Contents

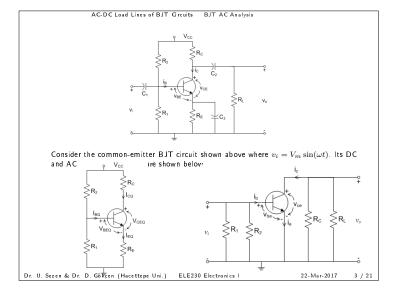
AC-DC Load Lines of BJT Circuits AC-DC Load Lines of BJT Circuits BJT AC Analysis DC Load Line Distortion AC Load Line AC-DC Load Lines

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

AC-DC Load Lines of BJT Grouits BJT AC Analysis

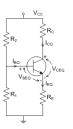
BJT AC Analysis

- 1. Draw the AC equivalent circuit (signal frequency is infinity, i.e., $f=\infty$)


 - a) Capacitors are short circuit, i.e., $X_C \to 0$. b) Kill the DC power sources (short-circuit DC voltage sources and open-circuit DC current sources).
- 2. Write KVL for the loop which contains CE terminals
 - a) Develop AC load-line equation
- 3. Draw AC-DC load lines
 - a) Find available swings for a given input or find maximum undistorted swings.

22-Mar-2017

1 / 21


Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

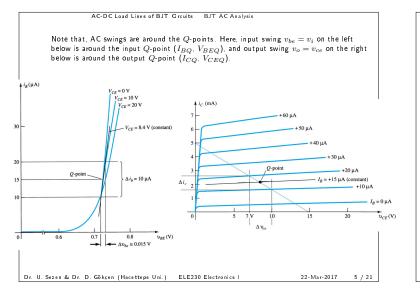
22-Mar-2017 2 / 21

AC-DC Load Lines of BJT Grouits BJT AC Analysis

DC Load Line

DC equivalent circuit shown above, let us first define the equivalent output-loop (CE-loop) DC resistance R_{DC} and V_{CE} as follows

$$R_{DC} = R_C + R_E$$

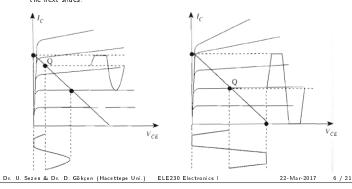

$$V_{CE} = V_{CC} - I_C R_{DC} \label{eq:Vce}$$

Thus, the rearranged DC load line equation (DC output equation) is given by

$$I_C = \frac{-1}{R_{DC}} V_{CE} + \frac{V_{CC}}{R_{DC}}$$

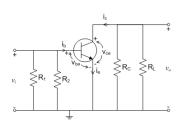
Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017



AC-DC Load Lines of BJT Grouits BJT AC Analysis

Distortion


If the Q-point is incorrect as shown on the left below, or if the input is too high as shown on the right below, then the output swings (for a sinusoidal input) as shown in the figures below will be **distorted**, i.e., not the same shape as the input waveform.

 ${\sf NOTE: Load\text{-}lines shown in the figures below are the AC load\text{-}lines which we will derive in}$ the next slides.

AC-DC Load Lines of BJT Grouits BJT AC Analysis

AC Load Line

AC equivalent circuit shown above, let us first define the equivalent output-loop (CE-loop) AC resistance R_{ac} and output v_o as follows

$$R_{ac} = R_C || R_L$$

$$v_o = v_{ce} = -i_c R_{ac}$$

Let us now define the AC+DC output signals i_{C} and v_{CE} as follows

AC-DC Load Lines of BJT Grouits BJT AC Analysis


$$i_C = i_c + I_{CQ}$$

$$v_{CE} = v_{ce} + V_{CEQ}$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

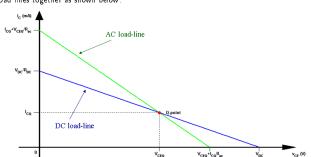
22-Mar-2017

AC-DC Load Lines of BJT Grouits BJT AC Analysis

Now let us express the AC output equation $v_{ce}=-i_cR_{ac}$ in terms of v_{CE} and i_C so that we can draw this equation over the output characteristics curve as the AC load line equation

$$\begin{split} v_{ce} &= -i_c R_{ac} \\ v_{CE} - V_{CEQ} &= -(i_C - I_{CQ}) R_{ac} \\ v_{CE} &= -i_C R_{ac} + V_{CEQ} + I_{CQ} R_{ac} \end{split}$$

