ELE 230 Electronics I

Hacettepe University

Dr. Umut Sezen
Dr. Dinçer Gökcen

27 May 2018

1. These lecture notes are complete and regularly updated at the address below: http://www.ee.hacettepe.edu.tr/~usezen/ele230/.
2. These lecture notes use material from several other sources like Prof. Selçuk Geçim's lecture notes, "Electronic Devices and Circuit Theory, 11th ed." by Boylestad and Nashelsky and and its instructor materials.

Contents

List of Figures xvi
List of Examples xviii
List of Homeworks xix
Textbook xx
1 Semiconductor Diodes 1
1.1 Circuit Symbol 1
1.2 Ideal Diode Model 1
1.2.1 Determining State of an Ideal Diode 3
1.3 p-n Junction Diodes 4
1.3.1 No Bias Condition 5
1.3.2 Reverse Bias Condition 6
1.3.3 Forward Bias Condition 7
1.3.4 Diode Characteristic Equation 8
1.3.5 Zener Region (or Avalanche Breakdown Region) 10
1.3.6 Peak Inverse Voltage (PIV) Rating 11
1.3.7 Forward Bias Turn-On Voltage $\left(V_{D(O N)}\right)$ 11
1.3.8 Temperature Effects 12
1.3.9 Load Line and Operating Point (Q-point) 12
1.3.10 DC Resistance (Static Resistance) 14
1.3.11 AC Resistance (Dynamic Resistance) 15
1.3.12 DC and Small-Signal AC (SSAC) Analysis 16
1.3.13 Average AC Resistance 18
1.4 Piecewise-Linear Diode Model 19
1.5 Simplified Diode Model 19
1.5.1 Determining State of a Diode 20
1.6 Diode Specification Sheets 23
1.6.1 Semiconductor Notation 24
1.6.2 Capacitance 25
1.7 Other Types of Diodes 26
1.8 Zener Diode 26
1.9 Light Emitting Diode (LED) 27
2 Diode Applications 28
2.1 Clippers 28
2.1.1 Parallel Clippers 31
2.2 Clampers 33
2.3 Voltage Multiplier Circuits 37
2.3.1 Peak Rectifier 37
2.3.2 Voltage Doubler 38
2.3.3 Voltage Tripler and Quadrupler 39
2.4 Zener Diode 40
2.4.1 Zener Regulator 40
2.4.2 Other Zener Diode Regulators 42
2.4.3 Zener Diode Parameters 42
2.5 Practical Applications of Diode Circuits 43
3 Rectifiers and Voltage Regulating Filters 44
3.1 Properties of Electrical Signals 44
3.1.1 DC Component (Average Value) and AC Component 44
3.1.2 Effective Value (RMS Value) 47
3.2 Half-Wave Rectifier 52
3.3 Full-Wave Rectifier 53
3.3.1 Center-Tapped Transformer Full-Wave Rectifier 54
3.3.2 Full-Wave Bridge Rectifier 55
3.4 Rectifier Summary 57
3.5 Voltage Regulation and Ripple Factor 58
3.5.1 Voltage Regulation 58
3.5.2 Ripple Factor 59
3.6 Capacitor Filter 60
3.6.1 Ripple Factor of Capacitor Filter 62
3.6.2 Diode Conduction Period and Peak Diode Current 64
3.7 Additional RC Filter 66
3.7.1 DC Operation 67
3.7.2 AC Operation 67
3.8π-Filter 70
4 Bipolar Junction Transistor (BJT) 72
4.1 Bipolar Junction Transistor 72
4.2 Common-Base Configuration 74
4.2.1 Input and Output Characteristics 75
4.2.2 Three Modes of Operation 76
4.2.3 Currents 77
4.2.4 Alpha (α) 77
4.2.5 Simplification (Active Mode) 78
4.2.6 AC Amplification 79
4.3 Common-Emitter Configuration 80
4.3.1 Input and Output Characteristics 80
4.3.2 Currents 81
4.3.3 Beta (β) 82
4.3.3.1 Determining β from a graph 82
4.3.4 Relationship between β and α 83
4.3.5 Simplification (Active Mode) 83
4.4 Common-Collector Configuration 83
4.5 Operating Limits 84
4.6 Simplified BJT Model 85
5 DC Biasing of BJTs 87
5.1 DC Biasing 87
5.2 Three States of Operation 88
5.3 BJT DC Analysis 88
5.4 DC Biasing Circuits 89
5.4.1 Fixed-Bias Circuit 89
5.4.1.1 Base-Emitter Loop 90
5.4.1.2 Collector-Emitter Loop 90
5.4.1.3 Saturation 91
5.4.1.4 DC Load Line 92
5.4.2 Emitter-Stabilized Bias Circuit 96
5.4.2.1 Base-Emitter Loop 96
5.4.2.2 Collector-Emitter Loop 98
5.4.2.3 DC Load Line 98
5.4.2.4 Improved Biased Stability 99
5.4.3 Voltage Divider Bias Circuit 100
5.4.3.1 Base-Emitter Loop (Exact Analysis) 101
5.4.3.2 Base-Emitter Loop (Approximate Analysis) 102
5.4.3.3 Collector-Emitter Loop and DC Load line 103
5.4.4 Collector Feedback Bias Circuit 104
5.4.4.1 Base-Emitter Loop 104
5.4.4.2 Collector-Emitter Loop 105
5.4.4.3 DC Load line 106
5.4.5 Various Different Bias Circuits 106
5.4.6 pnp Transistors 107
5.5 Bias Stabilization 107
5.5.1 Stability Factors 108
5.5.1.1 Derivation of Stability Factors (Voltage-Divider Bias Circuit) 109
5.5.1.2 Stability Factors for Other Bias Circuits 110
5.5.2 Stability of Transistor Circuits with Active Components 112
5.6 Practical Applications 114
5.6.1 Relay Driver 114
5.6.2 Transistor Switch 114
5.6.3 Transistor Switching Networks 115
5.6.4 Logic Gates 117
5.6.5 Current Mirror 117
5.6.6 Voltage Level Indicator 118
6 AC-DC Load Lines of BJT Circuits 119
6.1 BJT AC Analysis 119
6.1.1 DC Load Line 120
6.1.2 Distortion 121
6.1.3 AC Load Line 122
6.1.4 AC-DC Load Lines 123
6.1.4.1 Maximum Symmetric Undistorted Swing Design 124
6.1.4.2 Other Amplifier Configurations 125
7 Field Effect Transistors (FETs) 131
7.1 Similarities and Differences with BJTs 131
7.2 FET Types 132
7.3 FET Operation 132
7.4 Junction Field-Effect Transistor (JFET) 133
7.4.1 Construction 133
7.4.2 Operating Characteristics 133
7.4.2.1 $\quad V_{G S}=0$ and $V_{D S}>0$ 134
7.4.2.2 $\quad V_{G S}<0$ and $V_{D S}>0$ 135
7.4.2.3 Voltage-Controlled Resistor (Ohmic Region) 136
7.4.3 p-channel JFET 137
7.4.3.1 Characteristics 137
7.4.4 Circuit Symbol 138
7.4.5 Transfer Characteristics 138
7.5 Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) 140
7.5.1 Depletion-Type MOSFET (DMOSFET) 140
7.5.1.1 Construction 140
7.5.1.2 Operating Characteristics 141
7.5.1.3 Transfer Characteristics 142
7.5.1.4 p-channel DMOSFET 143
7.5.2 Circuit Symbol 143
7.5.3 Enhancement-Type MOSFET (EMOSFET) 144
7.5.3.1 Construction 144
7.5.3.2 Transfer Characteristics 145
7.5.3.3 p-channel EMOSFET 146
7.5.4 Circuit Symbol 146
7.5.5 MOSFET Handling 147
7.6 Summary 147
8 DC Biasing of FETs 150
8.1 DC Biasing 150
8.2 FET DC Analysis 150
8.3 DC Biasing Circuits 150
8.3.1 Fixed-Bias Configuration 151
8.3.1.1 Gate-Source Loop 152
8.3.1.2 Drain-Source Loop 153
8.3.2 Self-Bias Configuration 153
8.3.2.1 Gate-Source Loop 154
8.3.2.2 Drain-Source Loop 155
8.3.3 Voltage-Divider Bias Configuration 157
8.3.3.1 Gate-Source Loop 158
8.3.3.2 Drain-Source Loop 159
8.3.4 Voltage-Feedback Bias Configuration 163
8.3.4.1 Gate-Source Loop 164
8.3.4.2 Drain-Source Loop 165
8.3.5 p-channel FETs 166
8.4 Practical Applications 168
8.5 Summary 168
9 AC-DC Load Lines of FET Circuits 170
9.1 FET AC Analysis 170
9.1.1 AC and DC Load Lines 170
9.1.2 Maximum Symmetric Undistorted Swing Design 171
9.1.3 Other Amplifier Configurations 172
10 BJT Small-Signal Analysis 173
10.1 Purpose of SSAC Analysis 173
10.1.1 BJT SSAC Analysis Steps 174
10.2 BJT Small-Signal Models 175
10.2.1 Hybrid Equivalent Model 175
10.2.1.1 Simplified Hybrid Equivalent Model 176
10.2.1.2 Common-Emitter Hybrid Equivalent Model 177
10.2.1.3 Common-Emitter r_{e} Model 178
10.2.1.4 Common-Base Hybrid Equivalent Model 178
10.2.1.5 Common-Base r_{e} Model 179
10.2.1.6 Phase Relationship 180
10.3 Common-Emitter Fixed-Bias Configuration 180
10.3.1 Input Resistance 182
10.3.2 Voltage Gain 182
10.3.3 Output Resistance 183
10.3.4 Phase Relationship 183
10.4 Common-Emitter Voltage-Divider Bias Configuration 184
10.4.1 Input Resistance 184
10.4.2 Voltage Gain 185
10.4.3 Output Resistance 185
10.4.4 Phase Relationship 186
10.5 Common-Emitter Unbypassed-Emitter Bias Configuration 186
10.5.1 Input Resistance 187
10.5.2 Voltage Gain 187
10.5.3 Output Resistance 188
10.5.4 Phase Relationship 189
10.6 Emitter-Follower Configuration 189
10.6.1 Input Resistance 190
10.6.2 Voltage Gain 190
10.6.3 Output Resistance 191
10.6.4 Phase Relationship 192
10.7 Common-Emitter Collector Feedback Configuration 192
10.7.1 Input Resistance 193
10.7.2 Voltage Gain 193
10.7.3 Output Resistance 194
10.7.4 Phase Relationship 194
10.8 Common-Base Configuration 194
10.8.1 Input Resistance 195
10.8.2 Voltage Gain 195
10.8.3 Output Resistance 196
10.8.4 Phase Relationship 196
11 FET Small-Signal Analysis 201
11.0.1 FET SSAC Analysis Steps 201
11.1 FET Small-Signal Model 201
11.1.0.1 Transconductance Parameter $\left(g_{m}\right)$ 203
11.1.0.2 Phase Relationship 204
11.2 Common-Source Fixed-Bias Configuration 204
11.2.1 Input Resistance 205
11.2.2 Voltage Gain 205
11.2.3 Output Resistance 205
11.3 Common-Source Self-Bias Configuration 206
11.3.1 Input Resistance 207
11.3.2 Voltage Gain 207
11.3.3 Output Resistance 207
11.4 Common-Source Voltage-Divider Bias Configuration 208
11.4.1 Input Resistance 209
11.4.2 Voltage Gain 209
11.4.3 Output Resistance 209
11.5 Common-Source Unbypassed Self-Bias Configuration 210
11.5.1 Input Resistance 211
11.5.2 Voltage Gain 211
11.5.3 Output Resistance 212
11.6 Source-Follower Configuration 212
11.6.1 Input Resistance 213
11.6.2 Voltage Gain 213
11.6.3 Output Resistance 214
11.7 Common-Source Drain Feedback Configuration 215
11.7.1 Input Resistance 215
11.7.2 Voltage Gain 216
11.7.3 Output Resistance 216
11.8 Common-Gate Configuration 217
11.8.1 Input Resistance 217
11.8.2 Voltage Gain 218
11.8.3 Output Resistance 218
12 Frequency Response of Amplifiers 220
12.1 First-Order RC Filters 220
12.1.1 First-Order Highpass RC Filter 220
12.1.1.1 Cutoff Frequency 221
12.1.1.2 Bode Plot 222
12.1.1.3 Decibels (dB) 222
12.1.2 First-Order Lowpass RC Filter 224
12.1.2.1 Cutoff Frequency 225
12.1.2.2 Bode Plot 226
12.2 Typical Frequency Response 227
12.3 Low Frequency Response 229
12.3.1 BJT Amplifiers 229
12.3.1.1 Effect of Coupling Capacitor C_{1} 230
12.3.1.2 Effect of Coupling Capacitor C_{2} 230
12.3.1.3 Effect of Bypass Capacitor C_{3} 231
12.3.1.4 Combined Effect of C_{1}, C_{2} and C_{3} 231
12.3.2 FET Amplifiers 232
12.3.2.1 Effect of Coupling Capacitor C_{1} 233
12.3.2.2 Effect of Coupling Capacitor C_{2} 233
12.3.2.3 Effect of Bypass Capacitor C_{3} 234
12.3.2.4 Combined Effect of C_{1}, C_{2} and C_{3} 234
12.4 Miller Effect 235
12.4.0.1 Miller Input Capacitance $C_{M_{i}}$ 235
12.4.0.2 Miller Output Capacitance $C_{M_{o}}$ 236
12.4.0.3 Miller Representation 237
12.5 High Frequency Response 238
12.5.1 BJT Amplifiers 238
12.5.1.1 Input Circuit Cutoff Frequency $f_{H_{1}}$ 238
12.5.1.2 Output Circuit Cutoff Frequency $f_{\mathrm{H}_{2}}$ 239
12.5.1.3 $h_{f e}$ (or β) Variation Cutoff Frequency f_{β} 239
12.5.1.4 Combined Effect of $f_{H_{1}}, f_{H_{2}}$ and f_{β} 240
12.5.2 FET Amplifiers 241
12.5.2.1 Input Circuit Cutoff Frequency $f_{H_{1}}$ 242
12.5.2.2 Output Circuit Cutoff Frequency $f_{H_{2}}$ 242
12.5.2.3 Combined Effect of $f_{H_{1}}$ and $f_{H_{2}}$ 243
12.6 Gain-Bandwidth Product 243
13 Multistage (Cascaded) Amplifiers 244
13.1 Cascaded Systems 244
13.2 AC-Coupled Multistage Amplifiers 246
13.3 DC-Coupled Multistage Amplifiers 248
13.4 Cascode Amplifier 254
13.5 Darlington Pair 256
13.6 Feedback Pair 257

List of Figures

1.1 Diode circuit symbol. 1
1.2 Ideal diode is short circuit when it is forward biased. 2
1.3 Ideal diode is open circuit when it is reverse biased. 2
1.4 Characteristics curve of the ideal diode. 2
1.5 Diode circuit for Example 1.1. 3
1.6 A $p-n$ junction. 4
1.7 Depletion layer in a $p-n$ junction. 5
$1.8 p-n$ junction under no bias. 5
1.9 Diode behaviour under no bias. 6
$1.10 p-n$ junction under reverse bias. 6
1.11 Diode behaviour under reverse bias. 7
$1.12 p-n$ junction under forward bias. 7
1.13 Diode behaviour under forward bias. 8
1.14 Diode characteristics curve 8
1.15 Zener region (or avalanche breakdown region) 10
1.16 Change of diode characteristics with temperature 12
1.17 Series diode configuration: (a) circuit, (b) diode characteristics curve. 12
1.18 Drawing the load line and finding the point of operation. 13
1.19 Determining the DC resistance of a diode at a particular operating point. 14
1.20 Defining the dynamic or AC resistance around an operating point 15
1.21 Diode circuit with AC and DC sources. 16
1.22 DC equivalent circuit of the circuit in Figure 1.21. 17
1.23 SSAC equivalent circuit of the circuit in Figure 1.21. 17
1.24 Determining the average AC resistance between indicated limits. 18
1.25 Piecewise-linear characteristics curve (blue line on the left) and piecewise-linear equi- valent circuit (on the right) of the diode. 19
1.26 Simplified characteristics curve (on the left) and simplified equivalent circuit (on the right) of the diode. 19
1.27 Diode circuit for Example 1.2. 21
1.28 Simplified circuit for the diode circuit in Figure 1.27. 21
1.29 Diode circuit for Example 1.3. 22
1.30 Simplified circuit for the diode circuit in Figure 1.29. 22
1.31 Diode circuit for Example 1.4. 23
1.32 Semiconductor diode notation. 24
1.33 Some diode types and packagings. 25
1.34 Transition and diffusion capacitance versus applied bias for a Silicon diode. 25
1.35 Zener diode symbol. 26
1.36 Circuit symbol of an LED. 27
1.37 Litronix 7 -segment LED display 27
1.38 Relative intensity versus wavelength. 27
2.1 A series clipper circuit. 28
2.2 Voltage transfer characteristics (VTC) curve of the series clipper circuit Figure 2.1. 29
2.3 Positive half-cycle operation of the series clipper circuit in Figure 2.1. 29
2.4 Negative half-cycle operation of the series clipper circuit in Figure 2.1 29
2.5 A series clipper circuit with a DC supply. 30
2.6 Input and output of the series clipper circuit in Figure 2.5. 30
2.7 Various series clipper examples (diodes are ideal). 31
2.8 A parallel clipper circuit. 31
2.9 Sample input and output waveforms of the parallel clipper circuit in Figure 2.8. 32
2.10 A parallel clipper circuit with a DC supply. 32
2.11 A diode limiter circuit. 32
2.12 Outputs of the circuit in Figure 2.11: (a) VTC diagram, (b) output waveform. 33
2.13 Various parallel clipper examples (diodes are ideal). 33
2.14 A clamper circuit 34
2.15 Charging operation of the clamper circuit in Figure 2.14. 35
2.16 Discharging operation of the clamper circuit in Figure 2.14. 35
2.17 A clamper circuit with a square wave input. 36
2.18 Output of the circuit given in Figure 2.17. 36
2.19 A clamper circuit with a sinusoidal input. 36
2.20 Output of the circuit given in Figure 2.19. 37
2.21 Various clamper examples (diodes are ideal and capacitors are charged) 37
2.22 A peak rectifier circuit. 38
2.23 For the circuit in Figure 2.22: (a) input waveform, (b) output waveform. 38
2.24 Voltage doubler circuit. 39
2.25 Operation of the circuit in Figure 2.24 at (a) first positive half-cycle, and (b) first negative half-cycle. 39
2.26 Voltage tripler/quadrupler circuit. 39
2.27 Zener diode operation: (a)ON (b) OFF. 40
2.28 A general Zener diode circuit. 40
2.29 Zener diode circuit for Example 2.9 41
2.30 Single Zener diode clipper. 42
2.31 Dual Zener diode clipper. 42
3.1 Ideal half-wave rectifier output of a sinusoidal input $v_{i}(t)=V_{m} \sin (2 \pi t / T)$. 45
3.2 Ideal full-wave rectifier output of a sinusoidal input $v_{i}(t)=V_{m} \sin (2 \pi t / T)$. 45
3.3 Triangular waveform. 46
3.4 AC component of the triangular waveform in Figure 3.3. 47
3.5 Triangular waveform and its analytical expression. 49
3.6 A half-wave rectifier circuit. 52
3.7 Input and ideal output waveforms for the half-wave rectifier given in Figure 3.6. 52
3.8 Input and output waveforms for the half-wave rectifier when $V_{D(O N)}=0.7 \mathrm{~V}$. 53
3.9 Input and ideal output waveforms of the full-wave rectifier. 53
3.10 Center-tapped transformer full-wave rectifier. 54
3.11 Positive half-cycle operation of the center-tapped transformer full-wave rectifier in Fi - gure 3.10. 55
3.12 Negative half-cycle operation of the center-tapped transformer full-wave rectifier in Figure 3.10. 55
3.13 Full-wave bridge rectifier 56
3.14 Positive half-cycle operation of the full-wave bridge rectifier in Figure 3.13. 56
3.15 Negative half-cycle operation of the full-wave bridge rectifier in Figure 3.13. 56
3.16 Positive-half cycle operation and full output of the full-wave bridge rectifier when $V_{D(O N)}=0.7 \mathrm{~V}$. 57
3.17 Block diagram showing parts of a power supply. 58
3.18 Filter voltage waveform showing DC and ripple voltages. 59
3.19 Simple capacitor filter. 60
3.20 Capacitor filter after a center-tapped transformer full-wave rectifier. 60
3.21 Capacitor filter operation: (a) ideal full-wave rectifier output, (b) filtered output voltage. 60
3.22 Capacitor filter output after a full-wave rectifier: (a) actual output, (b) approximate output where ripple waveform is approximated by a triangular waveform. 61
3.23 Capacitor filter output (after a full-wave rectifier) with charging and discharging timings. 62
3.24 Capacitor filter output voltage and diode current waveforms for a half-wave rectifier: (a) small C, (b) large C. 64
3.25 Capacitor filter circuit for Example 3.15. 65
3.26 Additional $R C$ filter stage. 66
3.27 Center-tapped transformer full-wave rectifier and RC filter circuit. 66
3.28 DC equivalent circuit of the additional $R C$ filter stage in Figure 3.26. 67
3.29 AC equivalent circuit of the additional $R C$ filter stage in Figure 3.26. 67
3.30 Capacitor filter circuit for Example 3.16. 68
3.31 Capacitor filter circuit for Example 3.17. 69
3.32π-filter stage. 70
4.1 Types of transistors: (a) $p n p$, (b) $n p n$. 72
4.2 Biasing a transistor: (a) base-emitter forward-biased, (b) base-collector reverse-biased. 73
4.3 Current flow in a properly biased $p n p$ transistor. 74
4.4 Notation and symbols used with the common-base configuration: (a) npn transistor, (b) $p n p$ transistor. 75
4.5 Characteristics of an $n p n$ common-base amplifier: a) Input characteristics, b) Output characteristics. 76
4.6 Output characteristics of a common-base amplifier. 76
4.7 Common-base cutoff current (or reverse saturation current), $I_{C B O}$ 77
4.8 Simplified output characteristics of a common-base amplifier. 78
4.9 Simplified input characteristics of a common-base amplifier. 79
4.10 AC equivalent circuit of a common-base amplifier. 79
4.11 Notation and symbols used with the common-emitter configuration: (a) npn transistor, (b) $p n p$ transistor. 80
4.12 Characteristics of an npn common-emitter amplifier: a) Input characteristics, b) Output characteristics. 81
4.13 Common-emitter cutoff current, $I_{C E O}$ 81
4.14 Determining $\beta_{D C}$ and $\beta_{a c}$ from the output characteristics. 82
4.15 Notation and symbols used with the common-collector configuration: (a) npn transistor, (b) $p n p$ transistor. 84
4.16 Defining the region of operation for a transistor. 84
4.17 An example BJT packaging. 85
4.18 States of the simplified npn BJT model: (a) Cutoff, (b) Active, (c) Saturation 86
5.1 Various operating points within the limits of operation of a BJT transistor. 87
5.2 Fixed-bias BJT circuit. 89
5.3 DC equivalent circuit of the fixed-bias circuit in Figure 5.2. 89
5.4 Base-emitter loop of the fixed-bias circuit in Figure 5.2 90
5.5 Collector-emitter loop of the fixed-bias circuit in Figure 5.2. 90
5.6 Saturation regions: (a) actual, (b) approximate. 91
5.7 Determining $I_{C(s a t)}$ for the fixed-bias configuration.Example 5.0. 92
5.8 Fixed-bias circuit for Example 5.1. 92
5.9 Load line of the fixed-bias circuit in Figure 5.2. 93
5.10 Movement of the Q-point with increasing level of I_{B}. 94
5.11 Effect of an increasing level of R_{C} on the load line and the Q-point 94
5.12 Effect of lower values of $V_{C C}$ on the load line and the Q-point. 95
5.13 Fixed-bias load line for Example 5.2. 95
5.14 Emitter-stabilized bias circuit. 96
5.15 DC equivalent circuit of the emitter-stabilized bias circuit in Figure 5.14. 96
5.16 Base-emitter loop of the emitter-stabilized bias circuit in Figure 5.14: (a) normal circuit, (b) equivalent circuit for common base current. 97
5.17 Equivalent circuit for common emitter current for the base-emitter loop of the emitter- stabilized bias circuit in Figure 5.14. 97
5.18 Collector-emitter loop of the emitter-stabilized bias circuit in Figure 5.14. 98
5.19 Load line of the emitter-stabilized bias circuit in Figure 5.14. 99
5.20 Emitter-stabilized bias circuit for Example 5.3. 99
5.21 Voltage divider bias BJT circuit. 100
5.22 DC equivalent circuit of the voltage divider bias circuit in Figure 5.21. 101
5.23 Base-emitter loop of the voltage divider bias circuit in Figure 5.21: (a) normal circuit, (b) Thévenin equivalent circuit. 101
5.24 Thévenin analysis circuits for the circuit in Figure 5.23(a): (a) Open-circuit voltage calculation, (b) Test-voltage method for Thévenin resistance calculation. 102
5.25 Voltage-divider bias circuit for Example 5.4. 103
5.26 Collector feedback bias circuit 104
5.27 DC equivalent circuit of the collector feedback circuit in Figure 5.26. 104
5.28 Base-emitter loop of the collector feedback circuit in Figure 5.26. 105
5.29 Collector-emitter loop of the collector feedback circuit in Figure 5.26. 105
5.30 Common-collector bias circuit for Example 5.5. 106
5.31 pnp transistor in a voltage-divider bias configuration Example 5.6. 107
5.32 Shift in operating point (Q-point) due to change in temperature: (a) $25^{\circ} \mathrm{C}$, (b) $100^{\circ} \mathrm{C}$. 108
5.33 Equivalent circuit for the voltage-divider configuration. 109
5.34 Active $V_{B E}$ compensation using a reverse-biased diode at the emitter. 113
5.35 Active $I_{C O}$ compensation replacing R_{2} with a reverse-biased diode. 113
5.36 Active I_{C} compensation using a current mirror. 113
5.37 Relay driver in the absence of protective device. 114
5.38 Relay driver protected with a diode across the relay coil. 114
5.39 Using the BJT as a switch to control the onâA̧̧̧ff states of a bulb with a limiting resistor. 115
5.40 A BJT inverter circuit and its operation. 115
5.41 Load-line of the inverter circuit in Figure 5.40. 116
5.42 Defining the time intervals of a pulse waveform. 116
5.43 BJT logic OR gate. 117
5.44 BJT logic AND gate. 117
5.45 BJT logic OR gate. 118
5.46 Voltage level indicator. 118
6.1 A voltage-divider common-emitter BJT circuit. 119
6.2 DC and AC equivalent circuits of the common-emitter circuit in Figure 6.1: (a) DC equivalent circuit (b) AC equivalent circuit. 120
6.3 DC equivalent circuit of Figure 6.1. 120
6.4 Input and output swings around the Q-points: (a) input swing (b) output swing 121
6.5 Distorted output swings: (a) incorrect Q-point (b) incorrect input (i.e., high input) 122
6.6 AC-equivalent circuit of Figure 6.1. 122
6.7 AC-DC load lines. 123
6.8 Maximum undistorted swing design with Q-point in the middle of the AC load line. 124
6.9 BJT amplifier circuit for Example 6.1. 126
6.10 AC-DC load-lines for Example 6.1. 127
6.11 BJT amplifier circuit for Example 6.2. 127
6.12 AC-DC load-lines for Example 6.2. 128
6.13 BJT amplifier circuit for Example 6.3. 129
6.14 AC-DC load-lines for Example 6.3. 130
7.1 BJT (npn) and FET (n-channel) comparison: (a) current-controlled device (BJT), (b) voltage-controlled device (FET) 132
7.2 Water analogy for the FET control mechanism. 132
$7.3 n$-channel junction field-effect transistor (JFET) construction. 133
7.4 JFET at $V_{G S}=0 \mathrm{~V}$ and $V_{D S}>0 \mathrm{~V}$: (a) DC biasing, (b) variation of the gate-channel junction reverse-bias voltages through the channel. 134
7.5 Pinch-off $\left(V_{G S}=0 \mathrm{~V}, V_{D S}=-V_{P}\right)$. 134
7.6 Output characteristics, i.e., I_{D} versus $V_{D S}$, for $V_{G S}=0 \mathrm{~V}$. 135
7.7 Output characteristics of an n-Channel JFET with $I_{D S S}=8 \mathrm{~mA}$ and $V_{P}=-4 \mathrm{~V}$. 136
7.8 p-Channel JFET biasing. 137
7.9 Output characteristics of an p-Channel JFET with $I_{D S S}=6 \mathrm{~mA}$ and $V_{P}=+6 \mathrm{~V}$. 138
7.10 JFET circuit symbols: (a) n-channel, (b) p-channel. 138
7.11 Transfer and output characteristics curves together for an n-channel JFET. 139
7.12 Scaled transfer characteristics curve. 139
$7.13 n$-channel depletion-type MOSFET construction. 140
7.14 Change in channel width (and depletion region) for a fixed value of $V_{G S}$ ($V_{G S}$ determines the initial channel width) with $V_{D S}>0$. 141
7.15 Increase (or enhancement) in initial channel width when $V_{G S}>0$. 142
7.16 Transfer and output characteristics curves together for an n-channel DMOSFET 142
7.17 p-channel DMOSFET with $I_{D S S}=6 \mathrm{~mA}$ and $V_{P}=+6 \mathrm{~V}$: (a) construction, (b) transfer characteristics, (c) output characteristics. 143
7.18 DMOSFET circuit symbols: (a) n-channel, (b) p-channel. 144
7.19 n-channel enhancement-type MOSFET construction. 144
7.20 Transfer and output characteristics curves together for an n-channel EMOSFET. 145
7.21 p-channel EMOSFET with $V_{G S(T h)}=2 \mathrm{~V}$ and $k=0.5 \mathrm{~mA} / \mathrm{V}^{2}$: (a) construction, (b) transfer characteristics, (c) output characteristics. 146
7.22 EMOSFET circuit symbols: (a) n-channel, (b) p-channel. 147
$7.23 n$-channel FET summary. 148
7.24 Circuit behaviour of the n-channel FET model: (a) Cutoff state, (b) Saturation state 149
8.1 Fixed-bias JFET circuit. 151
8.2 DC equivalent circuit (with $I_{G}=0$) of the fixed-bias configuration in Figure 8.1. 152
8.3 Graphical solution (for transfer load-line and transfer characteristics equations) for the fixed-bias configuration in Figure 8.1. 153
8.4 Self-bias JFET circuit. 154
8.5 DC equivalent circuit (with $I_{G}=0$) of the self-bias configuration in Figure 8.4. 154
8.6 Graphical solution (for transfer load-line and transfer characteristics equations) for the self-bias configuration in Figure 8.4. 155
8.7 Self-bias JFET circuit for Example 8.1. 156
8.8 Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.7. 157
8.9 Voltage-divider bias JFET circuit. 157
8.10 DC equivalent circuit of the voltage-divider configuration in Figure 8.9. 158
8.11 Graphical solution (for transfer load-line and transfer characteristics equations) for the voltage-divider configuration in Figure 8.9. 158
8.12 Voltage-divider bias JFET circuit for Example 8.2. 159
8.13 Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.12. 160
8.14 Voltage-divider bias DMOSFET circuit for Example 8.3. 160
8.15 Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.14 with $R_{S}=750 \Omega$. 161
8.16 Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.14 with $R_{S}=150 \Omega$. 162
8.17 Voltage-divider bias EMOSFET circuit for Example 8.4. 162
8.18 Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.17. 163
8.19 Voltage-feedback bias EMOSFET circuit. 163
8.20 DC equivalent circuit (with $I_{G}=0$) of the voltage-feedback configuration in Figure 8.19.164
8.21 Graphical solution (for transfer load-line and transfer characteristics equations) for the voltage-feedback configuration in Figure 8.19. 164
8.22 Voltage-feedback bias EMOSFET circuit for Example 8.5. 165
8.23 Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.22. 166
8.24 Voltage-divider bias JFET circuit for Example 8.6. 167
8.25 Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.24. 167
$8.26 n$-channel JFET bias circuits. 168
8.27 n-channel MOSFET bias circuits. 169
9.1 AC-DC load lines for FETs. 171
9.2 Maximum undistorted swing design for FETs with Q-point in the middle of the AC load line. 172
10.1 Two-port voltage-gain amplifier model. 173
10.2 Complete hybrid equivalent circuit. 175
10.3 Common-emitter configuration and its complete hybrid equivalent circuit. 176
10.4 Common-base configuration and its complete hybrid equivalent circuit. 176
10.5 Simplified hybrid equivalent circuit. 176
10.6 Approximate hybrid equivalent circuit. 177
10.7 Common-emitter simplified hybrid equivalent circuit. 177
10.8 Common-emitter r_{e} model. 178
10.9 Common-base simplified hybrid equivalent circuit. 179
10.10Common-base r_{e} model. 180
10.11Common-emitter fixed-bias configuration. 181
10.12AC equivalent circuit of the fixed-bias circuit in Figure 10.11. 181
10.13Small-signal equivalent circuit of the fixed-bias circuit in Figure 10.11. 181
10.14Test voltage circuit of Figure 10.13 in order to calculate the output resistance R_{o}. 183
10.15 Demonstrating the 180° phase shift between input and output waveforms 183
10.16Common-emitter voltage-divider bias configuration. 184
10.17Small-signal equivalent circuit of the voltage-divider bias circuit in Figure 10.16. 184
10.18Test voltage circuit of Figure 10.17 in order to calculate the output resistance R_{o}. 185
10.19Common-emitter unbypassed-emitter bias configuration. 186
10.20Small-signal equivalent circuit of the unbypassed-emitter bias circuit in Figure 10.19. 187
10.21Test voltage circuit of Figure 10.20 in order to calculate the output resistance R_{o}. 188
10.22Emitter-follower configuration. 189
10.23Small-signal equivalent circuit of the emitter-follower circuit in Figure 10.22. 190
10.24Test voltage circuit of Figure 10.23 in order to calculate the output resistance R_{o}. 191
10.25 Common-emitter collector feedback bias configuration. 192
10.26Small-signal equivalent circuit of the collector feedback bias circuit in Figure 10.25. 192
10.27Test voltage circuit of Figure 10.26 in order to calculate the output resistance R_{o}. 194
10.28 Common-base configuration. 194
10.29Small-signal equivalent circuit of the common-base circuit in Figure 10.28. 195
10.30Test voltage circuit of Figure 10.29 in order to calculate the output resistance R_{o}. 196
10.31BJT amplifier circuit for Example 10.1. 197
10.32DC equivalent circuit of Figure 10.31: (a) as it is (b) Thévenin applied. 197
10.33Small-signal equivalent circuit of Figure 10.31. 198
$10.34 \mathrm{AC}-\mathrm{DC}$ load-lines for Example 10.1with input $v_{s}=100 \sin (\omega t) \mathrm{mV}$. 199
10.35AC-DC load-lines for Example 10.1with input $v_{s}=900 \sin (\omega t) \mathrm{mV}$. 200
11.1 FET small-signal equivalent circuit. 202
11.2 FET small-signal equivalent circuit with the voltage-controlled voltage source. 202
11.3 Graphical definition of the transconductance g_{m}. 203
11.4 Common-source fixed-bias configuration. 204
11.5 Small-signal equivalent circuit of the fixed-bias circuit in Figure 11.4. 204
11.6 Test voltage circuit of Figure 11.5 in order to calculate the output resistance R_{o}. 205
11.7 Common-source self-bias configuration. 206
11.8 Small-signal equivalent circuit of the self-bias circuit in Figure 11.7. 206
11.9 Test voltage circuit of Figure 11.8 in order to calculate the output resistance R_{o}. 207
11.10 Common -source voltage-divider bias configuration. 208
11.11Small-signal equivalent circuit of the voltage-divider bias circuit in Figure 11.10. 208
11.12Test voltage circuit of Figure 11.11 in order to calculate the output resistance R_{o}. 209
11.13Common-source unbypassed self-bias configuration. 210
11.14Small-signal equivalent circuit of the unbypassed self-bias circuit in Figure 11.13. 210
11.15Test voltage circuit of Figure 11.14 in order to calculate the output resistance R_{o}. 212
11.16Source-follower configuration. 213
11.17Small-signal equivalent circuit of the source-follower circuit in Figure 11.16. 213
11.18Test voltage circuit of Figure 11.17 in order to calculate the output resistance R_{o}. 214
11.19Common-source drain feedback bias configuration. 215
11.20Small-signal equivalent circuit of the drain feedback bias circuit in Figure 11.19. 215
11.21Test voltage circuit of Figure 11.20 in order to calculate the output resistance R_{o}. 216
11.22 Common -gate configuration. 217
11.23Small-signal equivalent circuit of the common-gate circuit in Figure 11.22. 217
11.24Test voltage circuit of Figure 11.23 in order to calculate the output resistance R_{o}. 218
12.1 First order highpass RC filter. 220
12.2 Asymptotic Bode plot (scalar) of the first order highpass RC filter in Figure 12.1. 222
12.3 Asymptotic Bode plot (dB) of the first order highpass RC filter in Figure 12.1. 223
12.4 Magnitude (top) and phase (bottom) responses of the first order highpass RC filter in Figure 12.1. 224
12.5 First order lowpass RC filter. 225
12.6 Asymptotic Bode plot (dB) of the first order lowpass RC filter in Figure 12.5. 226
12.7 Magnitude (top) and phase (bottom) responses of the first order lowpass RC filter in Figure 12.5. 227
12.8 Typical magnitude response of a transistor amplifier. 228
12.9 Normalized scalar plot of the magnitude response given in Figure 12.8. 229
12.10Normalized decibel plot of the magnitude response given in Figure 12.8. 229
12.11 A common-emitter voltage-divider bias BJT circuit. 230
12.12Low-frequency plot for the circuit given in Figure 12.11. 232
12.13A common-source self-bias JFET circuit. 233
12.14Low-frequency plot for the circuit given in Figure 12.13. 235
12.15Circuit employed in the derivation of an equation for the Miller input capacitance $C_{M_{i}}$, where $A_{v}<0$. 236
12.16Circuit employed in the derivation of an equation for the Miller output capacitance $C_{M_{o}}$, where $A_{v}<0$. 237
12.17Miller representation of the feedback capacitance in negative gain amplifiers. 238
12.18 A common-emitter voltage-divider bias BJT circuit with the capacitors that affect the high-frequency response. 238
$12.19 h_{f e}$ and $h_{f b}$ versus frequency in the high-frequency region. 240
12.20Normalized magnitude response (normalized gain vs. frequency) for the circuit given in Figure 12.18. 241
12.21 A common-source self-bias JFET circuit with the capacitors that affect the high- frequency response. 242
13.1 A cascaded (or multistage) system. 244
13.2 Overall representation of the system as a single voltage-gain amplifier. 244
13.3 A two-stage cascaded system for Example 13.1. 245
13.4 An AC-coupled two-stage FET amplifier for Example 13.2. 246
13.5 An AC-coupled two-stage BJT amplifier for Example 13.3. 247
13.6 An AC-coupled two-stage BJT amplifier for Example 13.4. 248
13.7 A DC-coupled two-stage BJT amplifier for Example 13.5. 249
13.8 AC-DC load-line for the first transistor in Example 13.5. 250
13.9 AC-DC load-line for the second transistor in Example 13.5. 251
13.10A DC-coupled two-stage BJT amplifier for Example 13.6. 252
13.11A DC-coupled two-stage BJT amplifier for Example 13.7. 253
13.12A cascode configuration. 254
13.13A cascode amplifier circuit for Example 13.8. 255
13.14SSAC equivalent circuit for Example 13.8. 256
13.15Darlington combination. 256
13.16Single $n p n$ transistor representation of the Darlington pair. 257
13.17Feedback pair connection. 257
13.18Single $p n p$ transistor representation of the feedback pair. 258

