Contents

BJT Small-Signal Analysis
Purpose of SSAC Analysis BJT SSAC Analysis Steps
BJT Small-Signal Models Hybrid Equivalent Model
Common-Emitter Fixed-Bias Configuration Input Resistance Voltage Gain Output Resistance Phase Relationship
Common-Emitter Voltage-Divider Bias Configuration Input Resistance Voltage Gain Output Resistance Phase Relationship
Common-Emitter Unbypassed-Emitter Bias Configuration Input Resistance
Voltage Gain
Output Resistance Phase Relationship
Emitter-Follower Configuration
Input Resistance
Voltage Gain
Output Resistance
Phase Relationship
Common-Emitter Collector Feedback Configuration Input Resistance

Common-Base Configuration Input Resistance

Purpose of SSAC Analysis

The purpose of small-signal AC (SSAC) analysis to determine the three parameters of an amplifier input resistance, output resistance and gain. In this course, we are mostly interested in the two-port voltage-gain amplifier model shown below.

- Input resistance R_{i} is defined by the no-load input voltage of the amplifier divided by the no-load input current to the amplifier, i.e.,

$$
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}
$$

NOTE: Input resistance cannot include the source resistance R_{s}.

- Output resistance R_{o} is obtained by the test-voltage method, i.e., by dividing the test voltage value with the measured test current value. In the test-voltage method, load is replaced with a test voltage $v_{\text {test }}$ and the independent power sources (v_{s} or i_{s}) are killed, i.e., $v_{s}=0$ or $i_{s}=0$. Thus, output resistance R_{o} is given by

$$
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}
$$

NOTE: Output resistance cannot include the load resistance R_{L}.

- No-load voltage gain A_{v} (or $A_{V_{\mathrm{NL}}}$) is defined by

$$
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}
$$

- When load is connected, the voltage gain will decrease due to the voltage-divider consisting of R_{L} and R_{o}. So, voltage gain with load, A_{V}, is given by

$$
A_{V}=\frac{v_{o}}{v_{i}}=\left(\frac{v_{o}}{A_{v} v_{i}}\right)\left(\frac{A_{v} v_{i}}{v_{i}}\right)=\frac{R_{L}}{R_{o}+R_{L}} A_{v}
$$

- Current gain A_{i} is defined by the output current versus the input current, i.e.,

$$
A_{i}=\frac{i_{o}}{i_{i}}=\frac{v_{o} / R_{L}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{L}} A_{V}=\frac{R_{i}}{R_{o}+R_{L}} A_{v}
$$

- Finally, overall voltage gain $A_{V s}$ is given by

$$
A_{V s}=\frac{v_{o}}{v_{s}}=\frac{R_{L}}{R_{o}+R_{L}} A_{v} \frac{R_{i}}{R_{s}+R_{i}}
$$

BJT SSAC Analysis Steps

1. Draw the SSAC equivalent circuit
a) Draw the AC equivalent circuit (signal frequency is infinity, i.e., $f=\infty$)
i. Capacitors are short circuit, i.e., $X_{C} \rightarrow 0$.
ii. Kill the DC power sources (i.e., $A C$ value of $D C$ sources is zero).
b) Replace BJT with its small-signal equivalent model (e.g., hybrid equivalent model or r_{e} model).
2. Calculate the three amplifier parameters: R_{i}, R_{o} and A_{v}
a) Calculate no-load input resistance, $R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}$.
b) Calculate output resistance, R_{o}.
c) Calculate no-load voltage gain, $A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}$.

BJT Small-Signal Models

A small-signal model is an equivalent circuit that represents the SSAC characteristics of the transistor. It uses circuit elements that approximate the behavior of the transistor.
Two commonly used models used in SSAC analysis of BJTs are given below:

- hybrid equivalent model
- r_{e} model

Mostly, we are going to use the hybrid equivalent model. But, we are going to introduce and provide results for the r_{e} model as well.
NOTE: Small-signal equivalent model and its analysis are the same for both $n p n$ and $p n p$ transistors.

Hybrid Equivalent Model

Parameters of the hybrid equivalent circuit provide the entire set on the specification sheet of a BJT and cover all operating conditions. Generalized hybrid equivalent circuit for any transistor configuration is provided below.