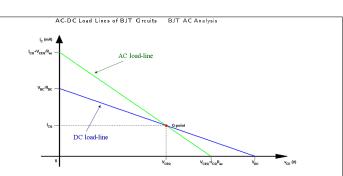
Thus, the rearranged AC load line equation (AC output equation) is given by


$$i_C = \frac{-1}{R_{ac}} v_{CE} + I_{CQ} + \frac{V_{CEQ}}{R_{ac}}$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017

AC-DC Load Lines


Let us draw DC $(V_{CE}=v_{ce}+V_{CEQ})$ and AC $(v_{CE}=-i_CR_{ac}+V_{CEQ}+I_{CQ}R_{ac})$ load lines together as shown below.

Output swings are defined with respect to the $m{Q}$ -point (I_{CQ},V_{CEQ}) and the AC load line end points on the axes

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017

Once the Q-point is known, i.e., the resistor values are given, peak values of the ${f maximum\ undistorted\ voltage\ and\ current\ {f swings\ } v_{ce(p)({f max})}}$ and $i_{c(p)({f max})}$ are given by

$$v_{ce(p)(\text{max})} = \min (V_{CEQ}, I_{CQ}R_{ac})$$

and

$$i_{c(p)(\text{ma}\times)} = \min\left(\frac{V_{CEQ}}{R_{ac}}, I_{CQ}\right)$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017

22-Mar-2017

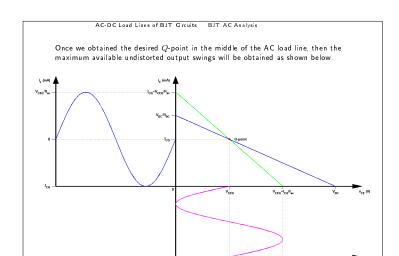
AC-DC Load Lines of BJT Grouits BJT AC Analysis

Maximum Symmetric Undistorted Swing Design

If we want design our circuit (i.e., select appropriate values for the resistors) in order to obtain the maximum available undistorted swing, i.e., to obtain $\max\left(\min\left(V_{CEQ},I_{CQ}R_{ac}\right)\right)$, then we obtain the following condition

$$V_{CEQ} = I_{CQ}R_{ac}$$

Thus, $oldsymbol{Q} ext{-point}$ must be in the $oldsymbol{middle}$ of the $oldsymbol{AC}$ load line. In other words, maximum available negative and positive swings are symmetric.


Combining this AC load line requirement with the DC load-line equation $V_{CE} = V_{CC} - I_C R_{DC}$, we find that we have to select the Q-point collector current as

$$I_{CQ} = \frac{V_{CC}}{R_{DC} + R_{ac}}$$

In order to attain this Q-point, we need to select appropriate values for the resistors in the BE loop to obtain $I_{BQ}=\frac{I_{CQ}}{\beta}$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017

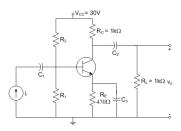
We developed and draw the AC-DC load lines for the common-emitter configuration. Now, let us look at other configurations.

- Common-base (CB) configuration
 - 1. Obtain R_{ac} from the CB loop

 - Obtain R_{DC} from the CE loop. Draw the AC-DC load lines i_{C} vs. v_{CE} as before.

NOTE: You can also draw the AC-DC load lines as i_C vs. v_{CB} by shifting the voltage axis by $V_{BE(ON)}$ volts to the left as $V_{CBQ}=V_{CEQ}-V_{BE(ON)}$. Thus, current axis will be drawn at

 $V_{CB(sat)} = V_{CE(sat)} - V_{BE(ON)} = 0 - V_{BE(ON)} = -V_{BE(ON)} \text{ volts not at } 0 \text{ Volume}$


- Common-collector (CC) configuration (also known as emitter-follower)
 - 1. Obtain R_{ac} and R_{DC} from the CE loop as before. 2. Draw the AC-DC load lines i_E vs. v_{CE} .

NOTE: As $i_E \cong i_C$, it will be the same as drawing i_C vs. v_{CE}

For pnp transistors, we express the currents in the reverse direction (i.e., having positive current values) and reverse the polarity of the terminal voltages (i.e., having positive voltage values), and then draw the AC-DC load lines, e.g., i_C vs. v_{EC} .