List of Examples

Example 1.1 (Diode Example 1) 3
Example $1.2 \quad$ (Diode Example 2) 20
Example 1.3 (Diode Example 3) 21
Example 1.4 (Diode Example 4) 22
Example 2.1 (Series Clipper with a DC source) 30
Example $2.2 \quad$ (Various Series Clippers) 31
Example 2.3 (Parallel Clipper with a DC source) 32
Example 2.4 (Diode Limiter or Dual-Diode Parallel Clipper) 32
Example 2.5 (Various Parallel Clippers) 33
Example $2.6 \quad$ (Clamper Example 1) 35
Example 2.7 (Clamper Example 2) 36
Example 2.8 (Various Clampers) 37
Example 2.9 (Zener Regulator) 41
Example 3.1 (DC Component of Half-Wave Rectifier Output) 45
Example 3.2 (DC Component of Full-Wave Rectifier Output) 45
Example 3.3 (DC Component of Triangular Waveform) 46
Example 3.4 (AC Component of Triangular Waveform) 46
Example 3.5 (RMS value of an AC + DC signal) 48
Example 3.6 (RMS value of Triangular Waveform) 49
Example $3.7 \quad$ (RMS value of Half-Wave Rectifier Output) 50
Example 3.8 (RMS value of Full-Wave Rectifier Output) 50
Example 3.9 (RMS value of AC component - Triangular Waveform) 50
Example 3.10 (RMS value of AC component - Half-wave Rectifier Output) 51
Example 3.11 (RMS value of AC component - Full-wave Rectifier Output) 51
Example 3.12 (Voltage Regulation) 58
Example 3.13 (Ripple Factor of Half-Wave Rectifier Output) 59
Example 3.14 (Ripple Factor of Full-Wave Rectifier Output) 59
Example 3.15 (Capacitor Filter) 65
Example 3.16 (RC Filter Example 1) 68
Example 3.17 (RC Filter Ecample 2) 69
Example $3.18 \quad(\pi$ Filter) 70
Example 4.1 (Amplification in Common-Base Configuration) 79
Example $4.2 \quad($ Determining β) 82
Example 5.1 (Fixed-Bias BJT Circuit) 92
Example 5.2 (Fixed-Bias Load Line) 95
Example 5.3 (Emitter-Stabilized Bias BJT Circuit) 99
Example 5.4 (Voltage-Divider Bias BJT Circuit) 103
Example 5.5 (Common-Collector Bias Circuit) 106
Example 5.6 (Voltage-Divider Bias pnp Circuit) 107
Example 5.7 (Bias Stabilization) 111
Example 6.1 (AC-DC Load Lines Example 1) 126
Example $6.2 \quad$ (AC-DC Load Lines Example 2) 127
Example $6.3 \quad$ (AC-DC Load Lines Example 3) 129
Example 8.1 (Self-Bias JFET Circuit) 156
Example 8.2 (Voltage-Divider JFET Circuit) 159
Example 8.3 (Voltage-Divider DMOSFET Circuit) 160
Example 8.4 (Voltage-Divider EMOSFET Circuit) 162
Example 8.5 (Voltage-Feedback EMOSFET Circuit) 165
Example 8.6 (p-channel JFET Circuit) 166
Example 10.1 (Small-Signal Common-Base Example) 197
Example 13.1 (Two-stage Cascaded System) 245
Example $13.2 \quad$ (AC-Coupled FET Amplifier) 246
Example 13.3 (AC-Coupled BJT Amplifier 1) 247
Example 13.4 (AC-Coupled BJT Amplifier 2) 248
Example 13.5 (DC-Coupled BJT Amplifier 1) 249
Example 13.6 (DC-Coupled BJT Amplifier 2) 252
Example 13.7 (DC-Coupled BJT Amplifier 3) 253
Example $13.8 \quad$ (Cascode Amplifier) 255

List of Homeworks

Homework 1.1 (Diodes) 23
Homework 2.1 (Parallel Clipper 1) 32
Homework 2.2 (Parallel Clipper 2) 32
Homework 3.1 (Full-Wave Rectifiers) 57
Homework 5.1 (Current Mirror) 118
Homework 6.1 (AC-DC Load Lines) 123
Homework 7.1 (MOSFET) 145
Homework 13.1 (Two-Stage Cascaded System) 246
Homework 13.2 (AC-Coupled BJT Amplifier) 248
Homework 13.3 (DC-Coupled BJT Amplifier 1) 252
Homework 13.4 (DC-Coupled BJT Amplifier 2) 253
Homework 13.5 (Cascode Amplifier) 256
Homework 13.6 (Darlington Pair) 257
Homework 13.7 (Feedback Pair) 258

Textbook

Textbooks:

1. Boylestad and Nashelsky, Electronic Devices and Circuit Theory, Prentice Hall, 11th ed, 2012.
2. Sedra and Smith, Microelectronic Circuits, Oxford Press, 2009 (6th ed.)

Supplementary books:

1. Millman and Halkias, Integrated Electronics, McGraw-Hill.
2. Horowitz and Hill, The Art of Electronics, Cambridge, 3rd ed.

Chapter 1

Semiconductor Diodes

1.1 Circuit Symbol

Diode is a nonlinear two-terminal device whose circuit symbol is like an arrowhead shown in Figure 1.1 below.

Figure 1.1: Diode circuit symbol.

- Voltage across the diode, V_{D}, is normally defined as the voltage difference between back end of the arrowhead and front end of the arrowhead (voltage difference between terminal A and terminal B), i.e.,

$$
\begin{equation*}
V_{D}=V_{A}-V_{B} \tag{1.1.1}
\end{equation*}
$$

- Current through the diode, I_{D}, is defined in the direction of the arrowhead (flowing from terminal A to terminal B), i.e.,

$$
\begin{equation*}
I_{D}=I_{A B} \tag{1.1.2}
\end{equation*}
$$

- Diode is called forward biased (FB) when $V_{A} \geq V_{B}$, i.e., $V_{D} \geq 0$, and called reverse biased (RB) when $V_{A}<V_{B}$, i.e., $V_{D}<0$.

1.2 Ideal Diode Model

Ideally diode conducts current in only one direction and blocks current in the opposite direction. Thus,

- Ideal diode is short circuit (i.e., ON) when it is forward biased.

Figure 1.2: Ideal diode is short circuit when it is forward biased. and open circuit (i.e., OFF) when it is reverse biased.

Figure 1.3: Ideal diode is open circuit when it is reverse biased.
Consequently, characteristics curve of the ideal diode is given by

Figure 1.4: Characteristics curve of the ideal diode.
We can summarize the ideal diode with its state and circuit behaviour with

$$
\text { Ideal diode state }= \begin{cases}O N, & \text { if } V_{D} \geq 0 \tag{1.2.3}\\ O F F, & \text { if } V_{D}<0\end{cases}
$$

and

Ideal Diode Model		
State	Circuit Behaviour	Test Condition
ON	$V_{D}=0$	$I_{D} \geq 0$
OFF	$I_{D}=0$	$V_{D}<0$

If you make a wrong assumption about the state of the diode, then you will find that the test condition will fail (once you calculate the circuit voltage and currents).

- For example, if you have assumed the diode to be ON while it should be OFF, then you will find $I_{D}<0$, failing the test condition.
- Similarly, if you have assumed the diode to be OFF while it should be ON, then you will find $V_{D} \geq 0$, failing the test condition.

1.2.1 Determining State of an Ideal Diode

Using circuit behaviour and the test condition for the OFF state, let us devise a method to determine the state of the ideal diode.

Determining State of an Ideal Diode

1. Obtain the expression for V_{D} in terms of the diode current I_{D} from the electronic circuit.
2. Insert $I_{D}=0$ in to this expression
3. Then, the diode state is given by

$$
\text { Ideal diode state }= \begin{cases}O N, & \text { if }\left.V_{D}\right|_{I_{D}=0} \geq 0 \tag{1.2.4}\\ O F F, & \text { if }\left.V_{D}\right|_{I_{D}=0}<0\end{cases}
$$

Example 1.1: Consider the circuit below and find I_{D} and V_{D}. Assume the diode is ideal.

Figure 1.5: Diode circuit for Example 1.1.
Solution: First we need to determine the state of the ideal diode (i.e., ON or OFF). So, let us write down the KVL equation and obtain V_{D}

$$
V_{D}=5-5 I_{D}
$$

From the equation above, $\left.V_{D}\right|_{I_{D}=0}=5 \geq 0$. So, the diode is ON. Thus,

$$
\begin{array}{rlr}
V_{D} & =0 \mathrm{~V} & \ldots \text { from circuit behaviour } \\
I_{D} & =\frac{5-V_{D}}{5}=\frac{5-0}{5}=1 \mathrm{~A}
\end{array}
$$

$1.3 \quad p-n$ Junction Diodes

In an \boldsymbol{n}-type semiconductor, majority carriers are electrons and minority carriers are holes.

Similarly, in a \boldsymbol{p}-type semiconductor, majority carriers are holes and minority carriers are electrons.

When we join n-type and p-type semiconductors (Silicon or Germanium) together, we obtain a $p-n$ junction as shown in Figure 1.6 below.

Figure 1.6: A p-n junction.
Current formed due to the movement of majority carriers across the junction is called the majority carrier current, $I_{\text {majority }}$.

Similarly, current formed due to the movement of minority carriers across the junction is called the minority carrier current, I_{s}. Note that, minority carrier and majority carrier currents flow in opposite directions.

When the materials are joined, the negatively charged atoms of the n-type side are attracted to the positively charged atoms of the p-type side.

Electrons in the n-type material migrate across the junction to the p-type material (electron flow).

Or, you could also say that holes in the p-type material migrate across the junction to the n-type material (conventional current flow).

The result is the formation of a depletion layer around the junction intersection, as shown in Figure 1.7 below.

Figure 1.7: Depletion layer in a $p-n$ junction.
Normally, depletion layer is not symmetric around the intersection as the doping levels of n-side and p-side are usually not the same.

Operating Conditions

- No Bias: No voltage is applied and no current is flowing.
- Reverse Bias: Negative voltage (i.e., opposite polarity with the $p-n$ junction) is applied.
- Forward Bias: Positive voltage (i.e., same polarity with the $p-n$ junction) is applied.

1.3.1 No Bias Condition

- No external voltage is applied to the $p-n$ junction as shown in Figure 1.8 below. So, $V_{D}=0 \mathrm{~V}$ and no current is flowing $I_{D}=0 \mathrm{~A}$. Under no bias, only a modest depletion layer exists as seen in Figure 1.8 below.

Figure 1.8: $p-n$ junction under no bias.

- No bias circuit behaviour is also shown in Figure 1.9 below

Figure 1.9: Diode behaviour under no bias.

1.3.2 Reverse Bias Condition

- External voltage is applied across the p - n junction in the opposite polarity of the p - and n-type materials, as shown in Figure 1.10 below.
- This causes the depletion layer to widen as shown below, as electrons in the n-type material are attracted towards the positive terminal and holes in the p-type material are attracted towards the negative terminal. Thus, the majority carrier current is zero, i.e., $I_{\text {majority }}=0$.
- However, minority carriers move along the electric field across the junction forming the minority carrier current, I_{s}. Sometimes, this current is also called as the reverse saturation current.

Figure 1.10: $p-n$ junction under reverse bias.

- Reverse bias circuit behaviour is also shown in Figure 1.11 below

Figure 1.11: Diode behaviour under reverse bias.

- Thus, diode current I_{D} under reverse bias is given by

$$
\begin{equation*}
I_{D}=I_{\text {majority }}-I_{s}=0-I_{s}=-I_{s} \tag{1.3.5}
\end{equation*}
$$

1.3.3 Forward Bias Condition

- External voltage is applied across the p - n junction in the same polarity of the p - and n-type materials, as shown in Figure 1.12 below.
- The depletion layer is narrow. So, electrons from the n-type material and holes from the p-type material have sufficient energy to cross the junction forming the majority carrier current, $I_{\text {majority }}$
- Minority carrier current I_{s} is still present in the opposite direction

Figure 1.12: p - n junction under forward bias.

- Forward bias circuit behaviour is also shown in Figure 1.13 below

Figure 1.13: Diode behaviour under forward bias.

- Thus, diode current I_{D} under forward bias is given by

$$
\begin{equation*}
I_{D}=I_{\text {majority }}-I_{s} \tag{1.3.6}
\end{equation*}
$$

- Normally $I_{\text {majority }} \gg I_{s}$, so diode current I_{D} under forward bias is approximately equal to the majority carrier current, i.e.,

$$
\begin{equation*}
I_{D} \approx I_{\text {majority }} \tag{1.3.7}
\end{equation*}
$$

1.3.4 Diode Characteristic Equation

Empirically obtained diode characteristics curve covering all three operating conditions is shown in Figure 1.14 below

Figure 1.14: Diode characteristics curve

- Diode characteristic equation (also known as the Shockley diode equation) describing the diode characteristics curve is given below

$$
\begin{equation*}
I_{D}=I_{s}\left(e^{V_{D} / \gamma}-1\right) \tag{1.3.8}
\end{equation*}
$$

where γ, sometimes expressed as V_{T}, is the thermal voltage given by

$$
\begin{equation*}
\gamma=\frac{k T}{q} \tag{1.3.9}
\end{equation*}
$$

with k, q and T being the Boltzman constant, the charge of an electron and temperature in Kelvins, respectively. Note that, $\frac{k}{q}$ is constant given by

$$
\begin{equation*}
\frac{k}{q}=\eta 8.6173 \times 10^{-5} \mathrm{~V} / \mathrm{K} \tag{1.3.10}
\end{equation*}
$$

where $\eta=1$ for Ge and $\eta=2$ for Si for relatively low levels of diode current (at or below the knee of the curve) and $\eta=1$ for Ge and Si for higher levels of diode current (in the rapidly increasing section of the curve). We can safely assume $\eta=1$ for most cases.

- Under forward bias, diode characteristic equation simplifies (as $e^{V_{D} / \gamma} \gg 1$) to the simplified forward bias diode equation below

$$
\begin{equation*}
I_{D} \approx I_{s} e^{V_{D} / \gamma} \tag{1.3.11}
\end{equation*}
$$

- Under reverse bias, diode characteristic equation simplifies (as $e^{V_{D} / \gamma} \ll 1$) to the following

$$
\begin{equation*}
I_{D} \approx-I_{s} \tag{1.3.12}
\end{equation*}
$$

- Note that, γ only depends on the temperature (expressed in Kelvin units).

So, thermal voltage γ at room temperature $T=300 \mathrm{~K}$ (i.e., $T=27^{\circ} \mathrm{C}$) is given by

$$
\begin{equation*}
\gamma=\left.\gamma\right|_{T=300 \mathrm{~K}}=26 \mathrm{mV} \tag{1.3.13}
\end{equation*}
$$

If we take the room temperature as $T=25^{\circ} \mathrm{C}$, then thermal voltage becomes

$$
\begin{equation*}
\left.\gamma\right|_{T=298 \mathrm{~K}}=25 \mathrm{mV} . \tag{1.3.14}
\end{equation*}
$$

NOTE: Temperature in Kelvin (T) is obtained from the temperature in Celsius $\left(T_{C}\right)$ as follows

$$
\begin{equation*}
T=T_{C}+273 \tag{1.3.15}
\end{equation*}
$$

1.3.5 Zener Region (or Avalanche Breakdown Region)

Figure 1.15: Zener region (or avalanche breakdown region)
Even though the scale of Figure 1.14 is in tens of volts in the negative region, there is a point where the application of too negative a voltage will result in a sharp change in the characteristics, as shown in Figure 1.15. The current increases at a very rapid rate in a direction opposite to that of the positive voltage region. The reverse-bias potential that results in this dramatic change in characteristics is called the Zener potential and is given the symbol V_{Z}.
As the voltage across the diode increases in the reverse-bias region, the velocity of the minority carriers responsible for the reverse saturation current I_{s} will also increase. Eventually, their velocity and associated kinetic energy will be sufficient to release additional carriers (i.e., avalanche effect) through collisions with otherwise stable atomic structures. That is, an ionization process will result whereby valence electrons absorb sufficient energy to leave the parent atom. These additional carriers can then aid the ionization process to the point where a high avalanche current is established and the avalanche breakdown region determined.
The avalanche region $\left(V_{Z}\right)$ can be brought closer to the vertical axis by increasing the doping levels in the p - and n-type materials. However, as V_{Z} decreases to very low levels, such as 5 V , another mechanism, called Zener breakdown, will contribute to the sharp change in the characteristic.
It occurs because there is a strong electric field in the region of the junction that can disrupt the bonding forces within the atom and generate carriers generally via tunnelling (sometimes called as tunnelling breakdown) of the majority carriers under reverse-bias electric field when the valence band of the highly doped p-region is aligned with the conduction band of the highly doped n-region.
Although the Zener breakdown mechanism is a significant contributor only at lower levels of V_{Z}, this sharp change in the characteristic at any level is called the Zener region and diodes employing this unique portion of the characteristic of a $p-n$ junction are called Zener diodes.

1.3.6 Peak Inverse Voltage (PIV) Rating

Avalanche breakdown region of the semiconductor diode must be avoided if the diode is supposed to work as an ON and OFF device.

The maximum reverse-bias potential that can be applied before entering the avalanche breakdown region is called the peak inverse voltage (referred to simply as the PIV rating) or the peak reverse voltage (denoted by PRV rating).

If an application requires a PIV rating greater than that of a single unit, a number of diodes of the same characteristics can be connected in series.

Similarly, diodes can be also connected in parallel to increase the current-carrying capacity.

1.3.7 Forward Bias Turn-On Voltage ($V_{D(O N)}$)

The point at which the diode changes from No Bias condition to Forward Bias condition happens when the electron and holes are given sufficient energy to cross the $p-n$ junction. This energy comes from the external voltage applied across the diode.

This voltage (can be deduced from the diode characteristics curve) is called the turn-on voltage or the threshold voltage, and denoted by $V_{D(O N)}$ (V_{T} or V_{0} notations are also used).

The forward bias voltage required to turn on the diode for a

- Silicon diode: $V_{D(O N)}=0.7 \mathrm{~V}$
- Germanium diode: $V_{D(O N)}=0.3 \mathrm{~V}$

1.3.8 Temperature Effects

Figure 1.16: Change of diode characteristics with temperature

- As temperature increases it adds energy to the diode. From Figure 1.16 above, as temperature increases
- It reduces the required turn-on voltage $\left(V_{D(O N)}\right)$ in forward bias condition,
- It increases the amount of reverse saturation current $\left(I_{s}\right)$ in reverse bias condition,
- It increases the avalanche breakdown voltage in reverse bias condition.
- Germanium diodes are more sensitive to temperature variations than Silicon diodes.

1.3.9 Load Line and Operating Point (Q-point)

(a)

(b)

Figure 1.17: Series diode configuration: (a) circuit, (b) diode characteristics curve.

From Figure 1.17(a) above, we obtain

$$
\begin{equation*}
V_{D}=E-I_{D} R \tag{1.3.16}
\end{equation*}
$$

- We can rearrange the circuit equation (1.3.16) above to get I_{D} on the left-hand side of the equation, i.e.,

$$
\begin{equation*}
I_{D}=\frac{-1}{R} V_{D}+\frac{E}{R} \tag{1.3.17}
\end{equation*}
$$

- This equation obtained from the diode circuit is called the load line equation.

The load line equation gives us all the possible current $\left(I_{D}\right)$ values for all the possible voltage $\left(V_{D}\right)$ values obtained across the diode in a given circuit.

- Once we draw the load line over the diode characteristics curve given in Figure 1.17(b), and the intersection point will give us the solution ($I_{D Q}, V_{D Q}$) of the diode current and diode voltages I_{D} and V_{D} for the given circuit, respectively. The result is shown in Figure 1.18 below.

Figure 1.18: Drawing the load line and finding the point of operation.

- This plot is called the load line plot. Also, the intersection point of the load line and the diode characteristics curve is called the operating point or the \boldsymbol{Q}-point specified by the ($I_{D Q}, V_{D Q}$) pair. Note that Q stands for quiescent (i.e., still).
- For some examples, see Examples 2.1, 2.2 and 2.3 in the Boylestad and Nashelsky textbook (8th ed.).

A load line plot like Figure 1.18 is actually the graphical way of solving the diode characteristics equation

$$
I_{D}=I_{S}\left(e^{V_{D} / \gamma}-1\right)
$$

and the electrical circuit equation, i.e., load line equation

$$
I_{D}=-\frac{V_{D}}{R}+\frac{E}{R}
$$

simultaneously. Load line plots are very practical and more efficient than solving these two equations analytically.

1.3.10 DC Resistance (Static Resistance)

Figure 1.19: Determining the DC resistance of a diode at a particular operating point.

- For a specific applied DC voltage $V_{D Q}$, the diode will have a specific current $I_{D Q}$, and consequently a specific resistance $R_{D Q}$. The amount of resistance $R_{D Q}$, depends on the applied DC voltage and current.
- For a given operating point as shown in Figure 1.19 above, we can find the DC resistance as follows

$$
\begin{align*}
R_{D Q} & =\left.\frac{V_{D}}{I_{D}}\right|_{Q \text {-point }} \tag{1.3.18}\\
& =\frac{V_{D Q}}{I_{D Q}}
\end{align*}
$$

1.3.11 AC Resistance (Dynamic Resistance)

Figure 1.20: Defining the dynamic or AC resistance around an operating point

- Dynamic resistance r_{d} is determined around a Q-point (see Figure 1.20 above) as the ratio of given very small voltage variation ΔV_{d} to the current variation ΔI_{d} obtained, i.e.,

$$
\left.r_{d} \cong \frac{\Delta V_{d}}{\Delta I_{d}}\right|_{Q \text {-point }}
$$

- As the magnitude of these small voltage and current variations go to zero this equation for the dynamic resistance r_{d} approaches to the following partial derivative

$$
\begin{equation*}
r_{d}=\left.\frac{\partial V_{D}}{\partial I_{D}}\right|_{Q \text {-point }} \tag{1.3.19}
\end{equation*}
$$

- In the forward bias region, we can use the simplified forward bias diode equation

$$
I_{D} \approx I_{s} e^{V_{D} / \gamma}
$$

as given in (1.3.11)
Then, the forward bias dynamic resistance is obtained as

$$
\begin{aligned}
r_{d} & =\left.\frac{\partial V_{D}}{\partial I_{D}}\right|_{Q \text {-point }}=\left.\frac{1}{\frac{\partial I_{D}}{\partial V_{D}}}\right|_{Q \text {-point }} \approx \frac{1}{\frac{1}{\gamma} \underbrace{I_{s} e^{V_{D Q} / \gamma}}_{I_{D Q}}} \\
& =\frac{\gamma}{I_{D Q}}
\end{aligned}
$$

The forward bias dynamic resistance depends on the Q-point current $I_{D Q}$ and the temperature, i.e.,

$$
\begin{equation*}
r_{d}=\frac{\gamma}{I_{D Q}} \tag{1.3.20}
\end{equation*}
$$

We know that $\gamma=26 \mathrm{mV}$ at room temperature (300 K), so the diode dynamic resistance can be calculated as

$$
\begin{equation*}
r_{d}=\frac{26 \mathrm{mV}}{I_{D Q}} \tag{1.3.21}
\end{equation*}
$$

- In the reverse bias region, diode current is approximately constant

$$
I_{D} \approx-I_{s}
$$

as given in (1.3.12)
So, the reverse bias dynamic resistance is essentially infinite, i.e.,

$$
\begin{equation*}
r_{d}=\infty . \tag{1.3.22}
\end{equation*}
$$

1.3.12 DC and Small-Signal AC (SSAC) Analysis

Figure 1.21: Diode circuit with AC and DC sources.