Here,

- h_{i} : input resistance
- h_{r} : reverse transfer voltage ratio $\left(v_{i} / v_{o}\right)$
- h_{f} : forward transfer current ratio $\left(i_{o} / i_{i}\right)$
- h_{o} : output conductance

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE230 Electronics I

For a specific configuration, the model parameters modified with the label of the common-mode terminal in their subscript. So, common-emitter and common-base configurations and their hybrid equivalent models are shown below, respectively.

- For the common-collector configuration, we always use the common-emitter hybrid equivalent model.

Simplified Hybrid Equivalent Model

Because h_{r} is normally a relatively small quantity, its removal is approximated by $h_{r} \approx 0$ and $h_{r} v_{o}=0$, resulting in the simplified hybrid equivalent circuit shown below. In this course, we are going to use the simplified hybrid equivalent model.

This circuit, can be further simplified if a value for the parameter h_{o} or $1 / h_{o}$ is not provided. In that case, we can safely assume that $h_{o}=0$ or $1 / h_{o}=\infty$ resulting in the approximate hybrid equivalent circuit shown below.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE230 Electronics I

Common-Emitter Hybrid Equivalent Model

Here, the h-parameters are defined as below

$$
\begin{aligned}
h_{i e} & =\left.\frac{\partial V_{B E}}{\partial I_{B}}\right|_{Q \text {-point }} & =\frac{\gamma}{I_{B Q}} & \ldots \text { see diode dynamic resistance section } \\
h_{f e} & =\left.\frac{\partial I_{C}}{\partial I_{B}}\right|_{Q \text {-point }} & =\beta_{a c} & \\
1 / h_{o e} & =\left.\frac{\partial V_{C E}}{\partial I_{C}}\right|_{Q \text {-point }} & & =\frac{V_{A}+V_{C E Q}}{I_{C Q}}
\end{aligned} \quad \ldots V_{A} \text { is the early voltage and } V_{A} \gg V_{C E Q} \quad l
$$

Typical values of $h_{f e}$ run from 50 to $200, h_{i e}$ run from 500Ω to $7 \mathrm{k} \Omega$, and $1 / h_{o e}$ run from $40 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$.

Note that, as $I_{C Q}=\beta I_{B Q}$ and $I_{E Q}=(\beta+1) I_{B Q}$, we can also express $h_{i e}$ in terms of $I_{C Q}$ or $I_{E Q}$ as follows

$$
\begin{aligned}
h_{i e} & =\frac{\gamma}{I_{B Q}} \\
& =h_{f e} \frac{\gamma}{I_{C Q}} \\
& =\left(h_{f e}+1\right) \frac{\gamma}{I_{E Q}}
\end{aligned}
$$

where $\gamma=k T / q$ is the thermal voltage and have fixed values for a given temperature, e.g., $\gamma=26 \mathrm{mV}$ at room temperature $T=300 \mathrm{~K}$.

Common-Emitter r_{e} Equivalent Model

One-to-one correspondence with the h-parameters are given below,

$$
\begin{aligned}
h_{f e} & =\beta \\
h_{i e} & =(\beta+1) r_{e} \cong \beta r_{e} \\
1 / h_{o e} & =r_{o} .
\end{aligned}
$$

Thus, $\beta=h_{f e}, \beta r_{e}=h_{i e}$ and $r_{o}=1 / h_{o e}$.

Common-Base Hybrid Equivalent Model

Here, the h-parameters are defined as below,

$$
\begin{aligned}
h_{i b} & =\left.\frac{\partial V_{B E}}{\partial I_{E}}\right|_{Q \text {-point }} & =\frac{\gamma}{I_{E Q}} & \ldots \text { see diode dynamic resistance section } \\
h_{f b} & =-\left.\frac{\partial I_{C}}{\partial I_{E}}\right|_{Q \text {-point }} & & =-\alpha_{a c} \cong-1 \\
1 / h_{o b} & =\left.\frac{\partial V_{C B}}{\partial I_{C}}\right|_{Q \text {-point }} & & \approx \infty
\end{aligned}
$$

Typically, $h_{f b}=-1$, and $h_{i b}$ run from 5Ω to 50Ω, and $1 / h_{o b}$ is in the megohm range. Thus,

$1 / h_{o b} \gg 1 / h_{o e}$.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE230 Electronics I

Note that, the relationship between $h_{i b}$ and $h_{i e}$ is given below

$$
h_{i e}=\left(h_{f e}+1\right) h_{i b}
$$

or $h_{i b}=\frac{h_{i e}}{h_{f e}+1}$.