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017 13 / 21 AC-DC Load Lines of BJT Grouits BJT AC Analysis

Example 1: Consider the circuit above with $I_{BQ}=50\,\mu\mathrm{A},~I_{CQ}=13\,\mathrm{mA}$ and $\alpha\cong1.$

- a) If $i_i=50\,\mu{\rm A}\sin(\omega t)$, find i_C and v_{CE} . b) Plot AC and DC load lines together with the output voltage and current swings.

Solution: Here $\beta_{ac}=\beta_{DC}=\beta=\frac{I_{CQ}}{I_{BQ}}=\frac{13m}{50\mu}=260,$ $R_{DC}=R_C+R_E=1k+0.47k=1.47\,\mathrm{k}\Omega$ and $R_{ac}=R_C||R_L=1k||1k=0.5\,\mathrm{k}\Omega.$ So, we can find V_{CEQ} as

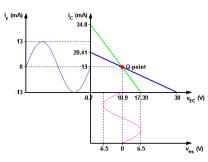
 $V_{CEQ} = V_{CC} - I_{CQ} R_{DC} = 30 - (13m)(1.47k) = 10.89 \, \mathrm{V} \sin(\omega t)).$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017

AC-DC Load Lines of BJT Grouits BJT AC Analysis

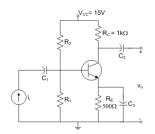
As $i_b \cong i_i$, we can find i_c and v_{ce} as


$$i_c = \beta_{ac} i_b \cong \beta i_i = (260)(50\mu) = 13\,\mathrm{mA}\,\sin(\omega t)$$

$$v_{ce} = -i_c R_{ac} = -(13m)(0.5k) = -6.5 \,\mathrm{V} \sin(\omega t)$$
).

We find i_C and v_{CE} as

$$i_C = I_{CQ} + i_c = 13\,\mathrm{mA} + 13\,\mathrm{mA}\,\sin(\omega t)$$


$$v_{CE}=V_{CEQ}+v_{ce}=10.89\,{\rm V}-6.5\,{\rm V}\sin(\omega t)$$
 Thus, the AC-DC load-lines are shown below

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017 15 / 21

AC-DC Load Lines of BJT Grouits BJT AC Analysis

Example 2: Consider the circuit above with $\alpha \cong 1$.

- a) Determine the Q-point in order to obtain maximum undistorted current swing.
- b) Draw AC and DC load lines

Solution: We can design this circuit to have maximum symmetric undistorted output Solution. We can design this clicuit to have maximum symmetric units swing and select R_1 and R_2 values accordingly. So, from the figure $R_{DC}=R_C+R_E=1k+0.5k=1.5\,\mathrm{k}\Omega$ and $R_{ac}=R_C=1\,\mathrm{k}\Omega$. Thus, $I_{CC}=\frac{V_{CC}}{15}=\frac{15}{15}=6\,\mathrm{mA}$

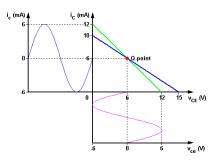
$$R_C+R_E=1k+0.5k=1.5\,\mathrm{k}\Omega$$
 and $R_{ac}=R_C=1\,\mathrm{k}\Omega$. The

$$I_{CQ} = \frac{V_{CC}}{R_{DC} + R_{ac}} = \frac{15}{1.5k + 1k} = 6\,\mathrm{mA}$$

$$V_{CEQ} = V_{CC} - I_{CQ}R_{DC} = 15 - (6m)(1.5k) = 6 \text{ V}$$

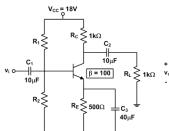
Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017 16 / 21


AC-DC Load Lines of BJT Grouits BJT AC Analysis

Maximum available swings i_c and v_{ce} are given as

$$i_c = 6 \, \mathrm{mA} \, \sin(\omega t)$$


$$v_{ce} = -6 \,\mathrm{V} \sin(\omega t)$$

Consequently, the AC-DC load-lines are shown below

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017 17 / 21 AC-DC Load Lines of BJT Grouits BJT AC Analysis

Example 3: (2004-2005 MI) Consider the common-emitter BJT amplifier in the figure

- a) Explain briefly the effects of the capacitors C_1 , C_2 and C_3 on DC biasing and AC operation
- operation. b) Design the DC bias $(I_{CQ}$ and $V_{CEQ})$ for the maximum undistorted output swing and then find the values of R_1 and R_2 which satisfies this condition. Take $\beta R_E \geq 10(R_1||R_2), \ V_{BE(ON)} = 0.7 \, \text{V}$ and $\beta = 100$. c) Draw the DC and AC load lines for this circuit and show the maximum voltage and
- current swings on the graph. Also, express these current and voltage swings in written form with their AC and DC components.