- Here, it is given that $V_{D C}-\operatorname{peak}\left(v_{a c}(t)\right)>V_{D(O N)}$ and $V_{D C} \gg \operatorname{peak}\left(v_{a c}(t)\right)$.

First condition ensures that the diode state do not change for any value of the AC signal (i.e., diode is always ON) and the second condition ensures that diode behaviour is approximately linear around the Q-point.

The two conditions together provide linearity (approximately), so that we can employ the superposition theorem. Remember that, superposition theorem can only be employed in linear systems.

- Then, we can apply the superposition theorem and express the diode current and voltages as follows

$$
\begin{gather*}
i_{D}(t)=I_{D Q}+i_{d}(t) \tag{1.3.23}\\
v_{D}(t)=V_{D Q}+v_{d}(t) . \tag{1.3.24}
\end{gather*}
$$

- Diode is always ON and magnitude of the AC signal is very small compared to the DC signal (e.g., 10 mV vs. 10 V). So, we can apply the law of superposition and perform DC analysis and small-signal AC (SSAC) analysis separately, that is, we obtain $I_{D Q}$ and $i_{d}(t)$ independently using different circuits.
- We obtain DC equivalent circuit by killing the AC sources as shown in Figure 1.22 below

Figure 1.22: DC equivalent circuit of the circuit in Figure 1.21.
In DC analysis, $I_{D Q}$ and $V_{D Q}$ are found using the load-line analysis, i.e., by solving the diode characteristic equation and load-line equation simultaneously.

- We obtain SSAC equivalent circuit by killing the DC sources and replacing the diode with its SSAC model ($\boldsymbol{r}_{\boldsymbol{d}}$) where

$$
r_{d}=\frac{26 \mathrm{mV}}{I_{D Q}}
$$

as shown in Figure 1.23 below

Figure 1.23: SSAC equivalent circuit of the circuit in Figure 1.21.

- In SSAC analysis, diode is replaced by its dynamic resistance r_{d} and we can finally find $i_{d}(t)$ and $v_{d}(t)$ as follows

$$
\begin{align*}
i_{d}(t) & =\frac{v_{a c}(t)}{R+r_{d}} \tag{1.3.25}\\
v_{d}(t) & =\frac{r_{d}}{R+r_{d}} v_{a c}(t) . \tag{1.3.26}
\end{align*}
$$

1.3.13 Average AC Resistance

Figure 1.24: Determining the average AC resistance between indicated limits.

- Average AC resistance can be determined by picking two points on the characteristic curve developed for a particular circuit where the voltage and current variations (i.e., ΔV_{d} and ΔI_{d}) are large, as shown in Figure 1.24 above. It is used to develop the piecewise-linear diode model.
- Thus, the average AC resistance r_{av} is calculated as

$$
\begin{equation*}
\left.r_{\mathrm{av}}=\frac{\Delta V_{D}}{\Delta I_{D}} \quad \text { (point-to-point }\right) \tag{1.3.27}
\end{equation*}
$$

1.4 Piecewise-Linear Diode Model

Figure 1.25: Piecewise-linear characteristics curve (blue line on the left) and piecewise-linear equivalent circuit (on the right) of the diode.

- Piecewise-linear approximation of the diode characteristics curve is obtained and depicted as the blue lines on the left of Figure 1.25 above.
- Similarly, obtained piecewise-linear equivalent circuit is shown on the right of Figure 1.25 above.
- Here, r_{av} is the forward bias average AC resistance (i.e., internal resistance) of the diode.

1.5 Simplified Diode Model

Figure 1.26: Simplified characteristics curve (on the left) and simplified equivalent circuit (on the right) of the diode.

- Simplified diode characteristics curve is obtained and shown on the left of Figure 1.26 above.
- Similarly, obtained simplified equivalent circuit is shown on the right of Figure 1.26 above.

We can summarize the simplified diode model with its state and circuit behaviour with

$$
\text { Diode state }= \begin{cases}O N, & \text { if } V_{D} \geq V_{D(O N)} \tag{1.5.28}\\ O F F, & \text { if } V_{D}<V_{D(O N)}\end{cases}
$$

and

Simplified Diode Model		
State	Circuit Behaviour	Test Condition
ON	$V_{D}=V_{D(O N)}$	$I_{D} \geq 0$
OFF	$I_{D}=0$	$V_{D}<V_{D(O N)}$

- For the ideal diode model, the turn-on voltage is zero, i.e., $V_{D(O N)}=0 \mathrm{~V}$.

In this course, we will mostly use the simplified diode model unless otherwise stated.

1.5.1 Determining State of a Diode

- Using circuit behaviour and the test condition for the OFF state, let us devise a method to determine the state of a diode under simplified diode model.

Determining State of a Diode

1. Obtain the expression for V_{D} in terms of the diode current I_{D} from the electronic circuit.
2. Insert $I_{D}=0$ in to this expression
3. Then, the diode state is given by

$$
\text { Ideal diode state }= \begin{cases}O N, & \text { if }\left.V_{D}\right|_{I_{D}=0} \geq V_{D(O N)} \tag{1.5.29}\\ O F F, & \text { if }\left.V_{D}\right|_{I_{D}=0}<V_{D(O N)}\end{cases}
$$

Example 1.2: Consider the circuit below and find I_{D} and V_{D} with $V_{D(O N)}=0.7 \mathrm{~V}$ and $E>0.7 \mathrm{~V}$.

Figure 1.27: Diode circuit for Example 1.2.
Solution: First we need to determine the state of the diode (i.e., ON or OFF). So, let us write down the KVL equation and obtain V_{D}

$$
V_{D}=E-I_{D} R
$$

From the equation above, $\left.V_{D}\right|_{I_{D}=0}=E \geq V_{D(O N)}$. So, the diode is ON. Thus,

$$
\begin{aligned}
V_{D} & =V_{D(O N)}=0.7 \mathrm{~V} \\
I_{D} & =\frac{E-V_{D}}{R}=\frac{E-0.7}{R} \\
V_{R} & =E-V_{D}=E-0.7
\end{aligned}
$$

Thus, our diode circuitin Figure 1.27 is simplified to the circuit shown in Figure 1.28 below

Figure 1.28: Simplified circuit for the diode circuit in Figure 1.27.
Note that $I_{R}=I_{D}$.
Example 1.3: Consider the circuit below and find I_{D} and V_{D} with $V_{D(O N)}=0.7 \mathrm{~V}$ and $E>0.7 \mathrm{~V}$.

Figure 1.29: Diode circuit for Example 1.3.
Solution: First we need to determine the state of the diode (i.e., ON or OFF). So, let us write down the KVL equation and obtain V_{D}

$$
V_{D}=-E-I_{D} R
$$

From the equation above, $\left.V_{D}\right|_{I_{D}=0}=-E<V_{D(O N)}$. So, the diode is OFF. Thus,

$$
\begin{aligned}
I_{D} & =0 \mathrm{~A} \\
V_{D} & =-E-I_{D} R=-E \\
V_{R} & =-I_{D} R=0 \mathrm{~V}
\end{aligned}
$$

Thus, our diode circuitin Figure 1.29 is simplified to the circuit shown in Figure 1.30 below

Figure 1.30: Simplified circuit for the diode circuit in Figure 1.29.

Note that $I_{R}=-I_{D}=0 \mathrm{~A}$.
Example 1.4: Consider the circuit below and find $I_{1}, V_{o}, I_{D_{1}}$ and $I_{D_{2}}$ with $V_{D(O N)}=0.7 \mathrm{~V}$ and $D_{1} \equiv D_{2}$.

Figure 1.31: Diode circuit for Example 1.4.
Solution: First we need to determine the state of the diodes (i.e., ON or OFF). As the diodes are parallel, we let us make the following definitions

$$
\begin{aligned}
V_{D} & =V_{D_{1}}=V_{D_{2}} \\
I_{D} & =I_{D_{1}}+I_{D_{2}}=I_{1}
\end{aligned}
$$

So, let us write down the KVL equation and obtain V_{D}

$$
V_{D}=E-I_{D} R=10-0.33 k I_{D}
$$

From the equation above, $\left.V_{D}\right|_{I_{D}=0}=10 \geq V_{D(O N)}$. So, both diodes are ON.
Thus,

$$
\begin{aligned}
V_{D_{1}} & =V_{D(O N)}=0.7 \mathrm{~V} & \ldots \text { from circuit behaviour } \\
V_{D_{2}} & =V_{D(O N)}=0.7 \mathrm{~V} & \ldots \text { from circuit behaviour } \\
V_{o} & =V_{D}=0.7 \mathrm{~V} & \\
I_{1} & =\frac{E-V_{D}}{R}=\frac{10-0.7}{0.33 k}=28.18 \mathrm{~mA} & \\
I_{D_{1}} & =I_{D_{2}}=\frac{I_{1}}{2}=14.09 \mathrm{~mA} & \ldots \text { as } D_{1} \equiv D_{2}
\end{aligned}
$$

Homework 1.1: What will happen if D_{2} is replaced by a Germanium diode and D_{1} remains as a Silicon diode?

1.6 Diode Specification Sheets

Data about a diode is presented uniformly for many different diodes. This makes cross-matching of diodes for replacement or design easier. Some of the key elements is listed below:

1. V_{F} : forward voltage at a specific current and temperature
2. I_{F} : maximum forward current at a specific temperature
3. I_{R} : maximum reverse current at a specific temperature
4. PIV or PRV or VBR: maximum reverse voltage at a specific temperature
5. Power Dissipation: maximum power dissipated at a specific temperature
6. C : Capacitance levels in reverse bias
7. $t_{r r}$: reverse recovery time
8. Temperatures: operating and storage temperature ranges

1.6.1 Semiconductor Notation

Figure 1.32: Semiconductor diode notation.

- Anode is abbreviated as A.
- Cathode is abbreviated as K (because the Cathode end of the diode symbol looks like a backwards K).

Examples of some diode types and packagings are shown in Figure 1.33 below.

Figure 1.33: Some diode types and packagings.

1.6.2 Capacitance

Figure 1.34: Transition and diffusion capacitance versus applied bias for a Silicon diode.

- In reverse bias, the depletion layer is very large. The diode's strong positive and negative polarities create capacitance, C_{T}. The amount of capacitance depends on the reverse voltage applied.
- In forward bias, storage capacitance or diffusion capacitance $\left(C_{D}\right)$ exists as the diode voltage increases

1.7 Other Types of Diodes

Other types of diodes we like to mention are listed below

1. Zener Diode
2. Light Emitting Diode

1.8 Zener Diode

Figure 1.35: Zener diode symbol.

- A Zener is a diode operated in reverse bias at the Peak Inverse Voltage (PIV) called the Zener voltage $\left(V_{Z}\right)$.
- Common Zener voltages: 1.8 V to 200 V .
- We are going to cover Zener diodes in more detail later in the course.

1.9 Light Emitting Diode (LED)

Figure 1.36: Circuit symbol of an LED.

- This diode when forward biased emits photons. These can be in the visible spectrum.
- The forward bias turn-on voltage is higher, usually around 2-3 V.
- A Litronix 7 -segment LED display is shown in Figure 1.37 below

Figure 1.37: Litronix 7 -segment LED display

- Relative intensity of each color versus wavelength appears in Figure 1.38 below.

Figure 1.38: Relative intensity versus wavelength.

Chapter 2

Diode Applications

2.1 Clippers

Clipper diode circuits have the ability to clip off a portion of the input signal without distorting the remaining part of the alternating waveform.

Depending on the orientation of the diode, the positive or negative region of the input signal is clipped off.

There are two general categories of clippers: series and parallel. The series configuration is defined as one where the diode is in series with the load as shown in Figure 2.1 below, while the parallel variety has the diode in a branch parallel to the load.

Figure 2.1: A series clipper circuit.

- Let us write down the KVL equation for the circuit in Figure 2.1 above

$$
\begin{equation*}
v_{i}-v_{D}-i_{D} R=0 \quad \Rightarrow \quad v_{D}=v_{i}-i_{D} R \tag{2.1.1}
\end{equation*}
$$

As $\left.v_{D}\right|_{i_{D}=0}=v_{i}$, we have

$$
\text { Diode state }= \begin{cases}O N, & \text { if } v_{i} \geq V_{D(O N)} \tag{2.1.2}\\ O F F, & \text { if } v_{i}<V_{D(O N)}\end{cases}
$$

As the output v_{o} is across the resistor R, i.e., $v_{o}=i_{D} R=v_{i}-v_{D}$, we have

$$
v_{o}= \begin{cases}v_{i}-V_{D(O N)}, & \text { if } v_{i} \geq V_{D(O N)} \tag{2.1.3}\\ 0, & \text { if } v_{i}<V_{D(O N)}\end{cases}
$$

- Let us plot equation (2.1.3) above, as a voltage transfer characteristics (VTC) curve, i.e., output versus input plot, in order to understand the clipper behaviour visually, as shown in Figure 2.2 below.

Figure 2.2: Voltage transfer characteristics (VTC) curve of the series clipper circuit Figure 2.1.

- Let us analyse the operation of the series clipper circuit Figure 2.1 for a sinusoidal input, using the ideal diode model, i.e., $V_{D(O N)}=0$.

Figure 2.3: Positive half-cycle operation of the series clipper circuit in Figure 2.1.

Figure 2.4: Negative half-cycle operation of the series clipper circuit in Figure 2.1.
As we see from Figure 2.3 and Figure 2.4 above, negative half-cycle portion of the signal is clipped off while the positive half-cycle portion remains intact.

Example 2.1: By adding a DC source to the circuit as shown in Figure 2.5, the voltage required to forward bias the diode can be changed.

Figure 2.5: A series clipper circuit with a DC supply.
Consequently, the output will be given by

$$
v_{o}= \begin{cases}v_{i}+5 \mathrm{~V}-V_{D(O N)}, & \text { if } v_{i} \geq V_{D(O N)}-5 \mathrm{~V} \tag{2.1.4}\\ 0, & \text { if } v_{i}<V_{D(O N)}-5 \mathrm{~V}\end{cases}
$$

Let us sketch the output of the series clipper circuit Figure 2.5 for a sinusoidal input, using the ideal diode model, as shown in Figure 2.6 below.

Figure 2.6: Input and output of the series clipper circuit in Figure 2.5.

Example 2.2: Various series clipper examples are shown in Figure 2.7 below (diodes are ideal).
Simple Series Clippers (Ideal Diodes)

NEGATIVE

Biased Series Clippers (Ideal Diodes)

Figure 2.7: Various series clipper examples (diodes are ideal).

2.1.1 Parallel Clippers

By taking the output across the diode shown in Figure 2.8 below, the output equals to the input voltage when the diode is not conducting.

Figure 2.8: A parallel clipper circuit.
Hence, the output for this circuit will be given by

$$
v_{o}= \begin{cases}V_{D(O N)}, & \text { if } v_{i} \geq V_{D(O N)} \tag{2.1.5}\\ v_{i}, & \text { if } v_{i}<V_{D(O N)}\end{cases}
$$

Example input and output waveforms of the parallel clipper circuit Figure 2.8 for the ideal diode model are shown in Figure 2.9 below.

Figure 2.9: Sample input and output waveforms of the parallel clipper circuit in Figure 2.8.
Example 2.3: A DC source can also be added to change the diode's required forward bias voltage, as shown in Figure 2.10

Figure 2.10: A parallel clipper circuit with a DC supply.
Consequently, the output will be given by

$$
v_{o}= \begin{cases}-V_{D(O N)}-V_{B B}, & \text { if } v_{i} \leq-V_{D(O N)}-V_{B B} \tag{2.1.6}\\ v_{i}, & \text { if } v_{i}>-V_{D(O N)}-V_{B B}\end{cases}
$$

Homework 2.1: Draw the VTC diagram of the parallel clipper circuit given in Figure 2.10 above.

Homework 2.2: Draw the output waveform and the VTC diagram when the diode is reversed.
Example 2.4: For the circuit shown in Figure 2.11 below, find the output for a sinusoidal input $v_{i}(t)=V_{m} \sin (2 \pi t / T)$ where $\left(V_{B 1}, V_{B 2}\right)<V_{m}$ and draw the VTC diagram.

Figure 2.11: A diode limiter circuit.
Consequently, the output is given below and also shown in Figures 2.12(a) and 2.12(b) below

$$
v_{o}= \begin{cases}V_{D(O N)}+V_{B 1}, & \text { if } v_{i} \geq V_{D(O N)}+V_{B 1} \tag{2.1.7}\\ -V_{D(O N)}-V_{B 2}, & \text { if } v_{i} \leq-V_{D(O N)}-V_{B 2} \\ v_{i}, & \text { else }\end{cases}
$$

(a)

Figure 2.12: Outputs of the circuit in Figure 2.11: (a) VTC diagram, (b) output waveform.
Example 2.5: Various parallel clipper examples are shown in Figure 2.13 below (diodes are ideal).

Simple Parallel Clippers (Ideal Diodes)

Biased Parallel Clippers (Ideal Diodes)

Figure 2.13: Various parallel clipper examples (diodes are ideal).

2.2 Clampers

Clamper circuits clamp a signal to different DC levels. The circuit must have a capacitor, a diode, and a resistive element as shown in Figure 2.14 below, but it can also employ an independent DC supply to introduce an additional shift.

Figure 2.14: A clamper circuit.
Throughout the analysis, we will assume that for all practical purposes the capacitor will fully discharge in five time constants, i.e., $5 \tau_{\text {discharge }}$, where time constant $\tau_{\text {discharge }}=R C$.

The magnitude of R and C must be chosen such that the time constant $\tau_{\text {discharge }}=R C$ is large enough to ensure that the voltage across the capacitor does not discharge significantly during the interval the diode is nonconducting.

For the circuit in Figure 2.14 above, the diode state is given by

$$
\text { Diode state }= \begin{cases}O N, & \text { if } v_{i} \geq V_{D(O N)}+V_{C} \tag{2.2.8}\\ O F F, & \text { if } v_{i}<V_{D(O N)}+V_{C}\end{cases}
$$

where V_{C} is the voltage across the capacitor C.
The clamper output is given by

$$
\begin{equation*}
v_{o}=v_{i}-V_{C} \tag{2.2.9}
\end{equation*}
$$

- Consequently, when the capacitor is charged at the maximum voltage, i.e., $V_{C}=V_{m}-V_{D(O N)}$ and diode is OFF, the clamper output will be

$$
\begin{equation*}
v_{o}=v_{i}-\left(V_{m}-V_{D}(O N)\right) . \tag{2.2.10}
\end{equation*}
$$

IMPORTANT: The clamper shifts the signal in the direction of the diode arrowhead by an amount of $\left(V_{m}-V_{D(O N)}\right)$.

- Let us generate steps for the clamper operation for the circuit in Figure 2.14 above, assuming capacitor is fully discharged initially, i.e., at $t=0$, using the ideal diode model.

1. The diode will be ON in the first positive half cycle as $V_{C}=0$ and the capacitor will charge up very quickly to the peak value V_{m} with a time constant $\tau_{\text {charge }}=C r_{a v} \cong 0$ where $r_{a v} \cong 0 \Omega$ is the internal resistance of the diode as shown in Figure 2.15 below.

Figure 2.15: Charging operation of the clamper circuit in Figure 2.14.
2. Once the capacitor is charged, i.e., $V_{C}=V_{m}$. then the diode turns OFF, as shown in Figure 2.16 below.

Figure 2.16: Discharging operation of the clamper circuit in Figure 2.14.
3. Capacitor will discharge until the input waveform gets larger than the capacitor voltage, i.e., $v_{i}(t)>v_{C}(t)$. Thus, the discharging period $\left(\frac{T}{2}\right)$ must be much smaller than the fully discharge constant $5 \tau_{\text {discharge }}$ in order to keep the voltage across the capacitor almost constant at $V_{C} \cong V_{m}$, i.e.,

$$
\begin{equation*}
5 \tau_{\text {discharge }} \gg \frac{T}{2} \tag{2.2.11}
\end{equation*}
$$

So, if take $\left(5 \tau_{\text {discharge }} \geq 50 \frac{T}{2}\right)$, then we obtain the following condition for the clamping operation

$$
\begin{equation*}
\tau_{\text {discharge }} \geq 5 T \tag{2.2.12}
\end{equation*}
$$

where T is the period of the input signal v_{i}.

- For a clamping operation, selected capacitor C and resistor R values should satisfy the discharge condition in (2.2.12).
- IMPORTANT: If it is not explicitly stated we are going to assume that capacitor is already charged, e.g., $V_{C}=V_{m}-V_{D(O N)}$.

Example 2.6: Consider the clamping circuit below and plot the output waveform. Assume the diode is ideal.

Figure 2.17: A clamper circuit with a square wave input.
Solution: As this is a clamping circuit, i.e., $\tau_{\text {discharge }} \leq 5 T$, we obtain the following output

$$
v_{o}=v_{i}-V+V_{D(O N)}
$$

where $V_{D(O N)}=0 \mathrm{~V}$. The resulting waveform is shown in Figure 2.18 below.

Figure 2.18: Output of the circuit given in Figure 2.17.
Example 2.7: Consider the clamping circuit below and plot the output waveform. Assume the diode is ideal.

Figure 2.19: A clamper circuit with a sinusoidal input.
Solution: Assuming the capacitor is already charged at $V_{C}=-V_{m}+V_{D(O N)}+V_{B B}=-20+$ $0+10=-10 \mathrm{~V}$, we obtain the following output

$$
\begin{aligned}
v_{o} & =v_{i}-\left(-V_{m}+V_{D(O N)}+V_{B B}\right)=v_{i}+V_{m}-V_{D(O N)}-V_{B B}=v_{i}+20-0-10 \\
& =v_{i}+10 \mathrm{~V} .
\end{aligned}
$$

The resulting waveform is shown in Figure 2.20 below.

Figure 2.20: Output of the circuit given in Figure 2.19.
Example 2.8: Various clamper examples are shown in Figure 2.21 below (diodes are ideal).

Clamping Networks (Ideal Diodes)

Figure 2.21: Various clamper examples (diodes are ideal and capacitors are charged).

2.3 Voltage Multiplier Circuits

2.3.1 Peak Rectifier

Once we consider a clamper circuit and take the output over the capacitor instead of the diode, we obtain the peak rectifier circuit shown in Figure 2.22 below producing a DC output at peak value of the input signal.

Figure 2.22: A peak rectifier circuit.
Corresponding input and output are also shown in figures 2.23 (a) and 2.23(b) below. The capacitor is charged to the maximum value ($V_{m}-V_{D(O N)}$) in the first positive half cycle (i.e., between 0 and $T / 4$), then the diode turns OFF and capacitor cannot discharge retaining the charged value. This value is equal to the peak value V_{m} for the ideal diode.

Figure 2.23: For the circuit in Figure 2.22: (a) input waveform, (b) output waveform.

- When a load R_{L} is connected, the discharge constant $\tau_{\text {discharge }}=R_{L} C$ should have a very high value compared to the half period $\left(\frac{T}{2}\right)$ of the signal, otherwise ripples are observed at the output voltage, i.e., R_{L} should have a very large value.
- Using a combination of diodes and capacitors we can step up the output voltage of rectifier circuits. These circuits (some listed below) are called voltage multiplier circuits.

1. Voltage Doubler
2. Voltage Tripler
3. Voltage Quadrupler

2.3.2 Voltage Doubler

A voltage doubler circuit is shown in Figure 2.24 below.

Figure 2.24: Voltage doubler circuit.
Using the ideal diode model, operation of the voltage doubler circuit are shown for the first positive and negative half-cycles in figures 2.25 (a) and $2.25(\mathrm{~b})$ below, respectively. After the first cycle, both diodes retain their OFF state.

Figure 2.25: Operation of the circuit in Figure 2.24 at (a) first positive half-cycle, and (b) first negative half-cycle.

2.3.3 Voltage Tripler and Quadrupler

By adding more diode-capacitor networks the voltage can be increased as shown in Figure 2.26 below.

Figure 2.26: Voltage tripler/quadrupler circuit.

2.4 Zener Diode

Zener diode operates in reverse bias (RB) at the Zener Voltage $\left(V_{Z}\right)$. Zener diode is ON when it operates on the Zener region, i.e., $-V_{D} \geq V_{Z}$, and is OFF when $0<-V_{D}<V_{Z}$, as shown in figures 2.27(a) and 2.27(b) below.

Figure 2.27: Zener diode operation: (a)ON (b) OFF.

- Although Zener diode behaves like a normal diode in forward bias, Zener diode is not normally used in forward bias.
- Zener diode also needs some minimum current $I_{Z(\min)}$ in order to turn ON, although voltage threshold $-V_{D} \geq V_{Z}$ is satisfied. If not given, $I_{Z(\text { min })}=0 \mathrm{~A}$.
- There is also a maximum power limit $P_{Z(\max)}$ for the Zener diode. Note that, maximum power limit results in a maximum current limit $I_{Z(\max)}$ given by $I_{Z(\max)}=\frac{P_{Z(\max)}}{V_{Z}}$.

2.4.1 Zener Regulator

Figure 2.28: A general Zener diode circuit.
In a Zener regulator circuit likein Figure 2.28 above, Zener diode must be always ON in order to continuously regulate the voltage over the load R_{L}. So, let us derive the necessary equations for the two limiting factors $I_{Z(\min)}$ and $I_{Z(\max)}$ using

$$
\begin{equation*}
I_{Z}=I_{1}-I_{L} \tag{2.4.13}
\end{equation*}
$$

- Let us first write down the equation for $I_{Z(\min)}$

$$
\begin{equation*}
I_{Z(\min)}=I_{1(\min)}-I_{L(\max)} \tag{2.4.14}
\end{equation*}
$$

where $I_{L(\max)}$ and $I_{1(\min)}$ are given by

$$
\begin{align*}
I_{L(\max)} & =\frac{V_{Z}}{R_{L(\min)}} \tag{2.4.15}\\
I_{1(\min)} & =\frac{V_{s(\min)}-V_{Z}}{R_{1(\max)}} \tag{2.4.16}
\end{align*}
$$

- Similarly, we can also write down the equation for $I_{Z(\max)}$

$$
\begin{equation*}
I_{Z(\max)}=I_{1(\max)}-I_{L(\min)} \tag{2.4.17}
\end{equation*}
$$

where $I_{L(\min)}$ and $I_{1(\max)}$ are given by

$$
\begin{align*}
& I_{L(\min)}=\frac{V_{Z}}{R_{L(\max)}} \tag{2.4.18}\\
& I_{1(\max)}=\frac{V_{s(\max)}-V_{Z}}{R_{1(\min)}} \tag{2.4.19}
\end{align*}
$$

- Note that the values of $V_{Z}, I_{Z(\min)}$ and $I_{Z(\max)}$ (or $P_{Z(\min)}$ and $P_{Z(\max)}$) are specified in the specification sheet (or data sheet) of a Zener diode.

Example 2.9: (2004-2005 MI) In the figure below, V_{s} is an unregulated voltage that varies between 6 V and 7 V while the Zener diode voltage is $V_{Z}=5 \mathrm{~V}$. The load resistor R_{L} can have a value from 100Ω to ∞ (i.e., open circuit). Also you can take $I_{Z(\text { min })} \cong 0 \mathrm{~A}$.
a) Find the maximum value of R_{1} so that the load voltage V_{L} would be still kept constant at 5 V for all values of R_{L} and V_{s}.
b) Provide a symbolic expression for the maximum power dissipated by the Zener diode.
c) Determine the minimum value of R_{1} so that the power dissipated by the Zener diode never exceeds 1 W for all values of R_{L} and V_{s}.

Figure 2.29: Zener diode circuit for Example 2.9.

Solution:

a) As $I_{Z(\min)}=I_{1(\min)}-I_{L(\max)}=0, I_{1(\min)}=I_{L(\max)}$, i.e.,

$$
\begin{aligned}
\frac{V_{s(\min)}-V_{Z}}{R_{1(\max)}} & =\frac{V_{Z}}{R_{L(\min)}} \\
R_{1(\max)} & =\frac{V_{s(\min)}-V_{Z}}{V_{Z}} R_{L(\min)}=\frac{6-5}{5} 100=\underline{20 \Omega} .
\end{aligned}
$$

b) $P_{Z(\max)}=V_{Z} I_{Z(\max)}$.
c) It is given that $P_{Z(\max)}=1 \mathrm{~W}$, so

$$
\begin{aligned}
I_{Z(\max)} & =\frac{P_{Z(\max)}}{V_{Z}}=\frac{1}{5}=0.2 \mathrm{~A} \\
I_{L(\min)} & =\frac{V_{Z}}{R_{L(\max)}}=\frac{5}{\infty}=0 \mathrm{~A} \\
I_{1(\max)} & =I_{Z(\max)}+I_{L(\min)}=I_{Z(\max)}=0.2 \mathrm{~A} \\
R_{1(\min)} & =\frac{V_{s(\max)}-V_{Z}}{I_{1(\max)}}=\frac{7-5}{0.2}=\underline{10 \Omega} .
\end{aligned}
$$

2.4.2 Other Zener Diode Regulators

- A single Zener diode can limit one side of a sinusoidal waveform to the Zener voltage while clamping the other side to near zero as shown in Figure 2.30 below

Figure 2.30: Single Zener diode clipper.

- With two opposing Zeners, the waveform can be limited to the Zener voltage on both polarities as shown in Figure 2.31 below.

Figure 2.31: Dual Zener diode clipper.

2.4.3 Zener Diode Parameters

The basic parameters of a Zener diode are:
a) Obviously, the Zener voltage must be specified. The most common range of Zener voltage is 3.3 volts to 75 volts, however voltages out of this range are available.
b) A tolerance of the specified voltage must be stated. While the most popular tolerances are 5% and 10%, more precision tolerances as low as 0.05% are available. A test current $\left(I_{Z(t e s t)}\right)$ must be specified with the voltage and tolerance.
c) The power handling capability must be specified for the Zener diode. Popular power ranges are: $0.25,0.5,1,5,10$, and 50 Watts.