Common-Base r_{e} Equivalent Model

One-to-one correspondence with the h-parameters are given below

$$
\begin{aligned}
h_{f b} & =-\alpha \\
h_{i b} & =r_{e} \\
1 / h_{o b} & =r_{o} .
\end{aligned}
$$

Thus, $\alpha=-h_{f b} \cong 1, r_{e}=h_{i b}$ and $r_{o}=1 / h_{o b} \cong \infty$. Note that, minus sign is due to the direction of the current source.

Phase Relationship

The phase relationship between input and output depends on the amplifier configuration circuit as listed below.

- Common-Emitter: 180 degrees
- Common-Base: 0 degrees
- Common-Collector: 0 degrees (Emitter-Follower)

Common-Emitter Fixed-Bias Configuration

Common-emitter fixed-bias configuration is given below

Let us start SSAC analysis by drawing the $A C$ equivalent circuit as shown below

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE230 Electronics I

BJT Small-Signal Analysis Common-Emitter Fixed-Bias Configuration

Then, we are going to replace BJT with its common-emitter hybrid equivalent model as shown below

- Obtain $h_{f e}$ and $1 / h_{o e}$ from the specification sheet of the transistor or by testing the transistor using a curve tracer. Calculate $h_{i e}$ using the DC analysis values as $h_{i e}=\frac{26 \mathrm{mV}}{I_{B Q}}=h_{f e} \frac{26 \mathrm{mV}}{I_{C Q}}$.

Input Resistance

Input resistance R_{i} is given as

$$
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{B}| | h_{i e}
$$

- If $R_{B} \geq 10 h_{i e}$, then R_{i} simplifies to $R_{i}=h_{i e}$.
- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{i}=R_{B} \| \beta r_{e}
$$

Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f e} i_{b}}\right)\left(\frac{h_{f e} i_{b}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left(-R_{C} \| 1 / h_{o e}\right)\left(h_{f e}\right)\left(\frac{1}{h_{i e}}\right) \\
& =-\frac{h_{f e}\left(R_{C} \| 1 / h_{o e}\right)}{h_{i e}}
\end{aligned}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
A_{v}=-\frac{R_{C} \| r_{o}}{r_{e}}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, no-load voltage gain A_{v} reduces to

$$
A_{v}=-\frac{h_{f e} R_{C}}{h_{i e}} \quad \ldots r_{e} \text { model: } A_{v}=-\frac{R_{C}}{r_{e}}
$$

- For the circuit above, we can obtain the current gain A_{i} as follows

$$
\begin{aligned}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v}
\end{aligned}
$$

- If $1 / h_{o e} \geq 10 R_{C}$ and $R_{B} \geq 10 h_{i e}$, current gain A_{i} reduces to

$$
A_{i}=-h_{f e}
$$

$\ldots r_{e}$ model: $A_{i}=-\beta$

Output Resistance

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \| 1 / h_{o e}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, then R_{o} simplifies to $R_{o}=R_{C}$.
- Output resistance R_{o} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{o}=R_{C} \| r_{o}
$$

Phase Relationship

- The phase relationship between input and output is 180 degrees as shown above.
- The negative sign used in the voltage gain formulas indicates the inversion.

