC signals in and out. C_{3} is called the emitter bypass capacitor ensuring the stability of the Q-point by enabling the emitter resistor to be in effect in DC operation and increasing the AC gain by bypassing the emitter resistor in AC operation.
b. We can design this circuit to have maximum symmetric undistorted output swing and select R_{1} and R_{2} values accordingly. So, from the figure
$R_{D C}=R_{C}+R_{E}=1 k+0.5 k=1.5 \mathrm{k} \Omega$ and $R_{a c}=R_{C}\left\|R_{L}=1 k\right\| 1 k=0.5 \mathrm{k} \Omega$. Thus,

$$
\begin{aligned}
I_{C Q} & =\frac{V_{C C}}{R_{D C}+R_{a c}}=\frac{18}{1.5 k+0.5 k}=9 \mathrm{~mA} \\
V_{C E Q} & =V_{C C}-I_{C Q} R_{D C}=18-(9 \mathrm{~m})(1.5 k)=4.5 \mathrm{~V}
\end{aligned}
$$

As $I_{E Q} \cong I_{C Q}=9 \mathrm{~mA}$, base voltage $V_{B Q}$ is given by

$$
V_{B Q}=V_{B E(O N)}+I_{E Q} R_{E}=0.7+(9 m)(0.5 k)=5.2 \mathrm{~V}
$$

By making the assumption $\beta R_{E} \geq 10\left(R_{1} \| R_{2}\right)$, we can ignore the base current $I_{B Q}$ and directly apply the voltage divider rule as

$$
\begin{aligned}
\frac{R_{2}}{R_{1}+R_{2}} V_{C C} & \cong V_{B Q} \\
\frac{R_{1}+R_{2}}{R_{2}} & =\frac{V_{C C}}{V_{B Q}} \\
\frac{R_{1}}{R_{2}} & =\frac{V_{C C}}{V_{B Q}}-1=\frac{18}{5.2}-1=2.46 .
\end{aligned}
$$

Let us take the highest value of $R_{B B}=R_{1} \| R_{2}$ in order to reduce the currents through R_{1} and R_{2} as

$$
R_{B B}=R_{1} \| R_{2}=\beta R_{E} / 10=100 * 0.5 / 10=5 \mathrm{k} \Omega
$$

If we take $a=\frac{R_{1}}{R_{2}}=2.46$, then $R_{B B}=\frac{a}{a+1} R_{2}$. So, R_{2} is given by

$$
R_{2}=\frac{a+1}{a} R_{B B}=\frac{2.46+1}{2.46} 5 k=7.03 \mathrm{k} \Omega
$$

Thus, R_{1} is given by

$$
R_{1}=a R_{2}=(2.46)(7.03 k)=17.29 \mathbf{k} \Omega
$$

c. $\mathrm{AC}+\mathrm{DC}$ output current i_{C} and output voltage $v_{C E}$ are given by

$$
\begin{aligned}
i_{C} & =I_{C Q}+i_{c}=9 \mathrm{~mA}+9 \mathrm{~mA} \sin (\omega t) \\
v_{C E} & =V_{C E Q}+v_{c e}=4.5 \mathrm{~V}-4.5 \mathrm{~V} \sin (\omega t)
\end{aligned}
$$

Consequently, the AC-DC load-lines are shown below