2.5 Practical Applications of Diode Circuits

- Rectifier Circuits
- Conversions of AC to DC for DC operated circuits
- Battery Charging Circuits
- Simple Diode Circuits
- Protective Circuits against
- Overcurrent
- Polarity Reversal
- Currents caused by an inductive kick in a relay circuit

- Zener Circuits

- Overvoltage Protection
- Setting Reference Voltages

Chapter 3

Rectifiers and Voltage Regulating Filters

3.1 Properties of Electrical Signals

3.1.1 DC Component (Average Value) and AC Component

- Every (periodic) signal has a DC component and an AC component, i.e.,

$$
\begin{equation*}
v(t)=V_{D C}+v_{a c}(t) \tag{3.1.1}
\end{equation*}
$$

where $V_{D C}$ is the DC component and $v_{a c}(t)$ is the AC component.

- DC component $V_{D C}$ is defined as the time-average or mean of the signal within one period, i.e.,

$$
\begin{equation*}
V_{D C}=V_{\mathrm{avg}}=\frac{1}{T} \int_{0}^{T} v(t) d t \tag{3.1.2}
\end{equation*}
$$

where T is the period of the signal.
$V_{D C}$ is the voltage value displayed for $v(t)$ on a DC voltmeter.

- AC component $v_{a c}(t)$ is the zero-mean time-varying component of the signal given by

$$
\begin{equation*}
v_{a c}(t)=v(t)-V_{D C} \tag{3.1.3}
\end{equation*}
$$

IMPORTANT: In this course, we are going to use

1. capital letters for both quantity symbols and subscripts of $\mathbf{D C}$ components, e.g., $I_{D Q}$,
2. small letters for both quantity symbols and subscripts of AC components, e.g., i_{d},
3. small letters for quantity symbols and capital letters for subscripts of $\mathbf{A C}+\mathbf{D C}$ signals, e.g., i_{D} where $i_{D}=I_{D Q}+i_{d}$.

Example 3.1: Let us calculate the DC component of the half-wave rectifier output shown in Figure 3.1 below.

Figure 3.1: Ideal half-wave rectifier output of a sinusoidal input $v_{i}(t)=V_{m} \sin (2 \pi t / T)$.
Solution: DC component of the signal given by its time-average in one period. However in the case of the half-wave rectifier output shown in Figure 3.1 above, second half-cycle of the signal is zero. So, we only need to integrate first half-cycle of the signal.

$$
\begin{array}{rlrl}
V_{D C} & =\frac{1}{T} \int_{0}^{T / 2} V_{m} \sin (2 \pi t / T) d t & \\
& =\frac{1}{2 \pi} V_{m} \int_{0}^{\pi} \sin \theta d \theta & & \ldots \text { using change of variables with } \theta=\frac{2 \pi t}{T} \\
& =\frac{V_{m}}{2 \pi}[-\cos \theta]_{0}^{\pi} & & \\
& =\frac{V_{m}}{\pi} & & \\
& \cong 0.318 V_{m} & & d t=\frac{T}{2 \pi} d \theta \tag{3.1.5}\\
&
\end{array}
$$

Example 3.2: Let us calculate the DC component of the full-wave rectifier output shown in Figure 3.2 below.

Figure 3.2: Ideal full-wave rectifier output of a sinusoidal input $v_{i}(t)=V_{m} \sin (2 \pi t / T)$.
Solution: DC component of the signal given by its time-average in one period. However in the case of the full-wave rectifier output shown in Figure 3.2 above, the period of the output signal
is $\frac{T}{2}$.

$$
\begin{align*}
V_{D C} & =\frac{2}{T} \int_{0}^{T / 2} V_{m} \sin (2 \pi t / T) d t \\
& =\frac{1}{\pi} V_{m} \int_{0}^{\pi} \sin \theta d \theta \\
& =\frac{V_{m}}{\pi}[-\cos \theta]_{0}^{\pi} \\
& =\frac{2 V_{m}}{\pi} \tag{3.1.6}\\
& \cong 0.636 V_{m} \tag{3.1.7}
\end{align*}
$$

$$
\ldots \text { using change of variables with } \theta=\frac{2 \pi t}{T}
$$

$$
\ldots \text { and } d t=\frac{T}{2 \pi} d \theta
$$

Example 3.3: Let us calculate the DC component of the triangular waveform shown in Figure 3.3 below.

Figure 3.3: Triangular waveform.
Solution: DC component of the signal given by its time-average in one period. In this case the integral of the waveform in one period is the area of the triangle present $\left(V_{m} T / 2\right)$ in one period as seen in Figure 3.2 above.

$$
\begin{align*}
V_{D C} & =\frac{1}{T} \int_{0}^{T} v(t) d t \\
& =\frac{1}{T}\left(\frac{V_{m} T}{2}\right) \tag{3.1.8}\\
& =\frac{V_{m}}{2} \tag{3.1.9}
\end{align*}
$$

Example 3.4: Let us find the AC component of the triangular waveform shown in Figure 3.3. Solution: AC component of the signal is obtained by subtracting the DC component, i.e.,

$$
\begin{equation*}
v_{a c}(t)=v(t)-V_{D C}=v(t)-\frac{V_{m}}{2} \tag{3.1.10}
\end{equation*}
$$

Thus, the AC component of the triangular waveform is plotted as shown in Figure 3.4 below.

Figure 3.4: AC component of the triangular waveform in Figure 3.3.

3.1.2 Effective Value (RMS Value)

- Average power or mean power is defined as the time-average of the instantaneous power over a period, i.e.,

$$
\begin{equation*}
P_{\mathrm{avg}}=\frac{1}{T} \int_{0}^{T} p(t) d t \tag{3.1.11}
\end{equation*}
$$

where $p(t)$ is the instantaneous power and T is the period of $p(t)$.

- The idea of effective current and voltage values comes from the need for writing the average power as a multiple of voltage and current values just like the Watt's law, i.e.,

$$
\begin{equation*}
P_{\text {avg }}=V_{\text {effective }} I_{\text {effective }} \tag{3.1.12}
\end{equation*}
$$

where $V_{\text {effective }}$ and $I_{\text {effective }}$ are the effective voltage and current values, respectively.

Effective Voltage Value

- Let us obtain the effective voltage value $V_{\text {effective }}$ by defining average power over a resistor R

$$
\begin{align*}
P_{\mathrm{avg}} & =\frac{1}{T} \int_{0}^{T} \frac{v^{2}(t)}{R} d t \\
& =\frac{1}{R} \underbrace{\left(\frac{1}{T} \int_{0}^{T} v^{2}(t) d t\right)}_{V_{\text {effective }}} \tag{3.1.13}\\
& =\frac{V_{\text {effective }}^{2}}{R} \tag{3.1.14}
\end{align*}
$$

- Thus, effective voltage value $V_{\text {effective }}$ is given as the root-mean-square (RMS) of the voltage signal, i.e.,

$$
\begin{equation*}
V_{\text {effective }}=V_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d t} \tag{3.1.15}
\end{equation*}
$$

$V_{\text {rms }}$ is the voltage value displayed for $v(t)$ on an AC voltmeter.

Effective Current Value

- Let us obtain the effective current value $I_{\text {effective }}$ by defining average power over a resistor R

$$
\begin{align*}
P_{\mathrm{avg}} & =\frac{1}{T} \int_{0}^{T} i^{2}(t) R d t \\
& =\underbrace{\left(\frac{1}{T} \int_{0}^{T} i^{2}(t) d t\right)}_{I_{\text {effective }}^{2}} R \tag{3.1.16}\\
& =I_{\text {effective }}^{2} R \tag{3.1.17}
\end{align*}
$$

- Thus, effective current value $I_{\text {effective }}$ is given as the root-mean-square (RMS) of the current signal, i.e.,

$$
\begin{equation*}
I_{\text {effective }}=I_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t} \tag{3.1.18}
\end{equation*}
$$

I_{rms} is the voltage value displayed for $i(t)$ on an AC ammeter.
Example 3.5: Calculate the RMS value V_{rms} of the mixed signal

$$
v(t)=A+B \cos \omega t
$$

Solution: Let us find V_{rms}^{2} first where $\omega=2 \pi f=2 \pi / T$

$$
\begin{aligned}
V_{\mathrm{rms}}^{2} & =\frac{1}{T} \int_{0}^{T}(A+B \cos \omega t)^{2} d t \\
& =\frac{1}{T} \int_{0}^{T}\left(A^{2}+\underline{2 A B \cos \omega t}+B^{2} \cos ^{2} \omega t\right) d t \\
& =\frac{1}{T}\left(\left[A^{2} t\right]_{0}^{T}+\frac{B^{2}}{2} \int_{0}^{T}(1+\cos 2 \omega t) d t\right) \\
& =A^{2}+\frac{B^{2}}{2}+\frac{B^{2}}{2 T}\left[\frac{\sin 2 \omega t}{T}\right]_{0}^{T} \\
& =A^{2}+\frac{B^{2}}{2}
\end{aligned}
$$

So,

$$
V_{\mathrm{rms}}=\sqrt{A^{2}+\frac{B^{2}}{2}}
$$

- We can generalize the result of Example 3.5 for the RMS value V_{rms} of a general $\mathrm{AC}+\mathrm{DC}$ signal $v(t)$ where

$$
v(t)=V_{D C}+v_{a c}(t),
$$

as the combined RMS equation given below

$$
\begin{equation*}
V_{\mathrm{rms}}=\sqrt{V_{D C}^{2}+V_{a c(\mathrm{rms})}^{2}} \tag{3.1.19}
\end{equation*}
$$

Example 3.6: Calculate the RMS value of the triangular waveform shown in Figure 3.5 below.

Figure 3.5: Triangular waveform and its analytical expression.
Solution: Let us calculate $V_{\text {rms }}^{2}$ by using integration by parts

$$
\begin{aligned}
V_{\mathrm{rms}}^{2} & =\frac{1}{T}\left(\int_{0}^{T / 2}\left(\frac{2 V_{m}}{T} t\right)^{2} d t+\int_{T / 2}^{T}\left(2 V_{m}-\frac{2 V_{m}}{T} t\right)^{2} d t\right) \\
& =\frac{1}{T}\left(\frac{4 V_{m}^{2}}{T^{2}} \int_{0}^{T / 2} t^{2} d t+4 V_{m}^{2} \int_{T / 2}^{T}\left(1-\frac{2}{T} t+\frac{1}{T^{2}} t^{2}\right) d t\right) \\
& =\frac{4 V_{m}^{2}}{T^{3}}\left[\frac{t^{3}}{3}\right]_{0}^{T / 2}+\frac{4 V_{m}^{2}}{T}\left[t-\frac{t^{2}}{T}+\frac{t^{3}}{3 T^{2}}\right]_{T / 2}^{T} \\
& =\frac{4 V_{m}^{2}}{\mathscr{P}^{2}} \frac{\mathscr{P}^{\mathscr{~}}}{24}+\frac{4 V_{m}^{2}}{\not X}\left[\frac{\not X}{2}-\frac{3 \not X}{4}+\frac{7 \not X}{24}\right] \\
& =\frac{V_{m}^{2}}{3}
\end{aligned}
$$

So, the RMS value of the triangular waveform is given by

$$
\begin{equation*}
V_{\mathrm{rms}}=\frac{V_{m}}{\sqrt{3}} \tag{3.1.20}
\end{equation*}
$$

Example 3.7: Calculate the RMS value of the ideal half-wave rectifier output given in Figure 3.1.

Solution: Let us first calculate the $V_{\text {rms }}^{2}$

$$
\begin{array}{rlr}
V_{\mathrm{rms}}^{2} & =\frac{1}{T} \int_{0}^{T / 2} V_{m}^{2} \sin ^{2}(2 \pi t / T) d t & \\
& =\frac{1}{2 \pi} V_{m}^{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta & \ldots \text { using change of variables } \theta=\frac{2 \pi t}{T} \\
& =\frac{V_{m}^{2}}{2 \pi} \int_{0}^{\pi} \frac{1}{2}(1-\cos 2 \theta) d \theta & \ldots \text { using trigonometric identities } \\
& =\frac{V_{m}^{2}}{4} &
\end{array}
$$

So, the RMS value of the ideal half-wave rectifier output is given by

$$
\begin{equation*}
V_{\mathrm{rms}}=\frac{V_{m}}{2} \tag{3.1.21}
\end{equation*}
$$

Example 3.8: Calculate the RMS value of the ideal full-wave rectifier output given in Figure 3.2.
Solution: Let us first calculate the $V_{\text {rms }}^{2}$

$$
\begin{array}{rlr}
V_{\mathrm{rms}}^{2} & =\frac{2}{T} \int_{0}^{T / 2} V_{m}^{2} \sin ^{2}(2 \pi t / T) d t & \\
& =\frac{1}{\pi} V_{m}^{2} \int_{0}^{\pi} \sin ^{2} \theta d \theta & \ldots \text { using change of variables } \theta=\frac{2 \pi t}{T} \\
& =\frac{V_{m}^{2}}{\pi} \int_{0}^{\pi} \frac{1}{2}(1-\cos 2 \theta) d \theta & \ldots \text { using trigonometric identities } \\
& =\frac{V_{m}^{2}}{2} &
\end{array}
$$

So, the RMS value of the ideal full-wave rectifier output is given by

$$
\begin{equation*}
V_{\mathrm{rms}}=\frac{V_{m}}{\sqrt{2}} \cong 0.707 V_{m} \tag{3.1.22}
\end{equation*}
$$

Example 3.9: Calculate the RMS value $V_{a c(\mathrm{rms})}$ of the AC component of the triangular waveform shown in Figure 3.4.

Solution: We are going to use the combined RMS equation given in (3.1.19) with the already calculated DC and RMS values of the triangular waveform given in (3.1.9) and (3.1.20),
respectively as follows

$$
\begin{aligned}
V_{a c(\mathrm{rms})}^{2} & =V_{r m s}^{2}-V_{D C}^{2} \\
& =\left(\frac{V_{m}}{\sqrt{3}}\right)^{2}-\left(\frac{V_{m}}{2}\right)^{2} \\
& =\frac{V_{m}^{2}}{3}-\frac{V_{m}^{2}}{4} \\
& =\frac{V_{m}^{2}}{12} .
\end{aligned}
$$

So, the RMS value of the AC component of the triangular waveform is given by

$$
\begin{equation*}
V_{a c(\mathrm{rms})}=\frac{V_{m}}{2 \sqrt{3}} \tag{3.1.23}
\end{equation*}
$$

Example 3.10: Calculate the RMS value $V_{a c(r m s)}$ of the AC component of the ideal half-wave rectifier output.

Solution: We are going to use the combined RMS equation given in (3.1.19) with the already calculated DC and RMS values of the ideal half-wave rectifier output given in (3.1.4) and (3.1.21), respectively as follows

$$
\begin{aligned}
V_{a c(\mathrm{rms})}^{2} & =V_{r m s}^{2}-V_{D C}^{2} \\
& =\left(\frac{V_{m}}{2}\right)^{2}-\left(\frac{V_{m}}{\pi}\right)^{2} \\
& =\frac{V_{m}^{2}}{4}-\frac{V_{m}^{2}}{\pi^{2}}
\end{aligned}
$$

So, the RMS value of the AC component of the half-wave rectifier output is given by

$$
\begin{equation*}
V_{a c(\mathrm{rms})}=V_{m} \sqrt{\frac{1}{4}-\frac{1}{\pi^{2}}} \cong 0.386 V_{m} \tag{3.1.24}
\end{equation*}
$$

Example 3.11: Calculate the RMS value $V_{a c(\mathrm{rms})}$ of the AC component of the ideal full-wave rectifier output.

Solution: We are going to use the combined RMS equation given in (3.1.19) with the already calculated DC and RMS values of the ideal full-wave rectifier output given in (3.1.6) and (3.1.22), respectively, as follows

$$
\begin{aligned}
V_{a c(\mathrm{rms})}^{2} & =V_{r m s}^{2}-V_{D C}^{2} \\
& =\left(\frac{V_{m}}{\sqrt{2}}\right)^{2}-\left(\frac{2 V_{m}}{\pi}\right)^{2} \\
& =\frac{V_{m}^{2}}{2}-\frac{4 V_{m}^{2}}{\pi^{2}}
\end{aligned}
$$

So, the RMS value of the AC component of the full-wave rectifier output is given by

$$
\begin{equation*}
V_{a c(\mathrm{rms})}=V_{m} \sqrt{\frac{1}{2}-\frac{4}{\pi^{2}}} \cong 0.308 V_{m} \tag{3.1.25}
\end{equation*}
$$

3.2 Half-Wave Rectifier

- Generating a waveform with a non-zero mean value, i.e., non-zero DC component, from an AC waveform (i.e., a zero-mean time-varying signal) is called rectification. The circuits which perform rectification are called rectifiers. This is a crude AC to DC conversion.
- A half-wave rectifier rectifies only half-cycle of the waveform, i.e., circuits conducts only for one-half of the AC cycle, maintaining the average of the output signal non-zero.
- A half-wave rectifier circuit is the same as the series clipper circuit shown in Figure 3.6 below.

Figure 3.6: A half-wave rectifier circuit.

- Sample input and ideal output waveforms for an half-wave rectifier such as given inFigure 3.6 are given in Figure 3.7 below.

Figure 3.7: Input and ideal output waveforms for the half-wave rectifier given in Figure 3.6.

- The DC voltage output of the half-wave rectifier is the DC component of the output waveform and as calculated before in (3.1.4) it is given by

$$
\begin{equation*}
V_{D C(\text { half-wave })}=\frac{1}{\pi} V_{m} \cong 0.318 V_{m} \tag{3.2.26}
\end{equation*}
$$

where V_{m} is the peak voltage of the input sinusoidal signal.

- The output of the half-wave rectifier for $V_{D(O N)}=0.7 \mathrm{~V}$ is shown in Figure 3.8 below

Figure 3.8: Input and output waveforms for the half-wave rectifier when $V_{D(O N)}=0.7 \mathrm{~V}$.
When $V_{D(O N)} \neq 0$, the DC voltage output of the half-wave rectifier is approximately equal to

$$
\begin{equation*}
V_{D C(\text { half-wave })} \cong \frac{1}{\pi} V_{m}-\frac{1}{2} V_{D(O N)}=0.318 V_{m}-0.5 V_{D(O N)} \tag{3.2.27}
\end{equation*}
$$

- When the diode is OFF, maximum negative voltage between the terminals of the diode is the negative peak value $-V_{m}$. So, the peak-inverse-voltage for the half-wave rectifier is given by

$$
\begin{equation*}
\operatorname{PIV}_{\text {(half-wave rectifier) }}=V_{m} \tag{3.2.28}
\end{equation*}
$$

Thus, we need to select a diode with a PIV rating greater than V_{m}, i.e., $\mathrm{PIV}_{\text {diode }}>V_{m}$, to use in our half-wave rectifier circuit.

3.3 Full-Wave Rectifier

- A full-wave rectifier rectifies both cycles of the waveform producing a higher DC output as shown in Figure 3.9 below

Figure 3.9: Input and ideal output waveforms of the full-wave rectifier.

- The DC voltage output of the full-wave rectifier is the DC component of the output waveform and as calculated before in (3.1.6) it is given by

$$
\begin{equation*}
V_{D C(\text { full-wave })}=\frac{2}{\pi} V_{m} \cong 0.636 V_{m} \tag{3.3.29}
\end{equation*}
$$

where V_{m} is the peak voltage of the input sinusoidal.

Full-Wave Rectifier Circuits

There are two types of full-wave rectifier circuits:

1. Center-Tapped Transformer Full-Wave Rectifier
2. Full-Wave Bridge Rectifier

3.3.1 Center-Tapped Transformer Full-Wave Rectifier

Center-tapped transformer full-wave rectifier shown in Figure 3.10 below requires a center-tapped (CT) transformer to establish the replica of the input signal across each section of the secondary of the transformer and then combining two half-wave rectifiers together where the two half-wave rectifiers operate on opposite cycles of the input signal.

Figure 3.10: Center-tapped transformer full-wave rectifier.
Here, D_{1} operates on the positive half-cycle and D_{2} operates on the negative half-cycle of input v_{i}.

- Using the ideal diode model, operation of the center-tapped transformer full-wave rectifier are shown for positive and negative cycles in Figure 3.11 and Figure 3.12 below, respectively.

Figure 3.11: Positive half-cycle operation of the center-tapped transformer full-wave rectifier in Figure 3.10.

Figure 3.12: Negative half-cycle operation of the center-tapped transformer full-wave rectifier in Figure 3.10.

- When the diodes are OFF, maximum negative voltage between the terminals of the diodes are twice the negative peak value. So, the peak-inverse-voltage for the center-tapped transformer full-wave rectifier is given by

$$
\begin{equation*}
\operatorname{PIV}_{(\text {center-tapped })}=2 V_{m} \tag{3.3.30}
\end{equation*}
$$

- When the diodes are not ideal, i.e., $V_{D(O N)} \neq 0$, the DC voltage output of the center-tapped transformer full-wave rectifier is approximately equal to

$$
\begin{equation*}
V_{D C(\text { center-tapped })} \cong \frac{2}{\pi} V_{m}-V_{D(O N)}=0.636 V_{m}-V_{D(O N)} \tag{3.3.31}
\end{equation*}
$$

where V_{m} is the peak voltage of the input sinusoidal signal.

3.3.2 Full-Wave Bridge Rectifier

The most popular circuit to achieve full-wave rectification is four diodes in a bridge configuration as shown in Figure 3.13 below. The popularity of the rectifier comes from the fact that it eliminates the need for a transformer.

Figure 3.13: Full-wave bridge rectifier.
Here, D_{2} and D_{3} operate on the positive half-cycle, and D_{4} and D_{1} operate on the negative half-cycle of input v_{i}.

- Using the ideal diode model, operation of the full-wave bridge rectifier are shown for positive and negative cycles in Figure 3.14 and Figure 3.15 below, respectively.

Figure 3.14: Positive half-cycle operation of the full-wave bridge rectifier in Figure 3.13.

Figure 3.15: Negative half-cycle operation of the full-wave bridge rectifier in Figure 3.13.

- When the diodes are OFF, maximum negative voltage between the terminals of the diodes are equal to the negative peak value. So, the peak-inverse-voltage for the full-wave bridge rectifier is given by

$$
\begin{equation*}
\operatorname{PIV}_{\text {(bridge) }}=V_{m} \tag{3.3.32}
\end{equation*}
$$

- The positive half-cycle operation and full output of the full-wave bridge rectifier for $V_{D(O N)}=$ 0.7 V is shown in Figure 3.16 below

Figure 3.16: Positive-half cycle operation and full output of the full-wave bridge rectifier when $V_{D(O N)}=0.7 \mathrm{~V}$.

When the diodes are not ideal, i.e., $V_{D(O N)} \neq 0$, the DC voltage output of the full-wave bridge rectifier is approximately equal to

$$
\begin{equation*}
V_{D C(\text { bridge })} \cong \frac{2}{\pi} V_{m}-2 V_{D(O N)}=0.636 V_{m}-2 V_{D(O N)} \tag{3.3.33}
\end{equation*}
$$

where V_{m} is the peak voltage of the input sinusoidal signal.

3.4 Rectifier Summary

Summary of the rectifier circuits is given in Table 3.1 below.

Table 3.1: Rectifier Summary

Rectifier	Ideal Output	Realistic Output	PIV
Half-Wave Rectifier	$V_{D C}=0.318 V_{m}$	$V_{D C}=0.318 V_{m}-0.5 V_{D(O N)}$	V_{m}
Center-Tapped Transformer Full-Wave Rectifier	$V_{D C}=0.636 V_{m}$	$V_{D C}=0.636 V_{m}-V_{D(O N)}$	$2 V_{m}$
Full-Wave Bridge Rectifier	$V_{D C}=0.636 V_{m}$	$V_{D C}=0.636 V_{m}-2 V_{D(O N)}$	V_{m}
Note: V_{m} is the peak value of the sinusoidal input voltage.			

Homework 3.1: Compare the center-tapped transformer rectifier and bridge rectifier listing their advantages and disadvantages. Which one is more preferable and why?

3.5 Voltage Regulation and Ripple Factor

Figure 3.17: Block diagram showing parts of a power supply.
A block diagram containing the parts of a typical power supply and the voltages at various points in the unit is shown in shown in Figure 3.17 above.

1. The mains AC voltage (120 Vrms 60 Hz in USA, and 230 Vrms 50 Hz in Europe), is connected to a transformer, which steps that AC voltage down to the level for the desired DC output.
2. A diode rectifier then provides a full-wave rectified voltage.
3. Full-wave rectified voltage is then filtered by a simple capacitor filter to produce a DC voltage. This resulting DC voltage usually has some ripple or AC voltage variation.
4. Finally, obtained DC voltage is regulated to obtain a desired fixed DC voltage. The regulation circuit takes a DC voltage and provides a somewhat lower DC voltage, which remains the same even if the input DC voltage varies or the output load changes. Although one of the simplest regulators is a Zener regulator, usually an integrated circuit (IC) voltage regulator unit is used for voltage regulation.

3.5.1 Voltage Regulation

- An important factor in a power supply is the amount the DC output voltage changes over a range of loads. The voltage provided at the output under no-load condition (no current drawn from the supply) is reduced when load current is drawn from the supply (under load). The amount the DC voltage changes between the no-load (NL) and full-load (FL) conditions is described by a factor called voltage regulation (VR) given by

$$
\begin{equation*}
\% \mathrm{VR}=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100 \tag{3.5.34}
\end{equation*}
$$

Example 3.12: A DC voltage supply provides 60 V when the output is unloaded. When connected to a load, the output drops to 56 V . Calculate the value of voltage regulation.

Solution:

$$
\% \mathrm{VR}=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100=\frac{60-56}{56} \times 100=7.1 \% .
$$

- The smaller the voltage regulation, the better the operation of the voltage supply circuit.

3.5.2 Ripple Factor

Figure 3.18: Filter voltage waveform showing DC and ripple voltages.

- The filtered output shown in Figure 3.18 above has a DC value and some AC variation (ripple). The smaller the AC variation with respect to the DC level, the better the filter circuit's operation (or the better the power supply). This ratio is called the ripple factor (r) expressed by

$$
\begin{equation*}
\% r=\frac{V_{r(\mathrm{rms})}}{V_{D C}} \times 100 \tag{3.5.35}
\end{equation*}
$$

where $V_{r(\mathrm{rms})}$ the RMS value of the AC ripple voltage $v_{r}(t)$ fluctuating around the DC value $V_{D C}$ at the output.

Example 3.13: Calculate the ripple factor of the ideal half-wave rectifier output shown in Figure 3.1.

Solution: From (3.1.5) and (3.1.24), we can obtain the ripple factor as

$$
\% r_{(\text {half-wave })}=\frac{V_{a c(\mathrm{rms})(\text { half-wave })}}{V_{D C(\text { half-wave })}} \times 100=\frac{0.386 V_{m}}{0.318 V_{m}} \times 100=121 \% .
$$

Example 3.14: Calculate the ripple factor of the ideal full-wave rectifier output shown in Figure 3.2.

Solution: From (3.1.7) and (3.1.25), we can obtain the ripple factor as

$$
\% r_{\text {(full-wave) }}=\frac{V_{a c(\text { rms })(\text { full-wave })}}{V_{D C(\text { full-wave })}} \times 100=\frac{0.308 V_{m}}{0.636 V_{m}} \times 100=48 \% .
$$

3.6 Capacitor Filter

Figure 3.19: Simple capacitor filter.

- A very popular filter circuit is the capacitor-filter circuit shown in Figure 3.19 above. A capacitor is connected at the rectifier output, and a DC voltage is obtained across the capacitor.

Figure 3.20: Capacitor filter after a center-tapped transformer full-wave rectifier.

- So, a full-wave rectifier integrated with a capacitor filter is shown in Figure 3.20 above.

Figure 3.21: Capacitor filter operation: (a) ideal full-wave rectifier output, (b) filtered output voltage.
Figure 3.21 (a) above shows the output voltage of the ideal full-wave rectifier before the signal is filtered,
while Figure 3.21(b) above shows the resulting waveform after the filter capacitor is connected at the rectifier output.

Notice that the filtered waveform is essentially a DC voltage with some ripple (or AC variation).

Figure 3.22: Capacitor filter output after a full-wave rectifier: (a) actual output, (b) approximate output where ripple waveform is approximated by a triangular waveform.

- When we analyse the capacitor filter output shown in Figure 3.22(a) above,

Time T_{1} is the time during which diodes of the full-wave rectifier conduct, charging the capacitor up to the peak rectifier voltage, V_{m}.

Time T_{2} is the time interval during which the rectifier voltage drops below the peak voltage, and the capacitor discharges through the load.

Since the charge-discharge cycle occurs for each half-cycle for a full-wave rectifier, the period of the rectified waveform is $T / 2$ (one-half the input signal frequency).

- The ripples of the filtered voltage can be approximated by a triangular waveform as shown in Figure 3.22(b) above, where the output waveform has a DC level $V_{D C}$ and a triangular ripple voltage $V_{r(\mathrm{rms})}$ as the capacitor charges and discharges.