CE Voltage-Divider Bias Configuration

Common-emitter voltage-divider bias configuration is given below

Corresponding SSAC equivalent circuit is shown below

Input Resistance

Input resistance R_{i} is given as

$$
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{1}\left\|R_{2}\right\| h_{i e}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{i}=R_{1}\left\|R_{2}\right\| \beta r_{e}
$$

Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f e} i_{b}}\right)\left(\frac{h_{f e} i_{b}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left(-R_{C} \| 1 / h_{o e}\right)\left(h_{f e}\right)\left(\frac{1}{h_{i e}}\right) \\
& =-\frac{h_{f e}\left(R_{C} \| 1 / h_{o e}\right)}{h_{i e}}
\end{aligned}
$$

- No-load voltage gain A_{v} according to the \boldsymbol{r}_{e} model is given by

$$
A_{v}=-\frac{R_{C} \| r_{o}}{r_{e}}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, no-load voltage gain A_{v} reduces to

$$
A_{v}=-\frac{h_{f e} R_{C}}{h_{i e}} \quad \ldots r_{e} \text { model: } A_{v}=-\frac{R_{C}}{r_{e}}
$$

- For the circuit above, we can obtain the current gain A_{i} as follows

$$
\begin{aligned}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v}
\end{aligned}
$$

- If $1 / h_{o e} \geq 10$, and given $R^{\prime}=R_{1} \| R_{2}$, current gain A_{i} reduces to

$$
A_{i}=-h_{f e} \frac{R^{\prime}}{R^{\prime}+h_{i e}} \quad \ldots r_{e} \text { model: } A_{i}=-\frac{R^{\prime}}{R^{\prime} / \beta+r_{e}}
$$

Output Resistance

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \| 1 / h_{\text {oe }}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, then R_{o} simplifies to $R_{o}=R_{C}$.
- Output resistance R_{o} according to the r_{e} model is given by

$$
R_{o}=R_{C} \| r_{o}
$$

Phase Relationship

- Phase relationship between input and output of a common-emitter amplifier configuration if always 180 degrees. This is independent of the type of the bias-configuration.

CE Unbypassed-Emitter Bias Configuration

Common-emitter unbypassed-emitter bias configuration and its SSAC equivalent circuit are given on the left and right figures below, respectively.

- When R_{E} is not bypassed, we normally assume $1 / h_{o e}=\infty$ in order to reduce the calculation complexity. Because of the feedback, even $1 / h_{o e} \neq \infty$ the results do not really change at all.

Input Resistance

Input resistance R_{i} is given as

$$
\begin{array}{rlr}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =R_{B} \| R_{b} \\
& =R_{B} \|\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right]
\end{array} \quad \ldots R_{b}=h_{i e}+\left(h_{f e}+1\right) R_{E}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{i}=R_{B}\left\|(\beta+1)\left(r_{e}+R_{E}\right) \cong R_{B}\right\| \beta\left(r_{e}+R_{E}\right)
$$

Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f e} i_{b}}\right)\left(\frac{h_{f e} i_{b}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left(-R_{C}\right)\left(h_{f e}\right)\left(\frac{1}{R_{b}}\right) \\
& =-\frac{h_{f e} R_{C}}{h_{i e}+\left(h_{f e}+1\right) R_{E}}
\end{aligned}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
A_{v}=-\frac{R_{C}}{r_{e}+R_{E}}
$$

- If $\left(h_{f e}+1\right) R_{E} \geq 10 h_{i e}$, no-load voltage gain A_{v} reduces to

$$
A_{v}=-\frac{R_{C}}{R_{E}} \quad \ldots r_{e} \text { model: } A_{v}=-\frac{R_{C}}{R_{E}}
$$

- For the circuit above, we can obtain the current gain A_{i} as follows

$$
\begin{aligned}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v}
\end{aligned}
$$

- Resultant current gain A_{i} is given by

$$
A_{i}=-h_{f e} \frac{R_{B}}{R_{B}+R_{b}} \quad \ldots r_{e} \text { model: } A_{i}=-\frac{R_{B}}{R_{B} / \beta+r_{e}+R_{E}}
$$

Output Resistance

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C}
$$

- Output resistance R_{o} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{o}=R_{C}
$$

Phase Relationship

- Phase relationship between input and output of a common-emitter amplifier configuration if always 180 degrees. This is independent of the type of the bias-configuration.

Emitter-Follower Configuration

Emitter-follower (common-collector) configuration and its SSAC equivalent circuit are given on the left and right figures below, respectively.

- When R_{E} is not bypassed, we normally assume $1 / h_{o e}=\infty$ in order to reduce the calculation complexity.

