Contents		
DC Biasing of BJTs		
DC Biasing of BJTs		
Three States of Operation		
BJT DC Analysis		
DC Biasing Circuits		
Fixed-Bias Circuit		
Emitter-Stabilized Bias Circuit		
Voltage Divider Bias Circuit		
DC Bias with Voltage Feedback		
mm Transistors		
Bias Stabilization		
Stability Factors		
Stability of Transistor Circuits with Active Components		
Practical Applications		
Relay Driver		
Transistor Switch		
Transistor Switching Networks		
Logic Gates		
Voltage Level Indicator		
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE230 Electronics	15-Mar-2017	1/5
		/ -

DC Biasing of BJTs Three States of Operation	DC Biasing of BJTs BJT DC Analysis
Three States of Operation	BJT DC Analysis
 Proper DC biasing sets the BJT transistor into the active state, so that it can amplify the AC signal. Let us remember the states of the transistor: ► Active: Operating state of the amplifier: I_C = βI_B. ■ Base-Emitter (BE) junction: forward-biased (ON). ■ Base-Collector (BC) junction: reverse-biased (OFF). 	 Draw the DC equivalent circuit (signal frequency is zero, i.e., f = 0) a) Capacitors are open circuit, i.e., X_C → ∞. b) Kill the AC power sources (short-circuit AC voltage sources and open-circuit AC current sources). c) Inductors are short circuit or replaced by their DC resistance (winding resistance) if given, i.e., X_L → 0.
 ► Cut-Off: The amplifier is basically off. There is no current, i.e., I_C = I_B = I_E = 0 A. ■ Base-Emitter (BE) junction: reverse-biased (OFF). ■ Base-Collector (BC) junction: reverse-biased (OFF). 	2. Write KVL for the loop which contains BE junction a) Take $V_{BE} = V_{BE(ON)}$ to ensure the transistor is ON (or not in the cut-off state). Note: For a pnp transistor, $V_{EB} = V_{BE(ON)}$. b) Determine the base current I_{BQ} (or emitter current I_{EQ}).
 ▶ Saturation: The amplifier is saturated. Voltages are fixed, e.g., V_{CE} = V_{CE}(sat) ≅ 0V. Output is distorted, i.e., not the same shape as the input waveform. ■ Base-Emitter (<i>BE</i>) junction: forward-biased (ON). 	3. Write KVL for the loop which contains CE terminals a) Assume the transistor is in the active state and take $I_{CQ} = \beta I_{BQ}$ (or $I_{CQ} = \alpha I_{EQ}$).
■ Base-Collector (BC) junction: forward-biased (ON).	 b) Calculate V_{CEQ}. c) If V_{CEQ} ≤ V_{CE(sat)} then the transistor is in the saturation (SAT) state (i.e., I_{CQ} ≠ βI_{BQ}), so take V_{CEQ} = V_{CE(sat)} and recalculate I_{CQ}. NOTE: Normally, a BJT should not be in the saturation state if it is used as an
	amplifier.
Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics 15-Mar-2017 3 / 59	Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics 15-Mar-2017 4 /

VCE

15 - Mar - 2017

14 / 59

DC Biasing of BJTs Bias Stabilization

$$\begin{split} S_{I_{CO}} &= \beta + 1\\ S_{V_{BE}(ON)} &= \frac{-\beta}{R_B}\\ S_{\beta} &= \frac{I_{C_1}}{\beta_*} \end{split}$$

 $S_{I_{CO}} = (\beta + 1) \frac{R_B + R_E}{R_B + (\beta + 1) R_E} \cong \frac{\beta + 1}{1 + \frac{(\beta + 1) R_E}{R_E}}$

Stability Factors for Other Bias Circuits

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

DC Biasing of BITs

factors are given by

factors are given by

DC Biasing of BJTs Bias Stabilization C. For the voltage-divider bias circuit with $(\beta+1)R_E\geq 10R_{BB}$, the stability factors are given by A. For the fixed-bias circuit, i.e., by substituting $R_E=0$ and $R_{BB}=R_B$, the stability
$$\begin{split} S_{I_{CO}} &= (\beta+1) \, \frac{R_{BB} + R_E}{R_{BB} + (\beta+1) \, R_E} \cong 1 + \frac{R_{BB}}{R_E} \\ S_{V_{BE(ON)}} &= \frac{-\beta}{R_{BB} + (\beta+1) \, R_E} \cong \frac{-1}{R_E} \\ S_{\beta} &= \frac{I_{C_1}}{\beta_1} \, \frac{R_{BB} + R_E}{R_{BB} + (\beta_2 + 1) \, R_E} \cong \frac{I_{C_1}}{\beta_1 \beta_2} \left(1 + \frac{R_{BB}}{R_E}\right) \end{split}$$
D. For the voltage-feedback bias circuit, i.e., $R_{BB}=R_F,$ replacing R_E with $R_{CE}=R_C+R_E$ and $R_F\gg R_{CE},$ the stability factors are given by B. For the emitter-stabilized bias circuit, i.e., $R_{B\!B}=R_B$ and $R_B\gg R_E$, the stability
$$\begin{split} \ell_E & \text{and} \ \kappa_F \gg \infty_{CE}, \ldots \\ S_{I_{CO}} &= (\beta+1) \ \frac{R_F + R_{CE}}{R_F + (\beta+1) \, R_{CE}} \cong \frac{\beta+1}{1 + \frac{(\beta+1) \, R_{CE}}{R_F}} \end{split}$$
$$\begin{split} S_{V_{BE}(ON)} &= \frac{-\beta}{R_F + (\beta + 1)\,R_{CE}} \\ S_{\beta} &= \frac{I_{C_1}}{\beta_1}\frac{R_F + R_{CE}}{R_F + (\beta_2 + 1)\,R_{CE}} \cong \frac{I_{C_1}}{\beta_1}\frac{1}{1 + \frac{(\beta_2 + 1)\,R_{CE}}{R_F}} \end{split}$$
$$\begin{split} S_{V_{BE(ON)}} &= \frac{-\beta}{R_B + (\beta + 1) \, R_E} \\ S_{\beta} &= \frac{I_{C_1}}{\beta_1} \frac{R_B + R_E}{R_B + (\beta_2 + 1) \, R_E} \cong \frac{I_{C_1}}{\beta_1} \frac{1}{1 + \frac{(\beta_2 + 1) \, R_E}{R_B}} \end{split}$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I