3.6.1 Ripple Factor of Capacitor Filter

Figure 3.23: Capacitor filter output (after a full-wave rectifier) with charging and discharging timings.
Let us derive the expression for the ripple factor of the capacitor filter output shown in Figure 3.23 above

1. Charging period T_{1} and discharging period T_{2} together constitute the whole period $T / 2$. Thus,

$$
\begin{equation*}
T_{2}=\frac{T}{2}-T_{1} \tag{3.6.36}
\end{equation*}
$$

2. Peak-to-peak ripple voltage $V_{r(\mathrm{p}-\mathrm{p})}$ is given by

$$
\begin{equation*}
V_{r(\mathrm{p}-\mathrm{p})}=2\left(V_{m}-V_{D C}\right) \tag{3.6.37}
\end{equation*}
$$

3. We can express discharge current (i.e., load current) $I_{D C}$ as follows

$$
\begin{equation*}
I_{D C}=C \frac{\Delta V}{\Delta t}=C \frac{V_{r(\mathrm{p}-\mathrm{p})}}{T_{2}} \tag{3.6.38}
\end{equation*}
$$

4. Using similar triangles we can obtain an expression for T_{1}

$$
\begin{align*}
\frac{V_{r(\mathrm{p}-\mathrm{p})}}{T_{1}} & \cong \frac{V_{m}}{T / 4} \tag{3.6.39}\\
T_{1} & \cong \frac{V_{r(\mathrm{p}-\mathrm{p})}}{V_{m}} \frac{T}{4} \tag{3.6.40}\\
& \cong \frac{2\left(V_{m}-V_{D C}\right)}{V_{m}} \frac{T}{4} \tag{3.6.41}\\
& \cong \frac{T}{2}-\frac{V_{D C} T}{2 V_{m}} \tag{3.6.42}
\end{align*}
$$

5. We can obtain T_{2} from Step 1 and Step 3, i.e., from (3.6.37) and (3.6.42)

$$
\begin{equation*}
T_{2}=\frac{V_{D C} T}{2 V_{m}} \tag{3.6.43}
\end{equation*}
$$

6. We can obtain $V_{r(\mathrm{p}-\mathrm{p})}$ from Step 3 and Step 5, i.e., from (3.6.38) and (3.6.43)

$$
\begin{equation*}
V_{r(\mathrm{p}-\mathrm{p})}=\frac{I_{D C}}{2 f C} \frac{V_{D C}}{V_{m}}=\frac{I_{D C}}{f_{\text {ripple }} C} \frac{V_{D C}}{V_{m}} \tag{3.6.44}
\end{equation*}
$$

where $f_{\text {ripple }}=2 f$ and $f=1 / T$ is the frequency of the input AC voltage.
7. Similarly, we can obtain $V_{r(\mathrm{rms})}$ from Step 6 by using the RMS value of an AC triangular waveform given in (3.1.23)

$$
\begin{array}{rlr}
V_{r(\mathrm{rms})} & =\frac{V_{r(\mathrm{p}-\mathrm{p})}}{2 \sqrt{3}} & \ldots . \text { i.e., } V_{r(\mathrm{p})}=\sqrt{3} V_{r(\mathrm{rms})} \\
& =\frac{I_{D C}}{2 \sqrt{3} f_{\text {ripple }} C} \frac{V_{D C}}{V_{m}} &
\end{array}
$$

8. Thus, ripple factor r is given by

$$
\begin{align*}
r & =\frac{V_{r(\mathrm{rms})}}{V_{D C}} \tag{3.6.47}\\
& =\frac{1}{2 \sqrt{3} f_{\text {ripple }} C R_{L}} \frac{V_{D C}}{V_{m}} \tag{3.6.48}
\end{align*}
$$

Due to $V_{r(\mathrm{p})}=\sqrt{3} V_{r(\mathrm{rms})}$ and $V_{m}=V_{D C}+V_{r(\mathrm{p})}$, we obtain $\frac{V_{D C}}{V_{m}}$ as

$$
\begin{equation*}
\frac{V_{D C}}{V_{m}}=\frac{V_{D C}}{V_{D C}+V_{r(\mathrm{p})}}=\frac{1}{1+\frac{V_{r(\mathrm{p})}}{V_{D C}}}=\frac{1}{1+\frac{\sqrt{3} V_{r(\mathrm{rms})}}{V_{D C}}}=\frac{1}{1+\sqrt{3} r} \tag{3.6.49}
\end{equation*}
$$

9. For light load (i.e., $r<6.5 \%$), $\frac{V_{D C}}{V_{m}}=\frac{1}{1+\sqrt{3} r}$ ratio approaches to one, i.e.,

$$
\frac{V_{D C}}{V_{m}} \cong 1
$$

So, expression for the ripple factor r reduces to

$$
\begin{equation*}
r \cong \frac{1}{2 \sqrt{3} f_{\text {ripple }} C R_{L}} \tag{3.6.50}
\end{equation*}
$$

10. Hence when $\frac{V_{D C}}{V_{m}} \cong 1$, peak-to-peak ripple voltage $V_{r(p-p)}$ becomes

$$
\begin{equation*}
V_{r(\mathrm{p}-\mathrm{p})} \cong \frac{I_{D C}}{f_{\text {ripple }} C} \tag{3.6.51}
\end{equation*}
$$

Thus, the larger the capacitor the smaller the ripple voltage and ripple factor.

3.6.2 Diode Conduction Period and Peak Diode Current

Larger values of capacitance provide less ripple and higher average voltage, thereby providing better filter action. From this, one might conclude that to improve the performance of a capacitor filter it is only necessary to increase the size of the filter capacitor. The capacitor, however, also affects the peak current drawn through the rectifying diodes, and as will be shown next, the larger the value of the capacitor, the larger the peak current drawn through the rectifying diodes.

Recall that the diodes conduct during period T_{1}, during which time the diode must provide the necessary average current to charge the capacitor. The shorter this time interval, the larger the amount of the charging current. Figure 3.24 shows this relation for a half-wave rectified signal (it would be the same basic operation for full-wave). Notice that for smaller values of capacitor, with T_{1} larger, the peak diode current is less than for larger values of filter capacitor.

Figure 3.24: Capacitor filter output voltage and diode current waveforms for a half-wave rectifier: (a) small C, (b) large C.

Since the total discharge must equal to total charge, the following relation can be used (assuming constant diode current during charging period):

$$
\begin{align*}
I_{D C} T_{2} & =I_{\text {peak }} T_{1} \tag{3.6.52}\\
I_{\text {peak }} & =\frac{T_{2}}{T_{1}} I_{D C} \tag{3.6.53}
\end{align*}
$$

where $T_{2} \cong T$ for a half-wave rectifier as shown in Figure 3.24 above. Similarly, $T_{2} \cong \frac{T}{2}$ for a full-wave rectifier.

- Note that $f_{\text {ripple }}=f$ for a half-wave rectifier as seen from Figure 3.24 , and $f_{\text {ripple }}=2 f$ for a full-wave rectifier as seen from Figure 3.22.

Example 3.15: (2004-2005 MI) A power-supply circuit is needed to deliver 0.1 A and an average of 15 V to a load. The AC source available is 230 Vrms with a frequency of 50 Hz . Assume that a full-wave rectifier circuit is to be used with a smoothing capacitor in parallel with the load as shown in the figure below. The peak-to-peak ripple voltage is to be 0.4 V . Allow $V_{D(O N)}=0.7 \mathrm{~V}$ for the forward diode voltage drop.

Find

a) The turns-ratio $n=N_{1} / N_{2}$ that is needed,
b) The load resistor R_{L}, and
c) The approximate value of the smoothing capacitor C.

Figure 3.25: Capacitor filter circuit for Example 3.15.
Solution: For a full-wave bridge rectifier, DC voltage drop due to the diodes is $2 V_{D(O N)}$.
a) As $V_{D C}=15 \mathrm{~V}$ and $V_{r(\mathrm{p}-\mathrm{p})}=0.4 \mathrm{~V}$, peak value V_{m} of the AC voltage at the secondary terminal of the transformer is given by

$$
V_{m}=V_{D C}+V_{r(\mathrm{p}-\mathrm{p})} / 2+2 V_{D(O N)}=15+0.4 / 2+2(0.7)=16.6 \mathrm{~V}
$$

Thus the turns ratio n is given by

$$
n=\frac{V_{A C(\mathrm{p})}}{V_{m}}=\frac{\sqrt{2} V_{A C(\mathrm{rms})}}{V_{m}}=\frac{\sqrt{2}(230)}{16.6}=19.6
$$

b) As $V_{D C}=15 \mathrm{~V}$ and $I_{D C}=0.1 \mathrm{~A}, R_{L}$ is given by

$$
R_{L}=\frac{V_{D C}}{I_{D C}}=\frac{15}{0.1}=150 \Omega .
$$

c) As $\frac{V_{D C}}{V_{D C}+V_{r(\mathrm{p})}}=\frac{15}{15.2} \cong 1$, then $V_{r(\mathrm{p}-\mathrm{p})} \cong \frac{I_{D C}}{f_{\text {ripple }} C}$. So, capacitor C is given by

$$
C=\frac{I_{D C}}{f_{\text {ripple }} V_{r(\mathrm{p}-\mathrm{p})}}=\frac{I_{D C}}{2 f V_{r(\mathrm{p}-\mathrm{p})}}=\frac{0.1}{2(50)(0.4)}=2.5 \mathrm{mF} .
$$

3.7 Additional RC Filter

Figure 3.26: Additional $R C$ filter stage.
It is possible to further reduce the amount of ripple across a filter capacitor by using an additional $R C$ filter section as shown in Figure 3.26 above.

The purpose of the added $R C$ section is to pass most of the DC component while attenuating (reducing) as much of the AC component as possible. Figure 3.27 shows a full-wave rectifier with capacitor filter followed by an $R C$ filter section.

Thus, adding an $R C$ section will further reduce the ripple voltage and decrease the surge current through the diodes.

Figure 3.27: Center-tapped transformer full-wave rectifier and RC filter circuit.
As ripple component of the capacitor filter is much smaller than the DC component, the operation of the filter circuit can be analysed using superposition for the DC and AC components of signal.

- So, we are going to first use the DC equivalent circuit (i.e., DC analysis) in order to obtain $V_{D C}^{\prime}$.
- Then, we are going to use the AC equivalent circuit (i.e., AC analysis) in order to obtain $V_{r(\mathrm{rms})}^{\prime}$.

3.7.1 DC Operation

Figure 3.28: DC equivalent circuit of the additional $R C$ filter stage in Figure 3.26.
DC equivalent circuit, where both capacitors are open-circuit for DC operation, of the additional $R C$ filter stage is shown in Figure 3.28 above.

Thus, DC output of the RC filter stage is given by

$$
\begin{equation*}
V_{D C}^{\prime}=\frac{R_{L}}{R+R_{L}} V_{D C} \tag{3.7.54}
\end{equation*}
$$

where $V_{D C}$ is the DC output of the capacitor filter.

3.7.2 AC Operation

Figure 3.29: AC equivalent circuit of the additional $R C$ filter stage in Figure 3.26.
AC equivalent circuit of the additional $R C$ filter stage is shown in Figure 3.29 above.
So, AC output of the RC filter stage is given by

$$
\begin{equation*}
V_{r(\mathrm{rms})}^{\prime}=\left|\frac{1}{1+\frac{R}{Z^{\prime}}}\right| V_{r(\mathrm{rms})} \tag{3.7.55}
\end{equation*}
$$

where Z^{\prime} is the parallel impedance of the capacitor C_{2} and the $\operatorname{load} R_{L}$, i.e.,

$$
\begin{align*}
Z^{\prime} & =Z_{C} \| R_{L} \tag{3.7.56}\\
\left|Z^{\prime}\right| & =\frac{R_{L} X_{C}}{\sqrt{R_{L}^{2}+X_{C}^{2}}} \tag{3.7.57}
\end{align*}
$$

and $Z_{C}=-j X_{C}$ with $X_{C}=\frac{1}{\omega C_{2}}$ and $\omega=2 \pi f_{\text {ripple }}$.

Simplification

- If $R_{L} \gg X_{C}$, e.g., $R_{L} \geq 5 X_{C}$, then $\left|Z^{\prime}\right| \cong X_{C}$.

Consequently, $V_{r(\mathrm{rms})}^{\prime}$ could be written as

$$
\begin{equation*}
V_{r(\mathrm{rms})}^{\prime} \cong \frac{1}{\sqrt{1+\frac{R^{2}}{X_{C}^{2}}}} V_{r(\mathrm{rms})}=\frac{X_{C}}{\sqrt{R^{2}+X_{C}^{2}}} V_{r(\mathrm{rms})} \tag{3.7.58}
\end{equation*}
$$

- Additionally if $\frac{R^{2}}{X_{C}^{2}} \gg 1$, then the above expression further reduces to

$$
\begin{equation*}
V_{r(\mathrm{rms})}^{\prime} \approx \frac{X_{C}}{R} V_{r(\mathrm{rms})} \tag{3.7.59}
\end{equation*}
$$

Example 3.16: Consider the circuit below with $f_{\text {ripple }}=50 \mathrm{~Hz}, C_{2}=10 \mu \mathrm{~F}$ and $R_{L}=2 \mathrm{k} \Omega$, and calculate $X_{C_{2}}$ and $\left|Z_{C_{2}}\right|\left|R_{L}\right|$.

Figure 3.30: Capacitor filter circuit for Example 3.16.
Solution: Let us calculate X_{C} and $\left|Z^{\prime}\right|$ where $X_{C}=X_{C_{2}}$ and $Z^{\prime}=Z_{C_{2}}| | R_{L}$

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi f_{\text {ripple }} C_{2}}=\frac{1}{2 \pi(50)(10 \mu)}=318 \Omega \\
\left|Z^{\prime}\right| & =\frac{R_{L} X_{C}}{\sqrt{R_{L}^{2}+X_{C}^{2}}}=\frac{(2 k)(318)}{\sqrt{(2 k)^{2}+(318)^{2}}}=314 \Omega
\end{aligned}
$$

Thus, the assumption $\left|Z^{\prime}\right| \cong X_{C}$ holds when $R_{L} \geq 5 X_{C}$.

Example 3.17: Consider the circuit in Figure 3.31 below with $f_{\text {mains }}=50 \mathrm{~Hz}$.
a) Find the DC and AC voltages over the load,
b) Find the ripple factors, $\% r$ and $\% r^{\prime}$ values,
c) Find the voltage regulation factor $\% \mathrm{VR}$.

Figure 3.31: Capacitor filter circuit for Example 3.17.
Solution: As a full-wave rectifier is used $f_{\text {ripple }}=2 f_{\text {mains }}=100 \mathrm{~Hz}$.
a) Let us find $V_{D C}^{\prime}$ first

$$
V_{D C}^{\prime}=\frac{R_{L}}{R+R_{L}} V_{D C}=\frac{5 k}{0.5 k+5 k} 150=136.4 \mathrm{~V}
$$

We see that DC voltage value dropped by 13.6 V .

Now, let us find X_{C}

$$
X_{C}=\frac{1}{2 \pi f_{\text {ripple }} C_{2}}=\frac{1}{2 \pi(100)(10 \mu)}=159 \Omega
$$

As $R_{L} \gg X_{C}$,

$$
V_{r(\mathrm{rms})}^{\prime}=\frac{X_{C}}{\sqrt{R^{2}+X_{C}^{2}}} V_{r(\mathrm{rms})}=\frac{159}{\sqrt{500^{2}+159^{2}}} 15=4.55 \mathrm{~V}
$$

We see that ripple voltage reduced by a factor of 3.3 times.
b) Ripple factors before $\% r$ and after $\% r^{\prime}$ are given by

$$
\begin{aligned}
& \% r=\frac{V_{r(\mathrm{rms})}}{V_{D C}} \times 100=\frac{15}{150} \times 100=10 \% \\
& \% r^{\prime}=\frac{V_{r(\mathrm{rms})}^{\prime}}{V_{D C}^{\prime}} \times 100=\frac{4.55}{136.4} \times 100=3.34 \%
\end{aligned}
$$

We see that ripple factor reduced by a factor of 3 times.
c) Voltage regulation $\% \mathrm{VR}$ is given by

$$
\% \mathrm{VR}=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100=\frac{150-136.4}{136.4} \times 100=9.97 \% .
$$

- If we want the DC voltage drop to be smaller but AC ripple drop to be higher, we can achieve it by replacing the resistor R with a component such that its DC resistance is small while its AC resistance is high. Such a component is an inductor.

3.8π-Filter

Figure 3.32: π-filter stage.
By replacing resistor R in the $R C$ filter with inductor L, we obtain a π-filter as shown in Figure 3.32 above.

While DC resistance R_{ℓ} of the coil is small and is AC reactance X_{L} is high.
Example 3.18: For the π-filter shown in Figure 3.32, the output DC voltage and current are given as 200 V and 50 mA . Also $V_{D C\left(C_{1}\right)}=210 \mathrm{~V}, V_{r\left(C_{1}\right)}=12 \mathrm{Vrms}$ and the frequency of the ripple voltage $f_{\text {ripple }}=100 \mathrm{~Hz}$. In order to satisfy $r^{\prime} \leq 2 \%$, determine the values of R_{L}, R_{ℓ}, L and C_{2}. Explain any assumptions you make. NOTE: R_{ℓ} denotes the DC resistance of the coil.

Solution: As $V_{D C}^{\prime}=200 \mathrm{~V}$ and $I_{D C}^{\prime}=50 \mathrm{~mA}$, the load R_{L} is given by

$$
R_{L}=V_{D C}^{\prime} / I_{D C}^{\prime}=200 / 50 \mathrm{~m}=4 \mathrm{k} \Omega
$$

We know that $V_{D C}^{\prime}=\frac{R_{L}}{R_{\ell}+R_{L}} V_{D C}$, so R_{ℓ} is given by

$$
R_{\ell}=\left(V_{D C}-V_{D C}^{\prime}\right) R_{L} / V_{D C}^{\prime}=(210-200) / 200=200 \Omega
$$

Let us find the ripple voltage requirement as $V_{r(\mathrm{rms})}^{\prime} \leq(2 \%) V_{D C}^{\prime}=(2 \%)(200)=4 \mathrm{Vrms}$

$$
V_{r(\mathrm{rms})}^{\prime} \leq 4 \mathrm{Vrms}
$$

Let us select $X_{C} \ll R_{L}$ as $X_{C}=R_{L} / 10=4 k / 10=400 \Omega$.

Note that $Z_{L}=R_{\ell}+j X_{L}$, and assuming $X_{L} \gg R_{\ell}$ we will take $Z_{L} \cong j X_{L}$.
We know that $\frac{X_{L}-X_{C}}{X_{C}} \geq \frac{V_{r(\mathrm{rms})}}{V_{r(\mathrm{rms})}^{\prime}}=\frac{12}{4}=3$, so X_{L} is given by

$$
X_{L} \geq 4 X_{C}=(4)(400)=1.6 \mathrm{k} \Omega
$$

So, let us select $X_{L}=1.7 \mathrm{k} \Omega$ and find the value of inductance L as follows

$$
L=\frac{X_{L}}{\omega}=\frac{X_{L}}{2 \pi f_{\text {ripple }}}=\frac{1.7 k}{2 \pi(100)}=2.7 \mathrm{H}
$$

As $X_{C}=400 \Omega$, we can find the value of capacitance C as follows

$$
C=\frac{1}{\omega X_{C}}=\frac{1}{2 \pi f_{\text {ripple }} X_{C}}=\frac{1}{2 \pi(100)(400)}=4 \mu \mathrm{~F}
$$

Chapter 4

Bipolar Junction Transistor (BJT)

4.1 Bipolar Junction Transistor

Bipolar junction transistor (BJT) is a three-layer semiconductor device consisting of either two n - and one p-type layers of material or two p - and one n-type layers of material. The former is called an $n p n$ transistor, and the latter is called a $p n p$ transistor. Both are shown in Figure 4.1 below with the proper DC biasing.

The terminals have been indicated by the capital letters E for emitter, C for collector, and B for base. Emitter is the source of the majority carriers (electrons in an npn transistor and holes in a $p n p$ transistor). In simple wording, majority carriers are emitted from the emitter and collected by the collector.

The term bipolar reflects the fact that holes and electrons participate in the current conduction process.

Figure 4.1: Types of transistors: (a) $p n p$, (b) $n p n$.

The basic operation of the transistor will now be described using the pnp transistor. The operation of the $n p n$ transistor is exactly the same if the roles played by the electron and hole are interchanged. In Figure 4.2(a) below pnp transistor has been redrawn by removing the bias of base-collector junction (keeping base-emitter junction forward-biased). The depletion region has been reduced in width due to the applied bias, resulting in a heavy flow of majority carriers from emitter to base (i.e., holes from emitter to base).

Let us now remove the bias of base-emitter junction (keeping base-collector junction reversebiased) as shown in Figure 4.2(b) below. Recall that the flow of majority carriers (electrons from base to collector) is zero, resulting in only a minority-carrier flow (i.e., holes from base to collector).

Figure 4.2: Biasing a transistor: (a) base-emitter forward-biased, (b) base-collector reverse-biased.
Once the base-emitter junction is forward-biased, and base-collector junction reversebiased at the same time.

Then, most of the holes (majority carriers of the emitter region) coming from emitter region to the base region are swept away to the collector region as holes are the minority carriers for the base region and base-collector junction is reverse biased.

This basic transistor operation is shown in Figure 4.3 below as

$$
\begin{equation*}
I_{E}=I_{C}+I_{B} \tag{4.1.1}
\end{equation*}
$$

where collector current I_{C} is comprised of two components

$$
\begin{equation*}
I_{C}=I_{C(\text { majority })}+I_{C O(\text { minority })} \cong I_{C(\text { majority })} \tag{4.1.2}
\end{equation*}
$$

Here, the minority-current component is called the leakage current with the symbol $I_{C O}$ (reverse-bias I_{C} current with emitter terminal open). Generally I_{C} is measured in milliamperes and $I_{C O}$ is measured in microamperes or nanoamperes. $I_{C O}$, like I_{s} for a reverse-biased diode, is temperature sensitive and must be examined carefully when applications of wide temperature ranges are considered.

Figure 4.3: Current flow in a properly biased $p n p$ transistor.

4.2 Common-Base Configuration

The common-base terminology is derived from the fact that the base is common to both the input and output sides of the configuration. In addition, the base is usually the terminal closest to, or at, ground potential.

On the BJT circuit symbol, an arrow is always drawn at the emitter leg of the transistor as shown in Figures 4.4(a) and 4.4(b) below in the forward direction of the base-emitter $p n$ junction like the diode symbol. Hence, from the direction of the arrow we can determine type of the transistor, i.e., $n p n$ or $p n p$.

Figure 4.4: Notation and symbols used with the common-base configuration: (a) npn transistor, (b) $p n p$ transistor.

4.2.1 Input and Output Characteristics

To fully describe the behavior of a three-terminal device requires two sets of characteristics-one for the input parameters and the other for the output side.

The input set for the common-base amplifier relates an input current $\left(I_{E}\right)$ to an input voltage ($V_{B E}$) for various levels of output voltage $\left(V_{C B}\right)$ as shown in Figure 4.5(a) below.

The output set relates an output current $\left(I_{C}\right)$ to an output voltage $\left(V_{C B}\right)$ for various levels of input current $\left(I_{E}\right)$ as shown in Figure 4.5(b) below. The output set of characteristics has three basic regions of interest, the active, cutoff, and saturation regions. The active region is the region normally employed for linear amplifiers.

Figure 4.5: Characteristics of an npn common-base amplifier: a) Input characteristics, b) Output characteristics.

4.2.2 Three Modes of Operation

Figure 4.6: Output characteristics of a common-base amplifier.

- Cut-Off: The amplifier is basically off: $I_{E}=0 \mathrm{~A}, I_{C}=I_{C B O} \cong 0 \mathrm{~A}$ and $I_{B} \cong 0 \mathrm{~A}$.
- Base-Emitter junction: reverse-biased, i.e., OFF.
- Base-Collector junction: reverse-biased, i.e., OFF.
- Active: Operating region of the amplifier: $I_{C} \cong I_{E}$ and $V_{B E} \cong V_{B E(O N)}$.
- Base-Emitter junction: forward-biased, i.e., ON.
- Base-Collector junction: reverse-biased, i.e., OFF.
- Saturation: The amplifier is saturated: $I_{C}=I_{C(s a t)}$ and $V_{C E}=V_{C E(s a t)} \cong 0 \mathrm{~V}$.
- Base-Emitter junction: forward-biased, i.e., ON.
- Base-Collector junction: forward-biased, i.e., ON.

4.2.3 Currents

- For any mode (or state) of the transistor and for any configuration, emitter current is always the sum of the base and collector currents, i.e.,

$$
\begin{equation*}
I_{E}=I_{C}+I_{B} \tag{4.2.3}
\end{equation*}
$$

- Note that, collector current I_{C} is comprised of majority and minority carrier current components

$$
\begin{equation*}
I_{C}=I_{C(\text { majority })}+I_{C(\text { minority })}=I_{C(\text { majority })}+I_{C O} \cong I_{C(\text { majority })} \tag{4.2.4}
\end{equation*}
$$

where $I_{C O}$ is called the reverse saturation current (or leakage current). The notation most frequently used for $I_{C O}$ in data and specification sheets is $I_{C B O}$ (the collector-to-base current with the emitter leg open) as shown in Figure 4.7 below.

Figure 4.7: Common-base cutoff current (or reverse saturation current), $I_{C B O}$.

4.2.4 Alpha (α)

- In the active mode the DC levels of I_{C} and I_{E} due to the majority carriers are related by a quantity called alpha $\left(\alpha_{D C}\right)$, i.e., $I_{C(\text { majority })}=\alpha_{D C} I_{E}$. However, as $I_{C B O}$ is very small we define $\alpha_{D C}$ as

$$
\begin{equation*}
\alpha_{D C}=\frac{I_{C}}{I_{E}} . \tag{4.2.5}
\end{equation*}
$$

In the specification sheets, $\alpha_{D C}$ is expressed as $h_{F B}$ which is the static forward current transfer ratio.

- For AC situations where the point of operation moves on the characteristic curve, an AC alpha $\left(\alpha_{a c}\right)$ is defined by

$$
\begin{equation*}
\alpha_{a c}=\left.\frac{\Delta I_{C}}{\Delta I_{E}}\right|_{V_{C B}=\text { constant }}=\left.\frac{\partial I_{C}}{\partial I_{E}}\right|_{Q \text {-point }} \tag{4.2.6}
\end{equation*}
$$

In the specification sheets, $\alpha_{a c}$ is expressed as $h_{f b}$ which is the small signal forward current transfer ratio.

- For most situations the magnitudes of $\alpha_{a c}$ and $\alpha_{D C}$ are quite close,permitting the use of the magnitude of one for the other, i.e.,

$$
\begin{equation*}
\alpha=\alpha_{a c}=\alpha_{D C} \cong 1 \tag{4.2.7}
\end{equation*}
$$

Ideally $\alpha=1$, but in reality it lies between 0.9 and 0.998 .

4.2.5 Simplification (Active Mode)

Figure 4.8: Simplified output characteristics of a common-base amplifier.

- As we see from Figure 4.8 above,

$$
\begin{equation*}
I_{C} \cong I_{E} \tag{4.2.8}
\end{equation*}
$$

i.e., $\alpha \cong 1$

Figure 4.9: Simplified input characteristics of a common-base amplifier.

- As we see from Figure 4.9 above,

$$
\begin{equation*}
V_{B E} \cong V_{B E(O N)}=0.7 \mathrm{~V} \tag{4.2.9}
\end{equation*}
$$

4.2.6 AC Amplification

Figure 4.10: AC equivalent circuit of a common-base amplifier.
Example 4.1: For Figure 4.10 above, find output v_{o} and voltage gain A_{v}.
Solution: Let us first find $i_{i}=i_{e}$ as,

$$
i_{i}=i_{e}=\frac{v_{i}}{R_{i}}=\frac{200 \mathrm{mV}}{20 \Omega}=10 \mathrm{~mA}
$$

As $\alpha_{a c} \cong 1, i_{c} \cong i_{e}=10 \mathrm{~mA}$. Thus, $i_{o}=\frac{R_{o}}{R_{o}+R} i_{c}=\frac{100 k}{100 k+5 k} i_{c} \cong i_{c}=10 \mathrm{~mA}$.
Consequently, output voltage v_{o} and voltage gain A_{v} are given by

$$
\begin{aligned}
v_{o} & =i_{o} R=(10 \mathrm{~mA})(5 \mathrm{k} \Omega)=50 \mathrm{~V}, \\
A_{v} & =\frac{v_{o}}{v_{i}}=\frac{50 \mathrm{~V}}{200 \mathrm{mV}}=250 .
\end{aligned}
$$

4.3 Common-Emitter Configuration

The common-emitter terminology is derived from the fact that the emitter is common to both the input and output sides of the configuration. In addition, the emitter is usually the terminal closest to, or at, ground potential.

On the BJT circuit symbol, an arrow is always drawn at the emitter leg of the transistor as shown in Figures 4.11 (a) and 4.11(b) below in the forward direction of the base-emitter $p n$ junction like the diode symbol. Hence, from the direction of the arrow we can determine type of the transistor, i.e., $n p n$ or $p n p$.

Figure 4.11: Notation and symbols used with the common-emitter configuration: (a) npn transistor, (b) $p n p$ transistor.

4.3.1 Input and Output Characteristics

The input set for the common-emitter amplifier relates an input current $\left(I_{B}\right)$ to an input voltage $\left(V_{B E}\right)$ for various levels of output voltage $\left(V_{B C}\right)$ as shown in Figure 4.12(a) below.

The output set relates an output current $\left(I_{C}\right)$ to an output voltage $\left(V_{C E}\right)$ for various levels of input current $\left(I_{B}\right)$ as shown in Figure 4.12(b) below. The output set of characteristics has three basic regions of interest, the active, cutoff, and saturation regions. The active region is the region normally employed for linear amplifiers.

Figure 4.12: Characteristics of an $n p n$ common-emitter amplifier: a) Input characteristics, b) Output characteristics.

4.3.2 Currents

Collector current I_{C} is given by $I_{C}=\alpha I_{E}+I_{C B O}$ where $I_{E}=I_{C}+I_{B}$. So,

$$
\begin{align*}
I_{C} & =\alpha I_{E}+I_{C B O} \tag{4.3.10}\\
& =\alpha\left(I_{C}+I_{B}\right)+I_{C B O} \tag{4.3.11}\\
& =\frac{\alpha}{1-\alpha} I_{B}+\frac{1}{1-\alpha} I_{C B O} \tag{4.3.12}\\
& =\beta I_{B}+I_{C E O} \tag{4.3.13}\\
& \cong \beta I_{B} \tag{4.3.14}
\end{align*}
$$

where $I_{\text {CEO }}$ is the common-emitter cutoff current (or the collector-to-emitter current with the base leg open) as shown in Figure 4.13 below and defined by

$$
\begin{equation*}
I_{C E O}=\left.\frac{I_{C B O}}{1-\alpha}\right|_{I_{B}=0 \mathrm{~A}}=(\beta+1) I_{C B O} \tag{4.3.15}
\end{equation*}
$$

Figure 4.13: Common-emitter cutoff current, $I_{C E O}$.

4.3.3 Beta (β)

- In the active mode, the DC levels of I_{C} and I_{B} are related by a quantity called beta $\left(\beta_{D C}\right)$. However, as $I_{C E O}$ is very small, we define $\beta_{D C}$ as

$$
\begin{equation*}
\beta_{D C}=\frac{I_{C}}{I_{B}} . \tag{4.3.16}
\end{equation*}
$$

In the specification sheets, $\beta_{D C}$ is expressed as $h_{F E}$ which is the static forward current gain.

- For AC situations where the point of operation moves on the characteristic curve, an AC beta $\left(\beta_{a c}\right)$ is defined by

$$
\begin{equation*}
\beta_{a c}=\left.\frac{\Delta I_{C}}{\Delta I_{B}}\right|_{V_{C E}=\text { constant }}=\left.\frac{\partial I_{C}}{\partial I_{B}}\right|_{Q \text {-point }} \tag{4.3.17}
\end{equation*}
$$

In the specification sheets, $\beta_{a c}$ is expressed as $h_{f e}$ which is the small signal forward current gain.

- For most situations the magnitudes of $\beta_{a c}$ and $\beta_{D C}$ are quite close,permitting the use of the magnitude of one for the other, i.e.,

$$
\begin{equation*}
\beta=\beta_{a c}=\beta_{D C} \tag{4.3.18}
\end{equation*}
$$

4.3.3.1 Determining β from a graph

Figure 4.14: Determining $\beta_{D C}$ and $\beta_{a c}$ from the output characteristics.
Example 4.2: From Figure 4.14 above, determine $\beta_{D C}$ and $\beta_{a c}$.