Input Resistance

Input resistance R_{i} is given as

$$
\begin{array}{rlr}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =R_{B} \| R_{b} & \ldots R_{b}=h_{i e}+\left(h_{f e}+1\right) R_{E} \\
& =R_{B} \|\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] &
\end{array}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{i}=R_{B}\left\|(\beta+1)\left(r_{e}+R_{E}\right) \cong R_{B}\right\| \beta\left(r_{e}+R_{E}\right)
$$

Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left[\left(h_{f e}+1\right) R_{E}\right]\left(\frac{1}{R_{b}}\right) \quad \ldots R_{b}=h_{i e}+\left(h_{f e}+1\right) R_{E} \\
& =\frac{\left(h_{f e}+1\right) R_{E}}{h_{i e}+\left(h_{f e}+1\right) R_{E}} \cong 1
\end{aligned}
$$

- No-load voltage gain A_{v} according to the \boldsymbol{r}_{e} model is given by

$$
A_{v}=\frac{R_{E}}{r_{e}+R_{E}} \cong 1
$$

- For the circuit above, we can obtain the current gain A_{i} as follows

$$
\begin{aligned}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{E}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{E}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{E}} A_{v}
\end{aligned}
$$

- Resultant current gain A_{i} is given by,

$$
A_{i}=\left(h_{f e}+1\right) \frac{R_{B}}{R_{B}+R_{b}} \quad \ldots r_{e} \text { model: } A_{i}=\frac{R_{B}}{R_{B} /(\beta+1)+r_{e}+R_{E}}
$$

Output Resistance

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit above.

$$
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{E} \| \frac{h_{i e}}{h_{f e}+1}
$$

- Output resistance R_{o} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{o}=R_{E} \| r_{e}
$$

- If $1 / h_{o e} \neq \infty$, then replace R_{E} with $\left(R_{E} \| 1 / h_{o e}\right)$ in R_{i}, A_{v} and R_{o} calculations.
- If a voltage source with source resistance R_{s} is connected to the input, replace $h_{i e}$ with ($h_{i e}+R_{B} \| R_{s}$) in R_{o} calculations.

Phase Relationship

- Emitter-follower (common-collector) configuration has no phase shift between input and output.

CE Collector Feedback Configuration

Common-emitter collector feedback bias configuration is given below

Corresponding SSAC equivalent circuit is shown below

Input Resistance

Input resistance R_{i} is given as

$$
\begin{array}{rlrl}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =\frac{h_{i e}}{1+\frac{h_{i e}+h_{f e} R_{C}}{R_{F}+R_{C}}} & & \ldots i_{f}=-\frac{h_{i e}+h_{f e} R_{C}}{R_{F}+R_{C}} i_{b} \\
& \cong \frac{h_{i e}}{1+\frac{h_{f e} R_{C}}{R_{F}+R_{C}}} & \ldots h_{f e} R_{C} \gg h_{i e}
\end{array}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{i} \cong \frac{\beta r_{e}}{1+\frac{\beta R_{C}}{R_{F}+R_{C}}}
$$

Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{array}{rlrl}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{h_{f e} R_{F}-h_{i e}}{R_{F}+R_{C}}\right)\left(\frac{-R_{C}}{h_{i e}}\right) & & \ldots i_{f}=-\frac{h_{i e}+h_{f e} R_{C}}{R_{F}+R_{C}} i_{b} \\
& \cong\left(\frac{h_{f e} R_{F}}{R_{F}+R_{C}}\right)\left(\frac{-R_{C}}{h_{i e}}\right) & \ldots h_{f e} R_{F} \gg h_{i e} \\
& \approx-\frac{h_{f e} R_{C}}{h_{i e}} & \ldots R_{F} \gg R_{C}
\end{array}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
A_{v} \approx-\frac{R_{C}}{r_{e}}
$$

- For the circuit above, we can obtain the current gain A_{i} as follows

$$
\begin{aligned}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v}
\end{aligned}
$$

- Resultant current gain A_{i} is given by,

$$
A_{i} \cong-\frac{h_{f e}\left(R_{F}+R_{C}\right)}{R_{F}+\left(h_{f e}+1\right) R_{C}} \quad \ldots r_{e} \text { model: } A_{i}=-\frac{R_{F}+R_{C}}{R_{F} / \beta+R_{C}}
$$

Output Resistance

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \| R_{F}
$$

- Output resistance R_{o} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{o}=R_{C} \| R_{F}
$$

- If $1 / h_{o e} \neq \infty$, then replace R_{C} with $\left(R_{C} \| 1 / h_{o e}\right)$ in R_{i}, A_{v} and R_{o} calculations.
- If a voltage source with source resistance R_{s} is connected to the input, replace R_{F} with $\left[R_{F}\left(R_{s}+h_{i e}\right) /\left(h_{f e} R_{s}+h_{i e}\right)\right]$ in R_{o} calculations.