15-Mar-2017

46 / 59

DC Biasing of BJTs Bias Stabilization a. Let us calculate the stability factors for the fixed-bias circuit $S_{I_{CO}}=\beta+1=51$
$$\begin{split} S_{\beta} &= \frac{I_{C1}}{\beta_1} = \frac{2m}{50} = 0.04 \, \mathrm{mA} \\ S_{V_{BE}(ON)} &= \frac{-\beta}{R_B} = \frac{-50}{240k} = -0.21 \, \mathrm{m\Omega}^{-1} \end{split}$$
Thus, ΔI_C is given by $\Delta I_C \cong (51)(19.9n) + (0.04m)(30) + (-0.21m)(-0.17)$ $= 1.02 \mu + 1.2 m + 0.036 m$ $= 1.236 \, \text{mA}$ That means, for the fixed-bias circuit I_C increases to $3.236\,{\rm mA}$ at $100\,^{\rm o}{\rm C}$ from $2\,{\rm mA}$ b. Let us calculate the stability factors for the voltage-divider bias circuit
$$\begin{split} S_{I_{CO}} &\cong 1 + \frac{R_{BB}}{R_E} = 1 + 2 = 3\\ S_{\beta} &\cong \frac{I_{C_1}}{\beta_1 \beta_2} \left(1 + \frac{R_{BB}}{R_E}\right) = \frac{2m}{(50)(80)} (1 + 2) = 1.5 \,\mu\text{A}\\ S_{V_{BE(ON)}} &= \frac{-1}{R_E} = \frac{-1}{4.7k} = -0.21 \,\text{m}\Omega^{-1} \end{split}$$
Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar-2017 48 / 59

$$\begin{aligned} \hline \mathbf{Temperature} & I_{CO} & \beta & \mathbf{V}_{BE(ON)} \\ \hline \mathbf{-65 \ }^{\circ} C & 0.02 \ \mathrm{nA} & 20 & 0.85 \ \mathrm{V} \\ \hline \mathbf{-25 \ }^{\circ} C & 0.1 \ \mathrm{nA} & 50 & 0.65 \ \mathrm{V} \\ \hline \mathbf{25 \ }^{\circ} C & 0.1 \ \mathrm{nA} & 50 & 0.65 \ \mathrm{V} \\ \hline \mathbf{100 \ }^{\circ} C & 20 \ \mathrm{nA} & 80 & 0.48 \ \mathrm{V} \\ \hline \mathbf{175 \ }^{\circ} C & 3.3 \ \mu \mathrm{A} & 120 & 0.30 \ \mathrm{V} \end{aligned}$$

Example 7: Find and compare the collector current change ΔI_C when the temperature rises from 25 °C to 100 °C for the transistor defined by the table above for the following bias arrangements.
a. Fixed-bias with $R_B = 240 \ \mathrm{k\Omega}$ and $I_{C_1} = 2 \ \mathrm{mA}$.
b. Voltage-divider bias with $R_E = 4.7 \ \mathrm{k\Omega}$, $R_{BB}/R_E = 2 \ \mathrm{and} \ I_{C_1} = 2 \ \mathrm{mA}$.
Solution: From the table above, let us first calculate ΔI_{CO} . $\Delta\beta$ and $\Delta V_{BE(ON)}$
 $\Delta I_{CO} = I_{CO_2} - I_{CO_1} = 20n - 0.1n = 19.9 \ \mathrm{nA}$
 $\Delta\beta = \beta_2 - \beta_1 = 80 - 50 = 30$
 $\Delta V_{BE(ON)} = V_{BE(ON)_2} - V_{BE(ON)_1} = 0.48 - 0.65 = -0.17 \ \mathrm{V}$
We are going to calculate ΔI_C using
 $\Delta I_C \cong S_{I_{CO}} \Delta I_{CO} + S_{\beta} \Delta \beta + S_{V_{BE(ON)}} \Delta V_{BE(ON)}$
Dr. U. Sezen & Dr. D. Gökeen (Hacettere Uni.) ELE230 Electronics 1 15-Mar-2017 47 / 59

Bias Stabilizatio

15-Mar-2017 45 / 59