Solution: Reading the values at Q-point, i.e., at $V_{C E Q}=7.5 \mathrm{~V}$, from the figure above, $\beta_{D C}$ and $\beta_{a c}$ are given by

$$
\begin{aligned}
\beta_{D C} & =\frac{I_{C Q}}{I_{B Q}}=\frac{2.7 \mathrm{~mA}}{25 \mu \mathrm{~A}}=108 \\
\beta_{a c} & =\left.\frac{\Delta I_{C}}{\Delta I_{B}}\right|_{Q-\text { point }}=\frac{3.2 \mathrm{~mA}-2.2 \mathrm{~mA}}{30 \mu \mathrm{~A}-20 \mu \mathrm{~A}}=100
\end{aligned}
$$

We see that $\beta_{a c} \cong \beta_{D C}$.

4.3.4 Relationship between β and α

- As we derived before, β is given by

$$
\begin{equation*}
\beta=\frac{\alpha}{1-\alpha} \tag{4.3.19}
\end{equation*}
$$

- Similarly, α is given by

$$
\begin{equation*}
\alpha=\frac{\beta}{\beta+1} \tag{4.3.20}
\end{equation*}
$$

4.3.5 Simplification (Active Mode)

Simplification (Active Mode)

- In the active mode, collector and emitter currents I_{C} and I_{E} are given by

$$
\begin{align*}
& I_{C}=\beta I_{B} \tag{4.3.21}\\
& I_{E}=(\beta+1) I_{B} \quad \ldots \text { as } I_{E}=I_{C}+I_{B} \tag{4.3.22}
\end{align*}
$$

- Base-emitter junction is also ON. So,

$$
\begin{equation*}
V_{B E} \cong V_{B E(O N)}=0.7 \mathrm{~V} \tag{4.3.23}
\end{equation*}
$$

4.4 Common-Collector Configuration

The common-collector terminology is derived from the fact that the collector is common to both the input and output sides of the configuration. In addition, the collector is usually the terminal closest to, or at, ground potential.

Input and output characteristics are similar to those of the common-emitter amplifier, except the output current is the emitter current I_{E} instead of the collector current I_{C}.

Figure 4.15: Notation and symbols used with the common-collector configuration: (a) npn transistor, (b) $p n p$ transistor.

4.5 Operating Limits

Figure 4.16: Defining the region of operation for a transistor.
The figure above shows the limitations for the linear region of a common-emitter configuration:

1. Maximum and minimum $C E$ voltages: $B V_{C E O}$ and $V_{C E(\mathrm{sat})}$. Maximum collector-to-emitter voltage is often abbreviated as $B V_{C E O}$ or $V_{(B R) C E O}$ in the specification sheets.
2. Maximum and minimum collector current: $I_{C(\max)}$ and $I_{C E O}$.
3. Maximum power curve: $P_{C(\max)}$.

- Design operating point (Q-point) to be in the middle of the linear region (white region).

Note that maximum power curves in different configurations are given below
a) Common-Base: $V_{C B} I_{C}=P_{C(\max)}$.
b) Common-Emitter: $V_{C E} I_{C}=P_{C(\max)}$.
c) Common-Collector: $V_{C E} I_{E}=P_{C(\max)}$.

- An example BJT packaging is shown in Figure 4.17 below.

Figure 4.17: An example BJT packaging.

4.6 Simplified BJT Model

We can summarize the simplified npn BJT model with its state and circuit behaviour with the table below and in Figure 4.18.

Simplified $n p n$ BJT Model		
State	Circuit Behaviour	Test Condition
CUTOFF	$I_{B}=0$,	$V_{B E}<V_{B E(O N)}$,
	$I_{C}=0, I_{E}=0$	$V_{B C}<V_{B C(O N)}$
ACTIVE	$V_{B E}=V_{B E(O N)}$,	$I_{B} \geq 0$,
	$I_{C}=\beta I_{B}$	$V_{C E}>V_{C E(\text { sat })}$
SATURATION	$V_{B E}=V_{B E(O N)}$,	$I_{B} \geq 0$,
	$V_{C E}=V_{C E(\text { sat })}$	$I_{C}<\beta I_{B}$

(a) Cutoff

(b) Active

(c) Saturation

Figure 4.18: States of the simplified npn BJT model: (a) Cutoff, (b) Active, (c) Saturation - For a $p n p$ BJT transistor, the polarities and directions are simply reversed.

For example, the device will be ON (e.g., in ACTIVE mode) when $V_{E B} \geq V_{B E(O N)}$.

Chapter 5

DC Biasing of BJTs

5.1 DC Biasing

Biasing refers to the DC voltages applied to the transistor to put it into active mode, so that it can amplify the AC signal.

The DC input establishes an operating point or quiescent point called the \boldsymbol{Q}-point.
Proper DC biasing should try to set the Q-point towards the middle of active region, e.g., Point B in Figure 5.1 below.

Figure 5.1: Various operating points within the limits of operation of a BJT transistor.

5.2 Three States of Operation

Proper DC biasing sets the BJT transistor into the active state, so that it can amplify the AC signal. Let us remember the states of the transistor:

- Active: Operating state of the amplifier: $I_{C}=\beta I_{B}$.
- Base-Emitter $(B E)$ junction: forward-biased (ON).
- Base-Collector ($B C$) junction: reverse-biased (OFF).
- Cut-Off: The amplifier is basically off. There is no current, i.e., $I_{C}=I_{B}=I_{E}=0 \mathrm{~A}$.
- Base-Emitter ($B E$) junction: reverse-biased (OFF).
- Base-Collector $(B C)$ junction: reverse-biased (OFF).
- Saturation: The amplifier is saturated. Voltages are fixed, e.g., $V_{C E}=V_{C E(s a t)} \cong 0 \mathrm{~V}$. Output is distorted, i.e., not the same shape as the input waveform.
- Base-Emitter ($B E$) junction: forward-biased (ON).
- Base-Collector $(B C)$ junction: forward-biased (ON).

5.3 BJT DC Analysis

1. Draw the DC equivalent circuit (signal frequency is zero, i.e., $f=0$)
a) Capacitors are open circuit, i.e., $X_{C} \rightarrow \infty$.
b) Kill the AC power sources (short-circuit AC voltage sources and open-circuit AC current sources).
c) Inductors are short circuit or replaced by their DC resistance (winding resistance) if given, i.e., $X_{L} \rightarrow 0$.
2. Write KVL for the loop which contains $B E$ junction
a) Take $V_{B E}=V_{B E(O N)}$ to ensure the transistor is ON (or not in the cut-off state). Note: For a $p n p$ transistor, $V_{E B}=V_{B E(O N)}$.
b) Determine the base current $I_{B Q}$ (or emitter current $I_{E Q}$).
3. Write KVL for the loop which contains $C E$ terminals
a) Assume the transistor is in the active state and take $I_{C Q}=\beta I_{B Q}\left(\right.$ or $\left.I_{C Q}=\alpha I_{E Q}\right)$.
b) Calculate $V_{C E Q}$.
c) If $V_{C E Q} \leq V_{C E(s a t)}$ then the transistor is in the saturation (SAT) state (i.e., $I_{C Q} \neq \beta I_{B Q}$), so take $V_{C E Q}=V_{C E(s a t)}$ and recalculate $I_{C Q}$.
NOTE: Normally, a BJT should not be in the saturation state if it is used as an amplifier.

5.4 DC Biasing Circuits

Most common four common-emitter biasing circuits are given below

1. Fixed-Bias Circuit
2. Emitter-Stabilized Bias Circuit
3. Voltage Divider Bias Circuit
4. Collector Feedback Bias Circuit

5.4.1 Fixed-Bias Circuit

Fixed-bias circuit is given in Figure 5.2 below

Figure 5.2: Fixed-bias BJT circuit.
Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 5.3 below

Figure 5.3: DC equivalent circuit of the fixed-bias circuit in Figure 5.2.

5.4.1.1 Base-Emitter Loop

Let us continue with the $B E$ loop shown in Figure 5.4 below

Figure 5.4: Base-emitter loop of the fixed-bias circuit in Figure 5.2.
Writing KVL on the $B E$ loop

$$
\begin{equation*}
V_{C C}-I_{B} R_{B}-V_{B E}=0 \tag{5.4.1}
\end{equation*}
$$

and given $V_{B E}=V_{B E(O N)}$, we obtain $I_{B Q}$ as

$$
\begin{equation*}
I_{B Q}=\frac{V_{C C}-V_{B E(O N)}}{R_{B}} \tag{5.4.2}
\end{equation*}
$$

5.4.1.2 Collector-Emitter Loop

Let us continue with the $C E$ loop shown in Figure 5.5 below

Figure 5.5: Collector-emitter loop of the fixed-bias circuit in Figure 5.2.
Writing KVL on the $C E$ loop (i.e., DC load-line equation)

$$
\begin{equation*}
V_{C C}-I_{C} R_{C}-V_{C E}=0 \tag{5.4.3}
\end{equation*}
$$

and given (assuming BJT is in active state)

$$
\begin{equation*}
I_{C Q}=\beta I_{B Q} \tag{5.4.4}
\end{equation*}
$$

we obtain $V_{C E Q}$ as

$$
\begin{equation*}
V_{C E Q}=V_{C C}-I_{C Q} R_{C} \tag{5.4.5}
\end{equation*}
$$

Thus, we obtained the Q-point ($I_{C Q}, V_{C E Q}$), i.e., the operating point.

5.4.1.3 Saturation

The term saturation is applied to any system where levels have reached their maximum values. A saturated sponge is one that cannot hold another drop of water. For a transistor operating in the saturation region, the current is a maximum value for the particular design.

Note that it is in a region where the characteristic curves join and the collector-to-emitter voltage is at or below $V_{C E(s a t)}$. If we approximate the curves of Figure 5.6(a) by those appearing in Figure $5.6(\mathrm{~b})$, then the saturation voltage $V_{C E(s a t)}$ is assumed to be 0 V , i.e,

$$
\begin{equation*}
V_{C E(s a t)} \cong 0 \mathrm{~V} \tag{5.4.6}
\end{equation*}
$$

(a)

(b)

Figure 5.6: Saturation regions: (a) actual, (b) approximate.
For the fixed-bias configuration shown in Figure 5.7 below, the resulting saturation current (i.e., maximum current) $I_{C(s a t)}$ is given by

$$
\begin{equation*}
I_{C(s a t)}=I_{C(\max)}=\frac{V_{C C}-V_{C E(s a t)}}{R_{C}} \cong \frac{V_{C C}}{R_{C}} \tag{5.4.7}
\end{equation*}
$$

Figure 5.7: Determining $I_{C(s a t)}$ for the fixed-bias configuration.Example 5.0.
Example 5.1: For the figure below, calculate all DC currents and voltages.

Figure 5.8: Fixed-bias circuit for Example 5.1.
Solution: Let us find $I_{B Q}, I_{C Q}$ and $V_{C E Q}$ as follows

$$
\begin{aligned}
I_{B Q} & =\frac{V_{C C}-V_{B E(O N)}}{R_{B}}=\frac{12-0.7}{240 k}=47.08 \mu \mathrm{~A}, \\
I_{C Q} & =\beta I_{B Q}=(50)(47.08 \mu)=2.35 \mathrm{~mA}, \\
V_{C E Q} & =V_{C C}-I_{C Q} R_{C}=12-(2.35 \mathrm{~m})(2.2 k)=6.83 \mathrm{~V} .
\end{aligned}
$$

As $V_{C E Q}>V_{C E(s a t)}=0 \mathrm{~V}$, transistor is in the active state. Let us also prove it by showing $V_{B C Q}<V_{B C(O N)}=0.7 \mathrm{~V}$ as follows

$$
V_{B C Q}=V_{B Q}-V_{C Q}=V_{B E Q}-V_{C E Q}=0.7-6.83=-6.13 \mathrm{~V}<0.7 \mathrm{~V} .
$$

5.4.1.4 DC Load Line

DC load line equation comes from KVL equation in the $C E$ loop (i.e., output loop). For the fixed-bias circuit of Figure 5.2 DC load line equation is given by

$$
\begin{equation*}
V_{C E}=V_{C C}-I_{C} R_{C} \tag{5.4.8}
\end{equation*}
$$

Let us draw the load line over output characteristics curve as shown in Figure 5.9 below. The intersection of the load-line with the output characteristics curve (determined by the base current $I_{B Q}$) is the operating point, i.e., Q-point.

Figure 5.9: Load line of the fixed-bias circuit in Figure 5.2.

- The Q-point is the operating point where the value of R_{B} sets the value of $I_{B Q}$ that controls the values of $V_{C E Q}$ and $I_{C Q}$.

Fixed-bias load line equation: $V_{C E}=V_{C C}-I_{C} R_{C}$
The load line end points are the SATURATION and CUTOFF points, i.e.,

- $I_{C(s a t)}$ end point (on the current axis):

$$
\begin{aligned}
I_{C} & =V_{C C} / R_{C} \\
V_{C E} & =0 \mathrm{~V}
\end{aligned}
$$

- $V_{C E(c u t o f f)}$ end point (on the voltage axis):

$$
\begin{aligned}
V_{C E} & =V_{C C} \\
I_{C} & =0 \mathrm{~mA}
\end{aligned}
$$

The Effect of I_{B} on the Q-Point

Movement of the Q-point with increasing level of I_{B} (or decreasing level of R_{B}) is shown in Figure 5.10 below.

Figure 5.10: Movement of the Q-point with increasing level of I_{B}.
The Effect of R_{C} on the Q-Point
Effect of an increasing level of R_{C} on the load line (slope decreases with increasing R_{C}) and the Q-point is shown in Figure 5.11 below.

Figure 5.11: Effect of an increasing level of R_{C} on the load line and the Q-point.

The Effect of $V_{C C}$ on the Q-Point

Effect of an decreasing level of $V_{C C}$ on the load line (end points gets smaller with decreasing $V_{C C}$) and the Q-point is shown in Figure 5.12 below.

Figure 5.12: Effect of lower values of $V_{C C}$ on the load line and the Q-point.
Example 5.2: For the fixed-bias load line below, calculate $V_{C C}, R_{C}$ and R_{B}.

Figure 5.13: Fixed-bias load line for Example 5.2.
Solution: From the figure, $I_{B Q}=25 \mu \mathrm{~A}$. So, let us find $V_{C C}, R_{C}$ and R_{B} as follows

$$
\begin{aligned}
V_{C C} & =V_{C E(\text { cutoff })}=20 \mathrm{~V}, \\
R_{C} & =\frac{V_{C C}}{I_{C(s a t)}}=\frac{20}{10 m}=2 \mathrm{k} \Omega, \\
R_{B} & =\frac{V_{C C}-V_{B E(O N)}}{I_{B Q}}=\frac{20-0.7}{25 \mu}=772 \mathrm{k} \Omega .
\end{aligned}
$$

5.4.2 Emitter-Stabilized Bias Circuit

Adding a resistor to the emitter circuit stabilizes the bias circuit, as shown in Figure 5.14 below.

Figure 5.14: Emitter-stabilized bias circuit.
Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 5.15 below

Figure 5.15: DC equivalent circuit of the emitter-stabilized bias circuit in Figure 5.14.

5.4.2.1 Base-Emitter Loop

Let us continue with the $B E$ loop shown in Figure 5.16 below

(a)

(b)

Figure 5.16: Base-emitter loop of the emitter-stabilized bias circuit in Figure 5.14: (a) normal circuit, (b) equivalent circuit for common base current.

Writing KVL on the $B E$ loop

$$
\begin{align*}
V_{C C}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0 & \tag{5.4.9}\\
V_{C C}-I_{B} R_{B}-V_{B E(O N)}-(\beta+1) I_{B} R_{E}=0, & \ldots \text { as } V_{B E}=V_{B E(O N)} \text { and } \\
& I_{E}=(\beta+1) I_{B} \text { in active mode } \tag{5.4.10}
\end{align*}
$$

we obtain $I_{B Q}$ as

$$
\begin{equation*}
I_{B Q}=\frac{V_{C C}-V_{B E(O N)}}{R_{B}+(\beta+1) R_{E}} \tag{5.4.11}
\end{equation*}
$$

Similarly, we can obtain $I_{E Q}$ directly from Figure 5.17, or dividing the denominator of the $I_{B Q}$ in (5.4.12) by $(\beta+1)$

Figure 5.17: Equivalent circuit for common emitter current for the base-emitter loop of the emitterstabilized bias circuit in Figure 5.14.
as follows

$$
\begin{equation*}
I_{E Q}=\frac{V_{C C}-V_{B E(O N)}}{\frac{R_{B}}{\beta+1}+R_{E}} \tag{5.4.12}
\end{equation*}
$$

- It is generally better to calculate $I_{E Q}$ directly to reduce the number of calculations, especially when there is an emitter resistor R_{E} is connected.

5.4.2.2 Collector-Emitter Loop

Let us continue with the $C E$ loop shown in Figure 5.18 below

Figure 5.18: Collector-emitter loop of the emitter-stabilized bias circuit in Figure 5.14.
Let us write down the KVL equation on the $C E$ loop

$$
\begin{array}{rll}
V_{C C}-I_{C} R_{C}-V_{C E}-I_{E} R_{E} & =0 & \\
V_{C C}-I_{C} R_{C}-V_{C E}-I_{C} R_{E}=0 & \ldots \text { as } I_{C}=\alpha I_{E} \cong I_{E} \text { in active mode } \\
V_{C C}-I_{C}\left(R_{C}+R_{E}\right)-V_{C E}=0 & \ldots \text { DC load line equation } \tag{5.4.15}
\end{array}
$$

As $I_{C Q}=\beta I_{B Q} \cong I_{E Q}$ in active mode, we obtain $V_{C E Q}$ as

$$
\begin{equation*}
V_{C E Q}=V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right) \tag{5.4.16}
\end{equation*}
$$

Thus, we obtained the Q-point ($I_{C Q}, V_{C E Q}$), i.e., the operating point.

5.4.2.3 DC Load Line

DC load line equation comes from KVL equation in the $C E$ loop (i.e., output loop). For the emitter-stabilized bias circuit of Figure 5.14 DC load line equation is given by

$$
\begin{equation*}
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \tag{5.4.17}
\end{equation*}
$$

Let us draw the load line over output characteristics curve as shown in Figure 5.19 below.

Figure 5.19: Load line of the emitter-stabilized bias circuit in Figure 5.14.
Here, $V_{C E(\text { cutoff })}=V_{C C}$ and $I_{C(s a t)}$ is given by

$$
\begin{equation*}
I_{C(s a t)}=\frac{V_{C C}}{R_{C}+R_{E}} \tag{5.4.18}
\end{equation*}
$$

- The Q-point is the operating point where the value of R_{B} and R_{E} sets the value of $I_{B Q}$ that controls the values of $V_{C E Q}$ and $I_{C Q}$.

5.4.2.4 Improved Biased Stability

Stability refers to a condition in which the currents and voltages remain fairly constant over a wide range of temperatures and transistor beta (β) values.

- Adding R_{E} resistor to the emitter improves the stability of a transistor.

Example 5.3: For the figure below, calculate all DC currents and voltages.

Figure 5.20: Emitter-stabilized bias circuit for Example 5.3.

Solution: Let us find $I_{B Q}, I_{C Q}$ and $V_{C E Q}$ as follows

$$
\begin{aligned}
I_{B Q} & =\frac{V_{C C}-V_{B E(O N)}}{R_{B}+(\beta+1) R_{E}}=\frac{20-0.7}{430 k+(50+1)(1 k)}=40.13 \mu \mathrm{~A} \\
I_{C Q} & =\beta I_{B Q}=(50)(40.13 \mu)=2.01 \mathrm{~mA} \\
V_{C E Q} & \cong V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right)=20-(2.01 \mathrm{~m})(2 k+1 k)=13.97 \mathrm{~V}
\end{aligned}
$$

As $V_{C E Q}>0 \mathrm{~V}\left(V_{C E(s a t)}\right)$, transistor is in the active state. Let us also prove it by showing $V_{B C Q}<V_{B C(O N)}=0.7 \mathrm{~V}$ as follows

$$
V_{B C Q}=V_{B Q}-V_{C Q}=V_{B E Q}-V_{C E Q}=0.7-13.97=-13.27 \mathrm{~V}<0.7 \mathrm{~V}
$$

5.4.3 Voltage Divider Bias Circuit

Voltage divider bias circuit is given in Figure 5.21 below

Figure 5.21: Voltage divider bias BJT circuit.
Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 5.22 below

Figure 5.22: DC equivalent circuit of the voltage divider bias circuit in Figure 5.21.

5.4.3.1 Base-Emitter Loop (Exact Analysis)

Let us transform the $B E$ loop circuit shown in Figure 5.23(a) below to the Thévenin simplified circuit in Figure 5.23(b) below

(a)

(b)

Figure 5.23: Base-emitter loop of the voltage divider bias circuit in Figure 5.21: (a) normal circuit, (b) Thévenin equivalent circuit.
where the Thévenin voltage $V_{B B}$ and Thévenin resistance $R_{B B}$ are calculated as follows

$$
\begin{align*}
V_{B B} & =\frac{R_{2}}{R_{1}+R_{2}} V_{C C} \tag{a}\\
R_{B B} & =R_{1} \| R_{2}
\end{align*}
$$

. . from Figure 5.24(b) below (5.4.20)

Figure 5.24: Thévenin analysis circuits for the circuit in Figure 5.23(a): (a) Open-circuit voltage calculation, (b) Test-voltage method for Thévenin resistance calculation.

Writing KVL on the Thévenin equivalent $B E$ loop shown in Figure 5.23(b)

$$
\begin{align*}
V_{B B}-I_{B} R_{B B}-V_{B E}-I_{E} R_{E}=0 & \tag{5.4.21}\\
V_{B B}-I_{B} R_{B B}-V_{B E(O N)}-(\beta+1) I_{B} R_{E}=0, & \ldots \text { as } V_{B E}=V_{B E(O N)} \text { and } \\
& I_{E}=(\beta+1) I_{B} \text { in active mode } \tag{5.4.22}
\end{align*}
$$

we obtain $I_{B Q}$ as

$$
\begin{equation*}
I_{B Q}=\frac{V_{B B}-V_{B E(O N)}}{R_{B B}+(\beta+1) R_{E}} \tag{5.4.23}
\end{equation*}
$$

Similarly, we obtain $I_{E Q}$ as

$$
\begin{equation*}
I_{E Q}=\frac{V_{B B}-V_{B E(O N)}}{\frac{R_{B B}}{\beta+1}+R_{E}} \tag{5.4.24}
\end{equation*}
$$

5.4.3.2 Base-Emitter Loop (Approximate Analysis)

If we look at the $I_{E Q}$ equation in (5.4.24), we see that if $R_{E} \gg \frac{R_{B B}}{\beta+1}$, equation simplifies to

$$
\begin{equation*}
I_{E Q}=\frac{V_{B B}-V_{B E(O N)}}{R_{E}} \tag{5.4.25}
\end{equation*}
$$

where $V_{B B}=\frac{R_{2}}{R_{1}+R_{2}} V_{C C}$.

- Approximate approach can be used when $(\beta+1) R_{E} \gg R_{B B}$. Approximate analysis condition can be rewritten as

$$
\begin{equation*}
(\beta+1) R_{E} \geq 10\left(R_{1} \| R_{2}\right) \tag{5.4.26}
\end{equation*}
$$

Assuming $R_{1}>R_{2}$, we know that $\left(R_{1} \| R_{2}\right) \leq R_{2}$. So, the condition above can be further simplified to

$$
\begin{equation*}
\beta R_{E} \geq 10 R_{2} \tag{5.4.27}
\end{equation*}
$$

- Satisfying this condition means that we can safely ignore the base current I_{B} in the DC equivalent circuit shown in Figure 5.22 and apply the voltage divider rule between R_{2} and R_{1}.
- Finally, if β times the value of R_{E} is at least 10 times the value of R_{2}, the approximate approach can be applied with a high degree of accuracy.

5.4.3.3 Collector-Emitter Loop and DC Load line

- Analysis on the $C E$ loop (i.e., output loop), is the same as the $C E$ loop analysis of the emitterstabilized circuit given in Section 5.4.2.2. So, $V_{C E Q}$ is given by

$$
V_{C E Q}=V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right)
$$

where $I_{C Q} \cong I_{E Q}$.

- Similarly, DC load line analysis is also the same as the DC load line of the emitter-stabilized circuit given in Section 5.4.2.3. So, DC load line equation is given by

$$
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

Example 5.4: For the figure below, calculate all DC currents and voltages using both exact and approximate analysis.

Figure 5.25: Voltage-divider bias circuit for Example 5.4.
Solution: Let us first find the Thévenin voltage $V_{B B}$ and resistance $R_{B B}$ as follows

$$
\begin{aligned}
V_{B B} & =\frac{R_{2}}{R_{1}+R_{2}} V_{C C}=\frac{3.9 k}{39 k+3.9 k} 22=2 \mathrm{~V}, \\
R_{B B} & =R_{1}\left\|R_{2}=3.9 k\right\| 39 k=3.55 \mathrm{k} \Omega .
\end{aligned}
$$

Now, let us calculate $I_{B Q}, I_{C Q}$ and $V_{C E Q}$ as follows

$$
\begin{aligned}
I_{E Q} & =\frac{V_{B B}-V_{B E(O N)}}{R_{B B} /(\beta+1)+R_{E}}=\frac{2-0.7}{3.55 k /(140+1)+1.5 k}=0.85 \mathrm{~mA} \\
I_{C Q} & \cong I_{E Q}=0.85 \mathrm{~mA}, \\
V_{C E Q} & \cong V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right)=22-(0.85 \mathrm{~m})(10 k+1.5 k)=12.23 \mathrm{~V} .
\end{aligned}
$$

As $\beta R_{E} \geq 10 R_{2}$ (i.e., $210 \mathrm{k} \Omega \geq 39 \mathrm{k} \Omega$), we can use the approximate analysis and ignore $R_{B B}$ and voltage drop across $R_{B B}$ as follows

$$
\begin{aligned}
I_{E Q} & =\frac{V_{B B}-V_{B E(O N)}}{R_{E}}=\frac{2-0.7}{1.5 k}=0.87 \mathrm{~mA} \\
I_{C Q} & \cong I_{E Q}=0.87 \mathrm{~mA} \\
V_{C E Q} & \cong V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right)=22-(0.87 \mathrm{~m})(10 k+1.5 k)=12 \mathrm{~V}
\end{aligned}
$$

We see that approximate analysis provides close values to the exact analysis. The differences in $I_{C Q}$ and $V_{C E Q}$ are only 0.02 mA and 0.23 V , respectively.

5.4.4 Collector Feedback Bias Circuit

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base as shown in Figure 5.26 below

Figure 5.26: Collector feedback bias circuit.
Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 5.27 below

Figure 5.27: DC equivalent circuit of the collector feedback circuit in Figure 5.26.

5.4.4.1 Base-Emitter Loop

Let us continue with the $B E$ loop shown in Figure 5.28 below

Figure 5.28: Base-emitter loop of the collector feedback circuit in Figure 5.26.
We can write KVL equation on the $B E$ loop noting that $I_{C}^{\prime}=I_{C}+I_{B}=I_{E}$

$$
\begin{array}{rc}
V_{C C}-I_{C}^{\prime} R_{C}-I_{B} R_{F}-V_{B E}-I_{E} R_{E}=0 \\
V_{C C}-I_{E} R_{C}-\frac{I_{E}}{\beta+1} R_{F}-V_{B E(O N)}-I_{E} R_{E}=0, \quad \ldots \text { as } V_{B E}=V_{B E(O N)} \text { and } \\
& I_{B}=\frac{I_{E}}{\beta+1} \text { in active mode } \tag{5.4.29}
\end{array}
$$

and we obtain $I_{E Q}$ as

$$
\begin{equation*}
I_{E Q}=\frac{V_{C C}-V_{B E(O N)}}{\frac{R_{F}}{\beta+1}+\left(R_{C}+R_{E}\right)} \tag{5.4.30}
\end{equation*}
$$

5.4.4.2 Collector-Emitter Loop

Let us continue with the $C E$ loop shown in Figure 5.29 below

Figure 5.29: Collector-emitter loop of the collector feedback circuit in Figure 5.26.

Let us write down the KVL equation on the $C E$ loop noting that $I_{C}^{\prime}=I_{C}+I_{B}$

$$
\begin{array}{rll}
V_{C C}-I_{C}^{\prime} R_{C}-V_{C E}-I_{E} R_{E} & =0 & \\
V_{C C}-I_{C} R_{C}-V_{C E}-I_{C} R_{E} & =0 & \\
V_{C C}-I_{C}\left(R_{C}+R_{E}\right)-V_{C E} & =0 & \tag{5.4.33}\\
\hline \text { as } I_{C} \cong I_{E} \text { and } I_{C} \cong I_{C}^{\prime} \text { in active mode } \\
\end{array}
$$

As $I_{C Q} \cong I_{E Q}$ in active mode, we obtain $V_{C E Q}$ as

$$
\begin{equation*}
V_{C E Q}=V_{C C}-I_{C Q}\left(R_{C}+R_{E}\right) \tag{5.4.34}
\end{equation*}
$$

Thus, we obtained the Q-point $\left(I_{C Q}, V_{C E Q}\right)$, i.e., the operating point.

5.4.4.3 DC Load line

- Note that $I_{C}^{\prime}=I_{E}$, and

$$
I_{C} \cong I_{E}
$$

in active mode (and β is high).

- So, DC load line analysis is the same as the DC load line of the emitter-stabilized circuit given in Section 5.4.2.3. So, DC load line equation is given by

$$
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

5.4.5 Various Different Bias Circuits

Example 5.5: For the figure below, calculate all DC currents and voltages.

Figure 5.30: Common-collector bias circuit for Example 5.5.
Solution: Let us find $I_{E Q}, I_{C Q}$ and $V_{C E Q}$ as follows

$$
\begin{aligned}
I_{E Q} & =\frac{0-V_{B E(O N)}-V_{E E}}{R_{B} /(\beta+1)+R_{E}}=\frac{20-0.7}{240 k /(90+1)+2 k}=4.16 \mathrm{~mA} \\
I_{C Q} & \cong I_{E Q}=4.16 \mathrm{~mA} \\
V_{C E Q} & =0-I_{E Q} R_{E}-V_{E E}=20-(4.16 \mathrm{~m})(2 k)=11.68 \mathrm{~V} .
\end{aligned}
$$

As $V_{C E Q}>V_{C E(s a t)}=0 \mathrm{~V}$, transistor is in the active state.

5.4.6 pnp Transistors

The analysis for $p n p$ bias transistor circuits is the same as that for $n p n$ transistor circuits.
The only differences are that

1. Currents are flowing in the opposite direction.
2. Voltages have opposite polarity, e.g., $V_{E B}=V_{B E(O N)}=0.7 \mathrm{~V}$ in the active mode.

Example 5.6: For the figure below, calculate all DC currents and voltages.