Phase Relationship

- Phase relationship between input and output of a common-emitter amplifier configuration if always 180 degrees. This is independent of the type of the bias-configuration.

Common-Base Configuration

Common-base configuration is given below

Corresponding SSAC equivalent circuit is shown below

- Here, $h_{i b}=\frac{h_{i e}}{h_{f e}+1}=\frac{26 \mathrm{mV}}{I_{E Q}}$ and $h_{f b}=-\alpha_{a c}=-1$.

Input Resistance

Input resistance R_{i} is given as

$$
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{E} \| h_{i b}
$$

- If $R_{E} \geq 10 h_{i b}$, then R_{i} simplifies to $R_{i}=h_{i b}$.
- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{i}=R_{E} \| r_{e}
$$

Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f b} i_{e}}\right)\left(\frac{h_{f b} i_{e}}{i_{e}}\right)\left(\frac{i_{e}}{v_{i}}\right) \\
& =\left(-R_{C}\right)\left(h_{f b}\right)\left(\frac{1}{h_{i b}}\right) \\
& =\frac{R_{C}}{h_{i b}} \quad \ldots h_{f b}=-1
\end{aligned}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
A_{v}=\frac{R_{C}}{r_{e}}
$$

- For the circuit above, we can obtain the current gain A_{i} as follows

$$
\begin{aligned}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v}
\end{aligned}
$$

- Resultant current gain A_{i} is given by,

$$
A_{i}=\frac{R_{E} \| h_{i b}}{h_{i b}} \approx 1 \quad \ldots r_{e} \text { model: } A_{i}=\frac{R_{E} \| r_{e}}{r_{e}} \approx 1
$$

Output Resistance

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit above. Note that in the circuit $i_{e}=0$, so $h_{f b} i_{e}=0$ as well.

$$
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C}
$$

- Output resistance R_{o} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
R_{o}=R_{C}
$$

- If $1 / h_{o b} \neq \infty$, then replace R_{C} with $\left(R_{C} \| 1 / h_{o b}\right)$ in R_{i}, A_{v} and R_{o} calculations.

Phase Relationship

- A common-base amplifier configuration has no phase shift between input and output

Example 1: Consider the common-base BJT amplifier in the figure above.
a) Perform DC analysis and find the Q-point.
b) Evaluate the overall voltage gain $A_{V s}$ and the current gain A_{i}.
c) Sketch v_{o} on the AC+DC load line graph when
i. $v_{s}=100 \sin (\omega t) \mathrm{mV}$,
ii. $v_{s}=900 \sin (\omega t) \mathrm{mV}$.

Solution: a) Let us first draw the DC equivalent circuit first as shown below,

Here, $R_{E}=R_{E_{1}}+R_{E_{2}}=0.2 k+1.5 k=1.7 \mathrm{k} \Omega$.
Now, let us calculate $V_{B B}, R_{B B}, I_{C Q}, V_{C E Q}$ and $V_{C B Q}$

$$
\begin{aligned}
V_{B B} & =\left(\frac{30 k}{30 k+180 k}\right)(10)=1.43 \mathrm{~V} \\
R_{B B} & =30 k \| 180 k=25.71 \mathrm{k} \Omega \\
I_{C Q} \cong I_{E Q} & =\frac{1.43-0.7}{25.71 k / 201+1.7 k}=0.4 \mathrm{~mA} \\
V_{C E Q} & =10-(0.4 m)(4.7 k+1.7 k)=7.44 \mathrm{~V} \\
V_{C B Q} & =7.44-0.7=6.74 \mathrm{~V}
\end{aligned}
$$