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017

AC-DC Load Lines of BJT Grouits BJT AC Analysis

Solution: a. Capacitors are open-circuit in DC operation. Thus, \mathcal{C}_1 and \mathcal{C}_2 are called the coupling capacitors for the protection of the Q-point of the amplifier from the input and output circuitries by preventing the circulation/leakage of DC signals and enabling only AC signals in and out. C_3 is called the emitter bypass capacitor ensuring the stability of the Q-point by enabling the emitter resistor to be in effect in DC operation and increasing the AC gain by bypassing the emitter resistor in AC operation.

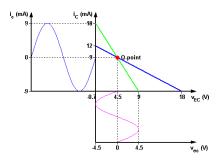
b. We can design this circuit to have maximum symmetric undistorted output swing and select R_1 and R_2 values accordingly. So, from the figure $R_{DC}=R_C+R_E=1k+0.5k=1.5\,\mathrm{k}\Omega$ and $R_{ac}=R_C||R_L=1k||1k=0.5\,\mathrm{k}\Omega$. Thus,

$$\begin{split} I_{CQ} &= \frac{V_{CC}}{R_{DC} + R_{ac}} = \frac{18}{1.5k + 0.5k} = 9 \, \text{mA} \\ V_{CEQ} &= V_{CC} - I_{CQ} R_{DC} = 18 - (9m)(1.5k) = 4.5 \, \text{V} \end{split}$$

As $I_{EQ}\cong I_{CQ}=9\,\mathrm{mA}$, base voltage V_{BQ} is given by

$$V_{BQ} = V_{BE(ON)} + I_{EQ}R_E = 0.7 + (9m)(0.5k) = 5.2 \text{ V}$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I


22-Mar-2017 19 / 21

AC-DC Load Lines of BJT Grouits BJT AC Analysis

c. AC+DC output current i_{C} and output voltage v_{CE} are given by

$$\begin{split} i_C &= I_{CQ} + i_c = 9\,\mathrm{mA} + 9\,\mathrm{mA}\sin(\omega t) \\ v_{CE} &= V_{CEQ} + v_{ce} = 4.5\,\mathrm{V} - 4.5\,\mathrm{V}\sin(\omega t) \end{split}$$

Consequently, the AC-DC load-lines are shown below

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017 21 / 21

AC-DC Load Lines of BJT Grouits BJT AC Analysis

By making the assumption $\beta R_E \geq 10(R_1||R_2)$, we can ignore the base current I_{BQ} and directly apply the voltage divider rule as

$$\begin{split} \frac{R_2}{R_1 + R_2} V_{CC} &\cong V_{BQ} \\ \frac{R_1 + R_2}{R_2} &= \frac{V_{CC}}{V_{BQ}} \\ \frac{R_1}{R_2} &= \frac{V_{CC}}{V_{BQ}} - 1 = \frac{18}{5.2} - 1 = 2.46. \end{split}$$

Let us take the highest value of $R_{BB}=R_1 || R_2$ in order to reduce the currents through R_1 and R_2 as

$$R_{BB} = R_1 || R_2 = \beta R_E / 10 = 100 * 0.5 / 10 = 5 \text{ k}\Omega$$

If we take $a=\frac{R_1}{R_2}=2.46$, then $R_{BB}=\frac{a}{a+1}R_2$. So, R_2 is given by

$$R_2 = \frac{a+1}{a} R_{BB} = \frac{2.46+1}{2.46} 5k = 7.03 \, \mathrm{k}\Omega$$

Thus, \mathcal{R}_1 is given by

$$R_1 = aR_2 = (2.46)(7.03k) = 17.29 \,\mathrm{k}\Omega$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

22-Mar-2017 20 / 21