Figure 5.31: pnp transistor in a voltage-divider bias configuration Example 5.6.
Solution: As $\beta R_{E} \geq 10 R_{2}$, i.e., $132 \mathrm{k} \Omega \geq 100 \mathrm{k} \Omega$, we can ignore $R_{B B}$ and use the approximate approach. Thus, we can find $V_{B B}, I_{E Q}, I_{C Q}$ and $V_{E C Q}$ as follows

$$
\begin{aligned}
V_{B} & \cong \frac{R_{2}}{R_{1}+R_{2}} V_{C C}=\frac{10 k}{47 k+10 k}(-18)=-3.16 \mathrm{~V} \\
I_{E Q} & \cong \frac{0-V_{E B}-V_{B}}{R_{E}}=\frac{0-0.7-(-3.16)}{1.1 k}=\frac{2.46}{1.1 k}=2.24 \mathrm{~mA} \\
I_{C Q} & \cong I_{E Q}=2.24 \mathrm{~mA}, \\
V_{E C Q} & =0-I_{C Q}\left(R_{C}+R_{E}\right)-V_{C C}=-(2.24 m)(2.4 k+1.1 k)-(-18)=10.16 \mathrm{~V} .
\end{aligned}
$$

As $V_{E C Q}>V_{C E(s a t)}=0 \mathrm{~V}$, transistor is in the active state.

5.5 Bias Stabilization

Variation of three BJT (Si) parameters $\left(I_{C O}, \beta\right.$ and $\left.V_{B E(O N)}\right)$ with temperature are summarized below

$$
\begin{array}{|llll|}
\hline T \uparrow & I_{C O} \uparrow & \beta \uparrow & V_{B E(O N)} \downarrow \tag{5.5.35}\\
\hline
\end{array}
$$

- $I_{C O}$ (reverse saturation current)
- doubles in value for every $10^{\circ} \mathrm{C}$
- β (transistor current gain)
- increases with increasing temperature
- $V_{B E(O N)}$ (forward bias potential of the base-emitter junction)
- decreases about 2.5 mV per $1^{\circ} \mathrm{C}$ increase in temperature

Variation of the transistor parameters with temperature causes a shift in the operating point (i.e., Q-point).

Figures below (at $25^{\circ} \mathrm{C}$ on the left and at $100^{\circ} \mathrm{C}$ on the right) show the shift of the Q-point (or DC bias point) due to temperature change for a fixed-bias circuit.

Figure 5.32: Shift in operating point (Q-point) due to change in temperature: (a) $25^{\circ} \mathrm{C}$, (b) $100^{\circ} \mathrm{C}$.

5.5.1 Stability Factors

Stability of the collector current I_{C} depends on the stability of several parameters like $I_{C O}, \beta$, $V_{B E(O N)}, V_{C C}, R_{B}, R_{C}$, etc.

A stability factor S is defined for each of the parameters affecting bias stability as follows:

$$
\begin{align*}
S_{I_{C O}} & =\frac{\partial I_{C}}{\partial I_{C O}}=\left.\frac{\Delta I_{C}}{\Delta I_{C O}}\right|_{\beta, V_{B E(O N)}, \ldots \text { constant }} \tag{5.5.36}\\
S_{\beta} & =\frac{\partial I_{C}}{\partial \beta}=\left.\frac{\Delta I_{C}}{\Delta \beta}\right|_{I_{C O}, V_{B E(O N)}, \ldots \text { constant }} \tag{5.5.37}\\
S_{V_{B E(O N)}} & =\frac{\partial I_{C}}{\partial V_{B E(O N)}}=\left.\frac{\Delta I_{C}}{\Delta V_{B E(O N)}}\right|_{I_{C O}, \beta, \ldots \text { constant }} \tag{5.5.38}
\end{align*}
$$

We know that differential $d I_{C}$ is given by the linear map of parameter differentials as follows

$$
\begin{equation*}
d I_{C}=\frac{\partial I_{C}}{\partial I_{C O}} d I_{C O}+\frac{\partial I_{C}}{\partial \beta} d \beta+\frac{\partial I_{C}}{\partial V_{B E(O N)}} d V_{B E(O N)}+\cdots \tag{5.5.39}
\end{equation*}
$$

- Thus, we obtain the collector-current change ΔI_{C} using the stability factors as follows

$$
\begin{equation*}
\Delta I_{C} \cong S_{I_{C O}} \Delta I_{C O}+S_{\beta} \Delta \beta+S_{V_{B E(O N)}} \Delta V_{B E(O N)} \tag{5.5.40}
\end{equation*}
$$

5.5.1.1 Derivation of Stability Factors (Voltage-Divider Bias Circuit)

Figure 5.33: Equivalent circuit for the voltage-divider configuration.
Let us write down the active mode collector current and $B E$-loop KVL equations for the circuit shown in Figure 5.33 above,

$$
\begin{align*}
I_{C} & =\beta I_{B}+(\beta+1) I_{C O} \tag{5.5.41}\\
V_{B B} & =I_{B} R_{B B}+V_{B E(O N)}+\left(I_{B}+I_{C}\right) R_{E} \tag{5.5.42}
\end{align*}
$$

Combining the two equations (5.5.41) and (5.5.42) above, we obtain the expression for I_{C} as

$$
\begin{equation*}
I_{C}=\frac{\beta}{R_{B B}+(\beta+1) R_{E}}\left(V_{B B}-V_{B E(O N)}\right)+\frac{(\beta+1)\left(R_{B B}+R_{E}\right)}{R_{B B}+(\beta+1) R_{E}} I_{C O} \tag{5.5.43}
\end{equation*}
$$

1. From equation (5.5.43), let us derive $S_{I_{C O}}=\frac{\partial I_{C}}{\partial I_{C O}}$ as

$$
\begin{equation*}
S_{I_{C O}}=(\beta+1) \frac{R_{B B}+R_{E}}{R_{B B}+(\beta+1) R_{E}} \tag{5.5.44}
\end{equation*}
$$

2. From equation (5.5.43), let us derive $S_{V_{B E(O N)}}=\frac{\partial I_{C}}{\partial V_{B E(O N)}}$ as

$$
\begin{equation*}
S_{V_{B E(O N)}}=\frac{-\beta}{R_{B B}+(\beta+1) R_{E}} \tag{5.5.45}
\end{equation*}
$$

3. In order to derive $S_{\beta}=\frac{\partial I_{C}}{\partial \beta}$, let us first simplify (5.5.43) by letting $I_{C O} \cong 0$

$$
\begin{equation*}
I_{C} \cong \frac{\beta}{R_{B B}+(\beta+1) R_{E}}\left(V_{B B}-V_{B E(O N)}\right) \tag{5.5.46}
\end{equation*}
$$

Using the simplified I_{C} equation (5.5.46) we can express $I_{C_{1}}$ and $I_{C_{2}}$ as follows

$$
\begin{align*}
& I_{C_{1}} \cong \frac{\beta_{1}}{R_{B B}+\left(\beta_{1}+1\right) R_{E}}\left(V_{B B}-V_{B E(O N)}\right) \tag{5.5.47}\\
& I_{C_{2}} \cong \frac{\beta_{2}}{R_{B B}+\left(\beta_{2}+1\right) R_{E}}\left(V_{B B}-V_{B E(O N)}\right) \tag{5.5.48}
\end{align*}
$$

Thus, using (5.5.47) and (5.5.48), let us obrain the ratio $\frac{I_{C_{2}}-I_{C_{1}}}{I_{C_{1}}}$ as

$$
\begin{equation*}
\frac{I_{C_{2}}-I_{C_{1}}}{I_{C_{1}}}=\frac{\beta_{2}-\beta_{1}}{\beta_{1}} \frac{R_{B B}+R_{E}}{R_{B B}+\left(\beta_{2}+1\right) R_{E}} \tag{5.5.49}
\end{equation*}
$$

From equation (5.5.50), we can obtain the ratio $\frac{\Delta I_{C}}{\Delta \beta}$ by using $\Delta I_{C}=I_{C_{2}}-I_{C_{1}}$ and $\Delta \beta=\beta_{2}-\beta_{1}$ as

$$
\begin{equation*}
\frac{\Delta I_{C}}{\Delta \beta}=\frac{I_{C_{1}}}{\beta_{1}} \frac{R_{B B}+R_{E}}{R_{B B}+\left(\beta_{2}+1\right) R_{E}} \tag{5.5.50}
\end{equation*}
$$

Thus, as $S_{\beta}=\frac{\partial I_{C}}{\partial \beta} \cong \frac{\Delta I_{C}}{\Delta \beta}$

$$
\begin{equation*}
S_{\beta}=\frac{I_{C_{1}}}{\beta_{1}} \frac{R_{B B}+R_{E}}{R_{B B}+\left(\beta_{2}+1\right) R_{E}} \tag{5.5.51}
\end{equation*}
$$

5.5.1.2 Stability Factors for Other Bias Circuits

A. For the fixed-bias circuit, i.e., by substituting $R_{E}=0$ and $R_{B B}=R_{B}$ into (5.5.44), (5.5.45) and (5.5.51), the stability factors are given by

$$
\begin{align*}
S_{I_{C O}} & =\beta+1 \tag{5.5.52}\\
S_{V_{B E(O N)}} & =\frac{-\beta}{R_{B}} \tag{5.5.53}\\
S_{\beta} & =\frac{I_{C_{1}}}{\beta_{1}} \tag{5.5.54}
\end{align*}
$$

B. For the emitter-stabilized bias circuit, i.e., $R_{B B}=R_{B}$ and $R_{B} \gg R_{E}$, the stability factors are given by

$$
\begin{align*}
S_{I_{C O}} & =(\beta+1) \frac{R_{B}+R_{E}}{R_{B}+(\beta+1) R_{E}} \cong \frac{\beta+1}{1+\frac{(\beta+1) R_{E}}{R_{B}}} \tag{5.5.55}\\
S_{V_{B E(O N)}} & =\frac{-\beta}{R_{B}+(\beta+1) R_{E}} \tag{5.5.56}\\
S_{\beta} & =\frac{I_{C_{1}}}{\beta_{1}} \frac{R_{B}+R_{E}}{R_{B}+\left(\beta_{2}+1\right) R_{E}} \cong \frac{I_{C_{1}}}{\beta_{1}} \frac{1}{1+\frac{\left(\beta_{2}+1\right) R_{E}}{R_{B}}} \tag{5.5.57}
\end{align*}
$$

C. For the voltage-divider bias circuit with $(\beta+1) R_{E} \geq 10 R_{B B}$, the stability factors are given by

$$
\begin{align*}
S_{I_{C O}} & =(\beta+1) \frac{R_{B B}+R_{E}}{R_{B B}+(\beta+1) R_{E}} \cong 1+\frac{R_{B B}}{R_{E}} \tag{5.5.58}\\
S_{V_{B E(O N)}} & =\frac{-\beta}{R_{B B}+(\beta+1) R_{E}} \cong \frac{-1}{R_{E}} \tag{5.5.59}\\
S_{\beta} & =\frac{I_{C_{1}}}{\beta_{1}} \frac{R_{B B}+R_{E}}{R_{B B}+\left(\beta_{2}+1\right) R_{E}} \cong \frac{I_{C_{1}}}{\beta_{1} \beta_{2}}\left(1+\frac{R_{B B}}{R_{E}}\right) \tag{5.5.60}
\end{align*}
$$

D. For the collector feedback bias circuit, i.e., $R_{B B}=R_{F}$, replacing R_{E} with $R_{C E}=R_{C}+R_{E}$ and $R_{F} \gg R_{C E}$, the stability factors are given by

$$
\begin{align*}
S_{I_{C O}} & =(\beta+1) \frac{R_{F}+R_{C E}}{R_{F}+(\beta+1) R_{C E}} \cong \frac{\beta+1}{1+\frac{(\beta+1) R_{C E}}{R_{F}}} \tag{5.5.61}\\
S_{V_{B E(O N)}} & =\frac{-\beta}{R_{F}+(\beta+1) R_{C E}} \tag{5.5.62}\\
S_{\beta} & =\frac{I_{C_{1}}}{\beta_{1}} \frac{R_{F}+R_{C E}}{R_{F}+\left(\beta_{2}+1\right) R_{C E}} \cong \frac{I_{C_{1}}}{\beta_{1}} \frac{1}{1+\frac{\left(\beta_{2}+1\right) R_{C E}}{R_{F}}} \tag{5.5.63}
\end{align*}
$$

Example 5.7: Find and compare the collector current change ΔI_{C} when the temperature rises from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for the transistor defined by the table below for the following bias arrangements.
a. Fixed-bias with $R_{B}=240 \mathrm{k} \Omega$ and $I_{C_{1}}=2 \mathrm{~mA}$,
b. Voltage-divider bias with $R_{E}=4.7 \mathrm{k} \Omega, R_{B B} / R_{E}=2$ and $I_{C_{1}}=2 \mathrm{~mA}$.

Temperature	$\boldsymbol{I}_{\boldsymbol{C O}}$	$\boldsymbol{\beta}$	$\boldsymbol{V}_{\boldsymbol{B E}(\boldsymbol{O N})}$
$-65^{\circ} \mathrm{C}$	0.02 nA	20	0.85 V
$25^{\circ} \mathrm{C}$	0.1 nA	50	0.65 V
$100^{\circ} \mathrm{C}$	20 nA	80	0.48 V
$175^{\circ} \mathrm{C}$	$3.3 \mu \mathrm{~A}$	120	0.30 V

Solution: From the table above, let us first calculate $\Delta I_{C O}, \Delta \beta$ and $\Delta V_{B E(O N)}$

$$
\begin{aligned}
\Delta I_{C O} & =I_{C O_{2}}-I_{C O_{1}}=20 n-0.1 n=19.9 \mathrm{nA} \\
\Delta \beta & =\beta_{2}-\beta_{1}=80-50=30 \\
\Delta V_{B E(O N)} & =V_{B E(O N)_{2}}-V_{B E(O N)_{1}}=0.48-0.65=-0.17 \mathrm{~V}
\end{aligned}
$$

We are goiung to calculate ΔI_{C} using

$$
\Delta I_{C} \cong S_{I C O} \Delta I_{C O}+S_{\beta} \Delta \beta+S_{V_{B E(O N)}} \Delta V_{B E(O N)}
$$

a. Let us calculate the stability factors for the fixed-bias circuit using (5.5.52), (5.5.54) and (5.5.53)

$$
\begin{aligned}
S_{I_{C O}} & =\beta+1=51 \\
S_{\beta} & =\frac{I_{C_{1}}}{\beta_{1}}=\frac{2 m}{50}=0.04 \mathrm{~mA} \\
S_{V_{B E(O N)}} & =\frac{-\beta}{R_{B}}=\frac{-50}{240 k}=-0.21 \mathrm{~m} \Omega^{-1}
\end{aligned}
$$

Thus, ΔI_{C} is given by

$$
\begin{aligned}
\Delta I_{C} & \cong(51)(19.9 n)+(0.04 m)(30)+(-0.21 m)(-0.17) \\
& =1.02 \mu+1.2 m+0.036 m \\
& =1.236 \mathrm{~mA}
\end{aligned}
$$

That means, for the fixed-bias circuit I_{C} increases to 3.236 mA at $100^{\circ} \mathrm{C}$ from 2 mA .
b. Let us calculate the stability factors for the voltage-divider bias circuit using (5.5.58), (5.5.60) and (5.5.59)

$$
\begin{aligned}
S_{I_{C O}} & \cong 1+\frac{R_{B B}}{R_{E}}=1+2=3 \\
S_{\beta} & \cong \frac{I_{C_{1}}}{\beta_{1} \beta_{2}}\left(1+\frac{R_{B B}}{R_{E}}\right)=\frac{2 m}{(50)(80)}(1+2)=1.5 \mu \mathrm{~A} \\
S_{V_{B E(O N)}} & =\frac{-1}{R_{E}}=\frac{-1}{4.7 k}=-0.21 \mathrm{~m} \Omega^{-1}
\end{aligned}
$$

Thus, ΔI_{C} is given by

$$
\begin{aligned}
\Delta I_{C} & \cong(3)(19.9 n)+(1.5 \mu)(30)+(-0.21 m)(-0.17) \\
& =0.060 \mu+0.045 m+0.036 m \\
& =0.081 \mathrm{~mA}
\end{aligned}
$$

That means, for the voltage-divider bias circuit I_{C} increases to 2.08 mA at $100^{\circ} \mathrm{C}$ from 2 mA . Most of the improvement comes from the reduction in S_{β}.

- These two results show that voltage-divider bias circuit is much more stable than the fixed-bias circuit. In other words, adding R_{E} resistor to the emitter leg of the transistor stabilizes the bias circuit.

5.5.2 Stability of Transistor Circuits with Active Components

- $V_{B E}$ compensation
- by using a reverse-biased diode at the emitter

Figure 5.34: Active $V_{B E}$ compensation using a reverse-biased diode at the emitter.

- $I_{C O}$ compensation
- by replacing R_{2} with a reverse-biased diode

Figure 5.35: Active $I_{C O}$ compensation replacing R_{2} with a reverse-biased diode.

- I_{C} compensation (without R_{E})
- by using a current mirror

Figure 5.36: Active I_{C} compensation using a current mirror.

5.6 Practical Applications

5.6.1 Relay Driver

Figure 5.37: Relay driver in the absence of protective device.
When the transistor turns OFF, a high voltage (given by $v_{L}=L\left(d i_{L} / d t\right)$) is induced across the coil as shown in Figure 5.38 above. If its magnitude exceeds the maximum ratings of the transistor, then the semiconductor device will be permanently damaged.

This destructive action can be subdued by placing a diode across the coil as shown in Figure 5.38 below. During the ON state of the transistor, the diode is reverse-biased (i.e., open circuit) and doesn't affect a thing. However, when the transistor turns off, the voltage across the coil will reverse and will forward-bias the diode, placing the diode in its ON state (hence protecting the transistor).

Figure 5.38: Relay driver protected with a diode across the relay coil.

5.6.2 Transistor Switch

A transistor can be used as a switch to control the ON and OFF states of the light-bulb in the collector branch of the circuit as shown in Figure 5.39 below.

Figure 5.39: Using the BJT as a switch to control the onâĂß̧off states of a bulb with a limiting resistor.

5.6.3 Transistor Switching Networks

Figure 5.40: A BJT inverter circuit and its operation.
The application of transistors is not limited solely to the amplification of signals. Through proper design, transistors can also be used as switches for computer and control applications. The circuit shown in Figure 5.40 above can be employed an inverter in computer logic circuitry.

Inversion process requires that the Q-point switch from cutoff $\left(V_{o}=V_{C E(c u t o f f)}=5 \mathrm{~V}\right)$ to saturation $\left(V_{o}=V_{C E(s a t)}=0 \mathrm{~V}\right)$ along the load line depicted in Figure 5.41 below.

Figure 5.41: Load-line of the inverter circuit in Figure 5.40.
The total time required for the transistor to switch from the OFF to the ON state is designated as $t_{o n}$, and he total time required for a transistor to switch from the ON to the OFF state is referred to as $t_{o f f}$ as shown in Figure 5.42 below. $t_{o n}$ and $t_{o f f}$ are defined by

$$
\begin{align*}
t_{o n} & =t_{r}+t_{d} \tag{5.6.64}\\
t_{o f f} & =t_{s}+t_{f} \tag{5.6.65}
\end{align*}
$$

where t_{r} is the rise time from 10% to 90% of the output, t_{d} is the delay time between the changing state of the input and the beginning of a response at the output, t_{s} is the storage time and and t_{f} the fall time from 90% to 10% of the output.

Figure 5.42: Defining the time intervals of a pulse waveform.

5.6.4 Logic Gates

Figure 5.43: BJT logic OR gate.
Figure 5.43 above shows a BJT logic OR gate, and similarly Figure 5.44 below shows a BJT logic AND gate.

Figure 5.44: BJT logic AND gate.

5.6.5 Current Mirror

The current mirror shown in Figure 5.45 below is a DC circuit in which the current through a load is controlled by a current at another point in the circuit. That is, the current through the load is indepedent of the load.

Figure 5.45: BJT logic OR gate.
Homework 5.1: For Figure 5.45 above, show that the load current is equal to the load control current and given by

$$
\begin{equation*}
I_{L} \cong I_{\text {control }}=\frac{V_{C C}-V_{B E(O N)}}{R} \tag{5.6.66}
\end{equation*}
$$

where the transistors are identical $\left(Q_{1} \equiv Q_{2}\right)$, i.e., $V_{B E_{1}(O N)}=V_{B E_{2}(O N)}=V_{B E(O N)}$ and $\beta_{1}=$ $\beta_{2}=\beta$, and current gain β is high, e.g., $\beta \geq 100$.

5.6.6 Voltage Level Indicator

The voltage level indicator circuit uses a green LED to indicate when the source voltage is close to its monitoring level of 9 V . The potentiometer is set to establish 5.4 V at the point indicated in Figure 5.46 below. The result is sufficient voltage to turn on both the 4.7 V Zener and the transistor and establish a collector current through the LED sufficient in magnitude to turn on the green LED. The LED will immediately turn off, revealing that the supply voltage has dropped below 9 V or that the power source has been disconnected (i.e., when the voltage set up by the voltage divider circuit drops below 5.4 V).

Figure 5.46: Voltage level indicator.

Chapter 6

AC-DC Load Lines of BJT Circuits

6.1 BJT AC Analysis

1. Draw the AC equivalent circuit (signal frequency is infinity, i.e., $f=\infty$)
a) Capacitors are short circuit, i.e., $X_{C} \rightarrow 0$.
b) Kill the DC power sources (short-circuit DC voltage sources and open-circuit DC current sources).
2. Write KVL for the loop which contains $C E$ terminals
a) Develop AC load-line equation.
3. Draw AC-DC load lines
a) Find available swings for a given input or find maximum undistorted swings.

Figure 6.1: A voltage-divider common-emitter BJT circuit.

Consider the common-emitter BJT circuit shown in Figure 6.1 above where $v_{i}=V_{m} \sin (\omega t)$. Its DC and AC equivalent circuits are shown in Figure 6.2 below.

(a)

(b)

Figure 6.2: DC and AC equivalent circuits of the common-emitter circuit in Figure 6.1: (a) DC equivalent circuit (b) AC equivalent circuit.

6.1.1 DC Load Line

Figure 6.3: DC equivalent circuit of Figure 6.1.
DC equivalent circuit shown in Figure 6.3 above, let us first define the equivalent output-loop (CE-loop) DC resistance $R_{D C}$ and $V_{C E}$ as follows

$$
\begin{align*}
R_{D C} & =R_{C}+R_{E} \tag{6.1.1}\\
V_{C E} & =V_{C C}-I_{C} R_{D C} \tag{6.1.2}
\end{align*}
$$

Thus, the rearranged DC load line equation (DC output equation) is given by

$$
\begin{equation*}
I_{C}=\frac{-1}{R_{D C}} V_{C E}+\frac{V_{C C}}{R_{D C}} \tag{6.1.3}
\end{equation*}
$$

Note that, AC swings are around the Q-points. Here, input swing $v_{b e}=v_{i}$ in Figure 6.4(a) below is around the input Q-point $\left(I_{B Q}, V_{B E Q}\right)$, and output swing $v_{o}=v_{c e}$ in Figure 6.4(b) below is around the output Q-point ($\left.I_{C Q}, V_{C E Q}\right)$.

(b)
(a)

Figure 6.4: Input and output swings around the Q-points: (a) input swing (b) output swing.

6.1.2 Distortion

If the Q-point is incorrect as shown in Figure 6.5(a) below, or if the input is too high as shown in Figure 6.5(b) below, then the output swings (for a sinusoidal input) as shown in the figures below will be distorted, i.e., not the same shape as the input waveform.

NOTE: Load-lines shown in the figures below are the AC load-lines which we will derive in the next section.

Figure 6.5: Distorted output swings: (a) incorrect Q-point (b) incorrect input (i.e., high input).

6.1.3 AC Load Line

Figure 6.6: AC-equivalent circuit of Figure 6.1.
AC equivalent circuit shown in Figure 6.6 above, let us first define the equivalent output-loop ($C E$-loop) AC resistance $R_{a c}$ and output v_{o} as follows

$$
\begin{align*}
R_{a c} & =R_{C} \| R_{L} \tag{6.1.4}\\
v_{o} & =v_{c e}=-i_{c} R_{a c} \tag{6.1.5}
\end{align*}
$$

Let us now define the $\mathrm{AC}+\mathrm{DC}$ output signals i_{C} and $v_{C E}$ as follows

$$
\begin{gather*}
i_{C}=i_{c}+I_{C Q} \tag{6.1.6}\\
v_{C E}=v_{c e}+V_{C E Q} \tag{6.1.7}
\end{gather*}
$$

Now let us express the AC output equation $v_{c e}=-i_{c} R_{a c}$ in terms of $v_{C E}$ and i_{C} so that we can draw this equation over the output characteristics curve as the AC load line equation.

$$
\begin{align*}
v_{c e} & =-i_{c} R_{a c} \tag{6.1.8}\\
v_{C E}-V_{C E Q} & =-\left(i_{C}-I_{C Q}\right) R_{a c} \tag{6.1.9}\\
v_{C E} & =-i_{C} R_{a c}+V_{C E Q}+I_{C Q} R_{a c} \tag{6.1.10}
\end{align*}
$$

Thus, the rearranged AC load line equation (AC output equation) is given by

$$
\begin{equation*}
i_{C}=\frac{-1}{R_{a c}} v_{C E}+I_{C Q}+\frac{V_{C E Q}}{R_{a c}} \tag{6.1.11}
\end{equation*}
$$

6.1.4 AC-DC Load Lines

Let us draw $\mathrm{DC}\left(V_{C E}=v_{c e}+V_{C E Q}\right)$ and $\mathrm{AC}\left(v_{C E}=-i_{C} R_{a c}+V_{C E Q}+I_{C Q} R_{a c}\right)$ load lines together as shown in Figure 6.7 below.

Figure 6.7: AC-DC load lines.
Output swings are defined with respect to the \boldsymbol{Q}-point ($I_{C Q}, V_{C E Q}$) and the AC load line end points on the axes.

Homework 6.1: Show that AC and DC load lines are the same if $R_{D C}=R_{a c}$.
Once the Q-point is known, i.e., the resistor values are given, peak values of the maximum undistorted voltage and current swings $v_{c e(p)(\max)}$ and $i_{c(p)(\max)}$ are given by

$$
\begin{equation*}
v_{c e(p)(\max)}=\min \left(V_{C E Q}, I_{C Q} R_{a c}\right) \tag{6.1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{c(p)(\max)}=\min \left(I_{C Q}, \frac{V_{C E Q}}{R_{a c}}\right) \tag{6.1.13}
\end{equation*}
$$

respectively

6.1.4.1 Maximum Symmetric Undistorted Swing Design

If we want design our circuit (i.e., select appropriate values for the resistors) in order to obtain the maximum available undistorted swing, i.e., to obtain $\max \left(\min \left(V_{C E Q}, I_{C Q} R_{a c}\right)\right)$, then we obtain the following condition

$$
\begin{equation*}
V_{C E Q}=I_{C Q} R_{a c} \tag{6.1.14}
\end{equation*}
$$

Thus, \boldsymbol{Q}-point must be in the middle of the AC load line. In other words, maximum available negative and positive swings are symmetric.

Combining this AC load line requirement in (6.1.14) with the DC load-line equation given in (6.1.2), we find that we have to select the Q-point collector current as

$$
\begin{equation*}
I_{C Q}=\frac{V_{C C}}{R_{D C}+R_{a c}} \tag{6.1.15}
\end{equation*}
$$

In order to attain this Q-point, we need to select appropriate values for the resistors in the $B E$ loop to obtain $I_{B Q}=\frac{I_{C Q}}{\beta}$.

Once we obtained the desired Q-point in the middle of the AC load line, then the maximum available undistorted output swings will be obtained as shown in Figure 6.8 below.

Figure 6.8: Maximum undistorted swing design with Q-point in the middle of the AC load line.

6.1.4.2 Other Amplifier Configurations

We developed and plotted AC-DC load lines for the common-emitter configuration. Now, let us look at other configurations.

- Common-base (CB) configuration

1. Obtain $R_{a c}$ from the $C B$ loop.
2. Obtain $R_{D C}$ from the $C E$ loop.
3. Draw the AC-DC load lines i_{C} vs. $v_{C E}$ as before.

NOTE: You can also draw the AC-DC load lines as i_{C} vs. $v_{C B}$ by shifting the voltage axis by $V_{B E(O N)}$ volts to the left as $V_{C B Q}=V_{C E Q}-V_{B E(O N)}$. Thus, current axis will be drawn at $V_{C B(\text { sat })}=V_{C E(s a t)}-V_{B E(O N)}=0-V_{B E(O N)}=-V_{B E(O N)}$ volts not at 0 V .

- Common-collector (CC) configuration (also known as emitter-follower)

1. Obtain $R_{a c}$ and $R_{D C}$ from the $C E$ loop as before.
2. Draw the AC-DC load lines i_{E} vs. $v_{C E}$.

NOTE: As $i_{E} \cong i_{C}$, it will be the same as drawing i_{C} vs. $v_{C E}$.

- For $p n p$ transistors, we express the currents in the reverse direction (i.e., having positive current values) and reverse the polarity of the terminal voltages (i.e., having positive voltage values), and then draw the AC-DC load lines, e.g., i_{C} vs. $v_{E C}$.

Example 6.1: Consider the circuit below with $I_{B Q}=50 \mu \mathrm{~A}, I_{C Q}=13 \mathrm{~mA}$ and $\alpha \cong 1$.
a) If $i_{i}=50 \mu \mathrm{~A} \sin (\omega t)$, find i_{C} and $v_{C E}$.
b) Plot AC and DC load lines together with the output voltage and current swings.

Figure 6.9: BJT amplifier circuit for Example 6.1.
Solution: Here $\beta_{a c}=\beta_{D C}=\beta=\frac{I_{C Q}}{I_{B Q}}=\frac{13 m}{50 \mu}=260, R_{D C}=R_{C}+R_{E}=1 k+0.47 k=1.47 \mathrm{k} \Omega$ and $R_{a c}=R_{C}\left\|R_{L}=1 k\right\| 1 k=0.5 \mathrm{k} \Omega$. So, we can find $V_{C E Q}$ as

$$
V_{C E Q}=V_{C C}-I_{C Q} R_{D C}=30-(13 m)(1.47 k)=10.89 \mathrm{~V} \sin (\omega t)
$$

As $i_{b} \cong i_{i}$, we can find i_{c} and $v_{c e}$ as

$$
\begin{aligned}
i_{c} & =\beta_{a c} i_{b} \cong \beta i_{i}=(260)(50 \mu)=13 \mathrm{~mA} \sin (\omega t) \\
v_{c e} & \left.=-i_{c} R_{a c}=-(13 \mathrm{~m})(0.5 k)=-6.5 \mathrm{~V} \sin (\omega t)\right)
\end{aligned}
$$

We find i_{C} and $v_{C E}$ as

$$
\begin{aligned}
i_{C} & =I_{C Q}+i_{c}=13 \mathrm{~mA}+13 \mathrm{~mA} \sin (\omega t) \\
v_{C E} & =V_{C E Q}+v_{c e}=10.89 \mathrm{~V}-6.5 \mathrm{~V} \sin (\omega t)
\end{aligned}
$$

Thus, the AC-DC load-lines are shown in Figure 6.10 below

Figure 6.10: AC-DC load-lines for Example 6.1.
Example 6.2: Consider the circuit below with $\alpha \cong 1$.
a) Determine the Q-point in order to obtain maximum undistorted current swing.
b) Draw AC and DC load lines.