b) In order to calculate the voltage gain, we need to draw the common-base SSAC equivalent circuit. As it is not given $1 / h_{o b}=\infty$. Let us now calculate $h_{i b}$ as

$$
h_{i b}=\frac{26 m}{0.4 m}=65 \Omega .
$$

So, the small-signal equivalent circuit is given below

Now, let us calculate input resistance R_{i} and voltage gain with load A_{V} as follows

$$
\begin{aligned}
R_{i} & =R_{E_{2}}\left\|\left(R_{E 1}+h_{i b}\right)=1.5 k\right\|(200+65) \cong 225 \Omega \\
A_{V} & =\frac{v_{o}}{v_{i}}=\left(\frac{v_{o}}{h_{f b} i_{e}}\right)\left(\frac{h_{f b} i_{e}}{i_{e}}\right)\left(\frac{i_{e}}{v_{i}}\right) \\
& =\left(-R_{C} \| R_{L}\right)\left(h_{f b}\right)\left(\frac{1}{R_{E_{1}}+h_{i b}}\right)=\frac{R_{C} \| R_{L}}{R_{E_{1}}+h_{i b}} \\
& =\frac{4.7 k \| 10 k}{200+65}=\frac{3.2 k}{0.265 k}=12.08 .
\end{aligned}
$$

Thus, overall voltage gain $A_{V s}$ and current gain A_{i} are given by

$$
\begin{aligned}
A_{V s}=\frac{v_{o}}{v_{s}} & =\left(\frac{v_{o}}{v_{i}}\right)\left(\frac{v_{i}}{v_{s}}\right)=A_{V} \frac{R_{i}}{R_{s}+R_{i}}=(12.08)\left(\frac{225}{100+225}\right) \\
& =8.36 \\
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{L}}{v_{i} / R_{i}}=A_{V} \frac{R_{i}}{R_{L}}=(12.08)\left(\frac{0.225 k}{10 k}\right) \\
& =0.27
\end{aligned}
$$

c) Let us write down the AC load line equation for this common-base amplifier, noting that $v_{o}=v_{c b}=-i_{c}\left(R_{C} \| R_{L}\right)=-i_{c} R_{a c}$ and $\left.v_{c b}=v_{c e}-v_{b e}=v_{c e}-\frac{h_{i b}}{R_{E_{1}}+h_{i b}} v_{i} \approx v_{c e}\right)$

$$
\begin{array}{rlrl}
v_{C B} & =-i_{C} R_{a c}+V_{C B Q}+I_{C Q} R_{a c} & \ldots V_{C B Q}=V_{C E Q}-V_{B E Q} \\
v_{C E}-V_{B E Q} & =-i_{C} R_{a c}+V_{C E Q}-V_{B E Q}+I_{C Q} R_{a c} & \ldots v_{C B} \approx v_{C E}-V_{B E Q} \\
v_{C E} & =-i_{C} R_{a c}+V_{C E Q}+I_{C Q} R_{a c} & &
\end{array}
$$

So, $R_{a c}=R_{C}\left\|R_{L}=4.7 k\right\| 10 k=3.2 \mathrm{k} \Omega$, and similarly we obtain $R_{D C}$ from the C-E loop as $R_{D C}=R_{C}+R_{E}=4.7 k+1.7 k=6.4 \mathrm{k} \Omega$.

BJT Small-Signal Analysis Common-Base Configuration

Note that, maximum available undistorted swing amplitude is

$$
\min \left(V_{C E Q}, I_{C Q} R_{a c}\right)=\min (7.44,(0.4 m)(3.2 k))=\min (7.44,1.28)=1.28 \mathrm{~V}
$$

Thus, as $A_{V s}=8.36$, maximum input source amplitude which gives an undistorted output is $\max \left(v_{s(p)}\right)=1.28 / 8.36=153.1 \mathrm{mV}$. If the input source amplitude exceeds this value, we will observe distortion at the output.
i. For $v_{s}=100 \sin (\omega t) \mathrm{mV}$, we are going to observe an undistorted sinusoidal output with an amplitude of 0.836 V around $V_{C B Q}=6.74 \mathrm{~V}$ as shown below.

ii. For $v_{s}=900 \sin (\omega t) \mathrm{mV}$, we are going to observe a distorted output as shown below.