Figure 6.11: BJT amplifier circuit for Example 6.2.
Solution: We can design this circuit to have maximum symmetric undistorted output swing and select R_{1} and R_{2} values accordingly. So, from the figure $R_{D C}=R_{C}+R_{E}=1 k+0.5 k=1.5 \mathrm{k} \Omega$ and $R_{a c}=R_{C}=1 \mathrm{k} \Omega$. Thus,

$$
\begin{aligned}
I_{C Q} & =\frac{V_{C C}}{R_{D C}+R_{a c}}=\frac{15}{1.5 k+1 k}=6 \mathrm{~mA} \\
V_{C E Q} & =V_{C C}-I_{C Q} R_{D C}=15-(6 m)(1.5 k)=6 \mathrm{~V}
\end{aligned}
$$

Maximum available swings i_{c} and $v_{c e}$ are given as

$$
\begin{aligned}
i_{c} & =6 \mathrm{~mA} \sin (\omega t) \\
v_{c e} & =-6 \mathrm{~V} \sin (\omega t)
\end{aligned}
$$

Consequently, the AC-DC load-lines are shown in Figure 6.12 below

Figure 6.12: AC-DC load-lines for Example 6.2.

Example 6.3: (2004-2005 MI) Consider the common-emitter BJT amplifier in the figure below.
a) Explain briefly the effects of the capacitors C_{1}, C_{2} and C_{3} on DC biasing and AC operation.
b) Design the DC bias ($I_{C Q}$ and $V_{C E Q}$) for the maximum undistorted output swing and then find the values of R_{1} and R_{2} which satisfies this condition. Take $\beta R_{E} \geq 10\left(R_{1} \| R_{2}\right)$, $V_{B E(O N)}=0.7 \mathrm{~V}$ and $\beta=100$.
c) Draw the DC and AC load lines for this circuit and show the maximum voltage and current swings on the graph. Also, express these current and voltage swings in written form with their AC and DC components.

Figure 6.13: BJT amplifier circuit for Example 6.3.
Solution: a. Capacitors are open-circuit in DC operation. Thus, C_{1} and C_{2} are called the coupling capacitors for the protection of the Q-point of the amplifier from the input and output circuitries by preventing the circulation/leakage of DC signals and enabling only AC signals in and out. C_{3} is called the emitter bypass capacitor ensuring the stability of the Q-point by enabling the emitter resistor to be in effect in DC operation and increasing the AC gain by bypassing the emitter resistor in AC operation.
b. We can design this circuit to have maximum symmetric undistorted output swing and select R_{1} and R_{2} values accordingly. So, from the figure $R_{D C}=R_{C}+R_{E}=1 k+0.5 k=1.5 \mathrm{k} \Omega$ and $R_{a c}=R_{C}\left\|R_{L}=1 k\right\| 1 k=0.5 \mathrm{k} \Omega$. Thus,

$$
\begin{aligned}
I_{C Q} & =\frac{V_{C C}}{R_{D C}+R_{a c}}=\frac{18}{1.5 k+0.5 k}=9 \mathrm{~mA} \\
V_{C E Q} & =V_{C C}-I_{C Q} R_{D C}=18-(9 \mathrm{~m})(1.5 k)=4.5 \mathrm{~V}
\end{aligned}
$$

As $I_{E Q} \cong I_{C Q}=9 \mathrm{~mA}$, base voltage $V_{B Q}$ is given by

$$
V_{B Q}=V_{B E(O N)}+I_{E Q} R_{E}=0.7+(9 m)(0.5 k)=5.2 \mathrm{~V} .
$$

By making the assumption $\beta R_{E} \geq 10\left(R_{1} \| R_{2}\right)$, we can ignore the base current $I_{B Q}$ and directly apply the voltage divider rule as

$$
\begin{aligned}
\frac{R_{2}}{R_{1}+R_{2}} V_{C C} & \cong V_{B Q} \\
\frac{R_{1}+R_{2}}{R_{2}} & =\frac{V_{C C}}{V_{B Q}} \\
\frac{R_{1}}{R_{2}} & =\frac{V_{C C}}{V_{B Q}}-1=\frac{18}{5.2}-1=2.46 .
\end{aligned}
$$

Let us take the highest value of $R_{B B}=R_{1} \| R_{2}$ in order to reduce the currents through R_{1} and R_{2} as

$$
R_{B B}=R_{1} \| R_{2}=\beta R_{E} / 10=100 \times 0.5 k / 10=5 \mathrm{k} \Omega
$$

If we take $a=\frac{R_{1}}{R_{2}}=2.46$, then $R_{B B}=\frac{a}{a+1} R_{2}$. So, R_{2} is given by

$$
R_{2}=\frac{a+1}{a} R_{B B}=\frac{2.46+1}{2.46} 5 k=7.03 \mathrm{k} \Omega
$$

Thus, R_{1} is given by

$$
R_{1}=a R_{2}=(2.46)(7.03 k)=17.29 \mathrm{k} \Omega
$$

c. $\mathrm{AC}+\mathrm{DC}$ output current i_{C} and output voltage $v_{C E}$ are given by

$$
\begin{aligned}
i_{C} & =I_{C Q}+i_{c}=9 \mathrm{~mA}+9 \mathrm{~mA} \sin (\omega t) \\
v_{C E} & =V_{C E Q}+v_{c e}=4.5 \mathrm{~V}-4.5 \mathrm{~V} \sin (\omega t)
\end{aligned}
$$

Consequently, the AC-DC load-lines are shown in Figure 6.14 below

Figure 6.14: AC-DC load-lines for Example 6.3.

Chapter 7

Field Effect Transistors (FETs)

7.1 Similarities and Differences with BJTs

Field-effect transistors (FETs) are three-terminal devices used for a variety of applications that match, to a large extent, those of the BJTs.

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FETs are voltage controlled devices whereas BJTs are current controlled devices
- FETs also have a higher input impedance, but BJTs have higher gains
- FETs are less sensitive to temperature variations and because of their construction they are more easily integrated on ICs
- FETs are also generally more static sensitive than BJTs
- FETs have a poorer frequency response (i.e., lower gain-bandwidth product) than BJTs
- FETs have a higher output impedance than BJTs

BJT is a current-controlled device as depicted in Figure 7.1(a) below, whereas FET is a voltagecontrolled device as shown in Figure 7.1(b) below.

(a)

(b)

Figure 7.1: BJT (npn) and FET (n-channel) comparison: (a) current-controlled device (BJT), (b) voltage-controlled device (FET).

7.2 FET Types

We are going to cover three types (JFET, DMOSFET and EMOSFET) of field effect transistors (FETs)

- JFET: Junction Field-Effect Transistor
- MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor
- DMOSFET: Depletion-type MOSFET
- EMOSFET: Enhancement-type MOSFET

7.3 FET Operation

FET operation can be compared to a water spigot shown in Figure 7.2 below. Water flow signifies the charge flow. In n-channel FETs charge flow is the electron flow, and in p-channel FETs charge flow is the hole flow.

Figure 7.2: Water analogy for the FET control mechanism.

- The source of water pressure can be likened to the applied voltage from drain to source, which establishes a flow of water (charge) from the spigot (source) to the drain.
- The valve (gate), controls the flow of water (charge) to the drain by adjusting the width of the pipe (channel). In a FET, gate adjusts the width of the channel via the applied potential between gate and the source terminals.

7.4 Junction Field-Effect Transistor (JFET)

7.4.1 Construction

There are two types of JFETs: n-channel and p-channel. The n-channel whose construction is shown in Figure 7.3 below is more widely used. There are three terminals: Drain, Source and Gate.

Figure 7.3: n-channel junction field-effect transistor (JFET) construction.
Here,

- Drain (D) and Source (S) are connected to n-channel.
- Gate (G) is connected to the p-type material.
- For correct operation, gate-channel $p n$ junction must be reverse-biased, i.e., $V_{G S} \leq 0$.

7.4.2 Operating Characteristics

There are three basic operating conditions for a JFET:
A. $V_{G S}=0$ and $V_{D S}>0$
B. $V_{G S}<0$ and $V_{D S}>0$
C. Voltage-controlled resistor

7.4.2.1 $\quad V_{G S}=0$ and $V_{D S}>0$

A positive voltage $V_{D S}$ is applied across the channel and the gate is connected directly to the source to establish the condition $V_{G S}=0 \mathrm{~V}$ as shown in Figure 7.4(a) below. Under these conditions the flow of charge is relatively uninhibited and is limited solely by the resistance of the n-channel between drain and source.

Figure 7.4: JFET at $V_{G S}=0 \mathrm{~V}$ and $V_{D S}>0 \mathrm{~V}$: (a) DC biasing, (b) variation of the gate-channel junction reverse-bias voltages through the channel.

It is important to note that the depletion region is wider near the top of both p-type materials. The reason for the change in width of the region is best described through the help of Figure 7.4(b) above. The result is that the upper region of the p-type material will be reversebiased by around 1.5 V , with the lower region only reverse-biased by 0.5 V .

Pinch-off

Figure 7.5: Pinch-off $\left(V_{G S}=0 \mathrm{~V}, V_{D S}=-V_{P}\right)$.

If $V_{G S}=0$ and $V_{D S}$ is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel as shown in Figure 7.5 above.

The level of $V_{D S}$ that establishes this condition is referred to as the pinch-off voltage and is denoted by $-V_{P}$.

At pinch-off, I_{D} maintains a saturation level defined as $I_{D S S}$.
As $V_{D S}$ is increased beyond $-V_{P}$, the region of close encounter between the two depletion regions increases in length along the channel, but the level of I_{D} remains essentially the same.

Output characteristics for $V_{G S}=0$

The resultant output characteristics curve for $V_{G S}=0 \mathrm{~V}$ is shown in Figure 7.6 below.

Figure 7.6: Output characteristics, i.e., I_{D} versus $V_{D S}$, for $V_{G S}=0 \mathrm{~V}$.

7.4.2.2 $\quad V_{G S}<0$ and $V_{D S}>0$

As $V_{G S}$ is negative the depletion regions are larger from the beginning, thus channel is narrower from the beginning. So, the pinch-off will occur at lower voltage of $V_{D S(\mathrm{sat)}}=V_{G S}-V_{P}$, and the saturation current will be smaller than $I_{D S S}$. Once $V_{G S}=V_{P}$, the channel is blocked from the start, and no current flows, i.e., $I_{D}=0$.

Consequently, when we draw the corresponding $I V$ curves for each $V_{G S}$, we obtain the complete output characteristics shown in Figure 7.7 below.

Figure 7.7: Output characteristics of an n-Channel JFET with $I_{D S S}=8 \mathrm{~mA}$ and $V_{P}=-4 \mathrm{~V}$.
The region to the right of the pinch-off point of Figure 7.7 is the region employed in amplifiers and is commonly referred to as the constant-current, saturation, or linear amplification region.

The region to the left of the locus (curve) of pinch-off values of Figure 7.7 is called the ohmic or linear region.

On most specification sheets the pinch-off voltage is specified as $V_{G S(o f f)}$ rather than V_{P}.
The saturation current values (constant current values after pinch-off) Figure 7.7 can be expressed in terms of the control voltage $V_{G S}$ as

$$
\begin{equation*}
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} \tag{7.4.1}
\end{equation*}
$$

This equation is called the transfer characteristics equation and will be investigated in detail later in the transfer characteristics section.

7.4.2.3 Voltage-Controlled Resistor (Ohmic Region)

The region to the left of the locus (curve) of pinch-off values of Figure 7.7 is called the ohmic or linear region.

In this region, JFET can be used as a variable resistor, where $V_{G S}$ controls the drain-source resistance (r_{d})

As $V_{G S}$ becomes more negative, the resistance $\left(r_{d}\right)$ increases.

$$
\begin{equation*}
r_{d}=\frac{r_{0}}{\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}} \tag{7.4.2}
\end{equation*}
$$

where r_{0} is the resistance with $V_{G S}=0 \mathrm{~V}$ given in the specification sheets.

7.4.3 p-channel JFET

p-channel JFET acts the same as the n-channel JFET, except the polarities and currents are reversed as shown in Figure 7.8 below.

Figure 7.8: p-Channel JFET biasing.

7.4.3.1 Characteristics

Output characteristics of a p-channel JFET is shown in Figure 7.9 below. Note that Also at high levels of $V_{D S}$ the JFET reaches a breakdown situation where I_{D} increases uncontrollably if $V_{D S}>V_{D S(\max)}$. Although we have not shown before breakdown region also exists in n-channel JFETs.

Figure 7.9: Output characteristics of an p-Channel JFET with $I_{D S S}=6 \mathrm{~mA}$ and $V_{P}=+6 \mathrm{~V}$.

7.4.4 Circuit Symbol

The graphic symbols for the n-channel and p-channel JFETs are provided in Figure 7.10 below.
Note that the arrow at the gate terminal is pointing in for the n-channel device in Figure 7.10(a) to represent the direction in which I_{G} would flow if the $p n$ junction was forward-biased.

For the p-channel device in Figure $7.10(\mathrm{~b})$ the arrow at the gate terminal is pointing out.

Figure 7.10: JFET circuit symbols: (a) n-channel, (b) p-channel.

7.4.5 Transfer Characteristics

The saturation current is determined by the control voltage $V_{G S}$ as follows

$$
\begin{equation*}
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} \tag{7.4.3}
\end{equation*}
$$

This equation is called the transfer characteristics (transfer from input to output, i.e., from $V_{G S}$ to I_{D}) and can be plotted on a graph as shown in Figure 7.11 below

Figure 7.11: Transfer and output characteristics curves together for an n-channel JFET.
We can also plot this transfer characteristics as the ratios of $a_{D}=\frac{I_{D}}{I_{D S S}}$ and $a_{G}=\frac{V_{G S}}{V_{P}}$ without needing the actual values of $I_{D S S}$ and V_{P} as shown in Figure 7.12 below. The scaled transfer characteristics is obtained as

$$
\begin{equation*}
a_{D}=\left(1-a_{G}\right)^{2} \tag{7.4.4}
\end{equation*}
$$

where $0 \leq a_{G} \leq 1$ (note that also $0 \leq a_{D} \leq 1$). For $a_{D}=0.5$, we obtain $a_{G} \cong 0.3$. So, $(0.3,0.5)$-point can be also used in plot generation. With the values of $I_{D S S}$ and V_{P}, we know that

Figure 7.12: Scaled transfer characteristics curve.

7.5 Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

MOSFETs have characteristics similar to JFETs and additional characteristics that make them very useful.

There are two types of MOSFETs:

- Depletion-type MOSFET (DMOSFET)
- Enhancement-type MOSFET (EMOSFET)

The terms depletion and enhancement define their basic mode of operation.

7.5.1 Depletion-Type MOSFET (DMOSFET)

7.5.1.1 Construction

There are two types of DMOSFETs: n-channel and p-channel. The n-channel whose construction is shown in Figure 7.13 below is more widely used.

Figure 7.13: n-channel depletion-type MOSFET construction.

- A slab of p-type material is formed from a silicon base and is referred to as the substrate.
- For correct operation, substrate-channel $p n$ junction must be reverse-biased.

In this course, we will only consider the cases where the substrate $(S S)$ terminal is connected (shorted) to the source (S) terminal.

- Drain (D) and Source (S) are connected to n-channel via metal contacts.
- Gate (G) is connected to a metal contact surface but remains insulated from the n-channel by a very thin silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ layer.

7.5.1.2 Operating Characteristics

In a DMOSFET, the channel is already present under no-bias conditions or $V_{G S}=0 \mathrm{~V}$.
Here, $V_{G S}$ controls the initial channel width (and value of the saturation current).
When $V_{G S}$ is fixed, for a positive value of $V_{D S}$ the width of the channel gets narrower towards the top of the channel as the voltage across the channel increases towards the top as shown in Figure 7.14 below.

Eventually, when we increase the value of $V_{D S}$, the channel will be pinched-off at some value of $V_{D S}$ and the device will go into the saturation mode.

Figure 7.14: Change in channel width (and depletion region) for a fixed value of $V_{G S}$ ($V_{G S}$ determines the initial channel width) with $V_{D S}>0$.

- $V_{G S}$ controls the initial channel width by attracting or repelling electrons.

A negative value of $V_{G S}$ repels electrons (and attracts holes), so the channel gets narrower. This mode is exactly like a JFET, and it is called the depletion mode.

A positive value of $V_{G S}$ attracts electrons (and repels holes), so the channel gets wider as shown in Figure 7.15 below. Thus unlike JFETs, the channel width can be increased in DMOSFETs. This mode is called the enhancement mode.

Figure 7.15: Increase (or enhancement) in initial channel width when $V_{G S}>0$.

7.5.1.3 Transfer Characteristics

Similar to JFET, DMOSFET transfer characteristics equation is given by

$$
\begin{equation*}
I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} \tag{7.5.7}
\end{equation*}
$$

where $V_{G S}$ is allowed to be opposite polarity of V_{P} (i.e., $V_{G S}>0$ allowed for n-channel DMOSFETs) as shown in Figure 7.16

Figure 7.16: Transfer and output characteristics curves together for an n-channel DMOSFET.

7.5.1.4 p-channel DMOSFET

The p-channel DMOSFET is similar to the n-channel, except that the voltage polarities and current directions are reversed. Its construction (a), transfer characteristics (b) and output characteristics (c) are shown in Figure 7.17 below.

Figure 7.17: p-channel DMOSFET with $I_{D S S}=6 \mathrm{~mA}$ and $V_{P}=+6 \mathrm{~V}$: (a) construction, (b) transfer characteristics, (c) output characteristics.

7.5.2 Circuit Symbol

The graphic symbols for the n-channel and p-channel DMOSFETs are provided in Figure 7.18 below. Notice that there is a gap between the gate and the channel representing the insulation $\left(\mathrm{SiO}_{2}\right)$ layer between the gate and the channel.

Note that the arrow at the substrate $(S S)$ terminal is pointing in for the n-channel device in Figure 7.18(a) to represent the direction of substrate-channel $p n$ junction.

For the p-channel device in Figure $7.18(\mathrm{~b})$ the arrow at the substrate terminal is pointing out.

Figure 7.18: DMOSFET circuit symbols: (a) n-channel, (b) p-channel.

7.5.3 Enhancement-Type MOSFET (EMOSFET)

7.5.3.1 Construction

There are two types of EMOSFETs: n-channel and p-channel. The n-channel whose construction is shown in Figure 7.19 below is more widely used.

Figure 7.19: n-channel enhancement-type MOSFET construction.

- In an EMOSFET, no channel is present under no-bias conditions. We need to provide a positive gate-to-source voltage greater than a threshold voltage to initially form a channel between drain and source terminals, i.e., $V_{G S} \geq V_{G S(T h)}$.
- Thus, EMOSFET always works in the enhancement mode.
- Once $V_{G S}$ is fixed and a channel is formed, it operates like a normal FET.

7.5.3.2 Transfer Characteristics

EMOSFET transfer characteristics equation plotted in shown in Figure 7.20 below is given by

$$
\begin{equation*}
I_{D}=k\left(V_{G S}-V_{G S(T h)}\right)^{2} \tag{7.5.8}
\end{equation*}
$$

where k and $V_{G S(T h)}$ are device constants given in the specifications sheets.
If k is not given, it can also be determined from a particular point ($V_{G S_{0}}, I_{D_{0}}$) on the transfer characteristics curve of the device as follows

$$
\begin{equation*}
k=\frac{I_{D_{0}}}{\left(V_{G S_{0}}-V_{G S(T h)}\right)^{2}} \tag{7.5.9}
\end{equation*}
$$

Figure 7.20: Transfer and output characteristics curves together for an n-channel EMOSFET.
Drain-to-source pinch-off (saturation) voltage $V_{D S(\text { sat })}$ is also given by

$$
\begin{equation*}
V_{D S(\mathrm{sat})}=V_{G S}-V_{G S(T h)} \tag{7.5.10}
\end{equation*}
$$

- EMOSFET transfer characteristics equation below can also be used for DMOSFETS

$$
I_{D}=k\left(V_{G S}-V_{G S(T h)}\right)^{2}
$$

where

$$
\begin{align*}
V_{G S(T h)} & =V_{P} \tag{7.5.11}\\
k & =\frac{I_{D S S}}{V_{P}^{2}} \tag{7.5.12}
\end{align*}
$$

Homework 7.1: Show that results (7.5.11) and (7.5.12) above are correct.

7.5.3.3 p-channel EMOSFET

The p-channel DMOSFET is similar to the n-channel, except that the voltage polarities and current directions are reversed. Its construction (a), transfer characteristics (b) and output characteristics (c) are shown in Figure 7.21 below.

Figure 7.21: p-channel EMOSFET with $V_{G S(T h)}=2 \mathrm{~V}$ and $k=0.5 \mathrm{~mA} / \mathrm{V}^{2}$: (a) construction, (b) transfer characteristics, (c) output characteristics.

7.5.4 Circuit Symbol

The graphic symbols for the n-channel and p-channel EMOSFETs are provided in Figure 7.22 below. Notice that channel is represented as dashed line to reflect the fact that a channel does not exist under no-bias conditions.

Note that the arrow at the substrate $(S S)$ terminal is pointing in for the n-channel device in Figure 7.22(a) to represent the direction of substrate-channel $p n$ junction.

For the p-channel device in Figure $7.22(\mathrm{~b})$ the arrow at the substrate terminal is pointing out.

Figure 7.22: EMOSFET circuit symbols: (a) n-channel, (b) p-channel.

7.5.5 MOSFET Handling

MOSFETs are very static sensitive. Because of the very thin SiO_{2} layer between the external terminals and the layers of the device, any small electrical discharge can establish an unwanted conduction.

Protection:

- Always transport in a static sensitive bag
- Always wear a static strap when handling MOSFETs
- Apply voltage limiting devices between the Gate and Source, such as back-to-back Zeners to limit any transient voltage.

7.6 Summary

The transfer curves and some important characteristics of the n-channel FETs are displayed in Figure 7.23 below. A clear understanding of all the curves and parameters of the table will provide a sufficient background for the DC and AC analyses.

Type	Symbol and Basic Relationships	Transfer Curve	Input Resistance and Capacitance
JFET (n-channel)	$I_{G}=0 \mathrm{~A}, I_{D}=I_{S}$ $I_{D S S}$ V_{P} $I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$		$\begin{gathered} R_{i}>100 \mathrm{M} \Omega \\ C_{i}:(1-10) \mathrm{pF} \end{gathered}$
MOSFET depletion type (n-channel)	$I_{G}=0 \mathrm{~A}, I_{D}=I_{S}$ $I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$		$\begin{gathered} R_{i}>10^{10} \Omega \\ C_{i}:(1-10) \mathrm{pF} \end{gathered}$
MOSFET enhancement type (n-channel)	$I_{G}=0 \mathrm{~A}, I_{D}=I_{S}$ $\begin{aligned} & I_{D}=k\left(V_{G S}-V_{G S(\mathrm{Th})}\right)^{2} \\ & k=\frac{I_{D_{0}}}{\left(V_{G S_{0}}-V_{G S(T h)}\right)^{2}} \end{aligned}$		$\begin{gathered} R_{i}>10^{10} \Omega \\ C_{i}:(1-10) \mathrm{pF} \end{gathered}$

Figure 7.23: n-channel FET summary.
We can summarize the n-channel FET model with its state and circuit behaviour with the table below.

n-channel FET Model		
State	Circuit Behaviour	Test Condition
CUTOFF	$I_{D}=0$,	$V_{G S}<V_{G S(T h)}$
	$I_{S}=0, I_{G}=0$	
SATURATION	$I_{D}=k\left(V_{G S}-V_{G S(T h)}\right)^{2}$,	$V_{G S} \geq V_{G S(T h)}$,
	$I_{S}=I_{D}, I_{G}=0$	$V_{D S} \geq V_{D S(\text { sat })}$
OHMIC	$I_{D}=$ not covered in this course,,	$V_{G S} \geq V_{G S(T h)}$,
(LINEAR)	$I_{S}=I_{D}, I_{G}=0$	$V_{D S}<V_{D S(\mathrm{sat})}, I_{D}<I_{D(\mathrm{sat})}$

- NOTE 1: For JFET and DMOSFETs, take $V_{G S(T h)}=V_{P}$ and $k=\frac{I_{D S S}}{V_{P}^{2}}$
- NOTE 2: For JFETs, make sure $V_{P} \leq V_{G S} \leq 0$.
- NOTE 3: $V_{T h}, V_{T}$ and $V_{T N}$ (or $V_{T P}$) notations are also used in place of $V_{G S(T h)}$.

We can show the circuit behaviour for the CUTOFF and SATURATION modes of the n-channel FETs in Figure 7.24 below.

(a)

(b)

Figure 7.24: Circuit behaviour of the n-channel FET model: (a) Cutoff state, (b) Saturation state

- For a p-channel FET transistor, the polarities and directions are simply reversed.

For example, the a p-channel FET will be ON (i.e., in SATURATION mode) when $V_{S G} \geq V_{S G(T h)}$ (i.e., when $V_{G S} \leq V_{G S(T h)}$).

Chapter 8

DC Biasing of FETs

8.1 DC Biasing

8.2 FET DC Analysis

1. Draw the DC equivalent circuit (signal frequency is zero, i.e., $f=0$)
a) Capacitors are open circuit, i.e., $X_{C} \rightarrow \infty$.
b) Kill the AC power sources (short-circuit AC voltage sources and open-circuit AC current sources).
2. Write KVL for the $G S$-loop (i.e., $G S$-loop load line (or transfer load line) equation)
a) Draw the transfer characteristics curve using the appropriate transfer characteristics equation.
b) Draw the $G S$-loop load line over the transfer characteristics curve
c) The intersection gives us $I_{D Q}$ and $V_{G S Q}$.

NOTE: You can also solve two equations simultaneously and obtain the result analytically by solving the resultant quadratic equation. However, graphical way is less error-prone if the graph has a fine resolution.
3. Write KVL for the $D S$-loop (i.e., $D S$-loop load line (or output load line) load line equation)
a) Calculate $V_{D S Q}$ using $I_{D Q}$ value from Step 2c.

8.3 DC Biasing Circuits

Most common four common-source biasing circuits are given below
JFET Biasing Circuits

- Fixed-Bias
- Self-Bias
- Voltage-Divider

DMOSFET Biasing Circuits

- Self-Bias
- Voltage-Divider

EMOSFET Biasing Circuits

- Voltage-Feedback
- Voltage-Divider

8.3.1 Fixed-Bias Configuration

A fixed-bias JFET circuit is given in Figure 8.1 below

Figure 8.1: Fixed-bias JFET circuit.
Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 8.2 below

Figure 8.2: DC equivalent circuit (with $I_{G}=0$) of the fixed-bias configuration in Figure 8.1.
Note that R_{G} is ignored as $I_{G}=0$.

8.3.1.1 Gate-Source Loop

We can write KVL equation on the $G S$-loop

$$
\begin{equation*}
V_{G S}=-V_{G G} \tag{8.3.1}
\end{equation*}
$$

Then, we obtain $V_{G S Q}$ and $I_{D S Q}$ by solving the following two equations simultaneously

$$
\begin{align*}
V_{G S} & =-V_{G G} \tag{8.3.2}\\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} \tag{8.3.3}
\end{align*} \quad \ldots \text { transfer load-line }
$$

The solution is trivial in this case and we obtain the result as

$$
\begin{align*}
V_{G S Q} & =-V_{G G} \tag{8.3.4}\\
I_{D Q} & =I_{D S S}\left(1-\frac{V_{G S Q}}{V_{P}}\right)^{2} \tag{8.3.5}
\end{align*}
$$

We can also obtain the result graphically by plotting equations (8.3.2) and (8.3.3) on the same graph as shown in Figure 8.3 below.

Figure 8.3: Graphical solution (for transfer load-line and transfer characteristics equations) for the fixed-bias configuration in Figure 8.1.

8.3.1.2 Drain-Source Loop

Let us write down the KVL equation on the $D S$-loop

$$
\begin{align*}
V_{D D}-I_{D} R_{D}-V_{D S} & =0 \tag{8.3.6}\\
V_{D S} & =V_{D D}-I_{D} R_{D} \tag{8.3.7}
\end{align*}
$$

As we already obtained $I_{D Q}$ in Figure 8.3 we find $V_{D S Q}$ as

$$
\begin{equation*}
V_{D S Q}=V_{D D}-I_{D Q} R_{D} \tag{8.3.8}
\end{equation*}
$$

Thus, we obtained the Q-point ($I_{D Q}, V_{D S Q}$), i.e., the operating point.

8.3.2 Self-Bias Configuration

A fixed-bias JFET circuit is given in Figure 8.4 below

Figure 8.4: Self-bias JFET circuit.
Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 8.5 below

Figure 8.5: DC equivalent circuit (with $I_{G}=0$) of the self-bias configuration in Figure 8.4.
Note that R_{G} is ignored as $I_{G}=0$.

8.3.2.1 Gate-Source Loop

We can write KVL equation on the $G S$-loop

$$
\begin{align*}
-V_{G S}-I_{S} R_{S} & =0 \tag{8.3.9}\\
V_{G S} & =-I_{D} R_{S} \tag{8.3.10}
\end{align*}
$$

$$
\ldots \text { as } I_{S}=I_{D}
$$

Then, we obtain $V_{G S Q}$ and $I_{D S Q}$ by solving the following two equations simultaneously

$$
\begin{align*}
V_{G S} & =-I_{D} R_{S} & \ldots \text { transfer load-line } \tag{8.3.11}\\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} & \ldots \text { transfer characteristics } \tag{8.3.12}
\end{align*}
$$

It is better to obtain the result graphically by plotting equations (8.3.11) and (8.3.12) on the same graph as shown in Figure 8.6 below.

Figure 8.6: Graphical solution (for transfer load-line and transfer characteristics equations) for the self-bias configuration in Figure 8.4.

The graphically obtained current value $I_{D Q}$ may be refined using equations (8.3.11) and (8.3.12) in an iteration loop as follows

1. Insert graphically obtained I_{D} into (8.3.11) and obtain a $V_{G S}$ value
2. Insert $V_{G S}$ obtained in Step 1 into (8.3.12) and obtain a new I_{D} value to be used in Step 1.
3. Repeat Step 1 and Step 2 until ΔI_{D}, the difference between the old I_{D} used in Step 1 and new I_{D} obtained in Step 2, is small enough.

8.3.2.2 Drain-Source Loop

Let us write down the KVL equation on the $D S$-loop

$$
\begin{align*}
V_{D D}-I_{D} R_{D}-V_{D S}-I_{S} R_{S}=0 & \tag{8.3.13}\\
V_{D D}-I_{D} R_{D}-V_{D S}-I_{D} R_{S}=0 & \ldots \text { as } I_{S}=I_{D} \\
V_{D D}-I_{D}\left(R_{D}+R_{S}\right)-V_{D S}=0 & \ldots \text { DC load-line equation }
\end{align*}
$$

As we already obtained $I_{D Q}$ in Figure 8.6 we find $V_{D S Q}$ as

$$
\begin{equation*}
V_{D S Q}=V_{D D}-I_{D Q}\left(R_{D}+R_{S}\right) \tag{8.3.16}
\end{equation*}
$$

Thus, we obtained the Q-point ($I_{D Q}, V_{D S Q}$), i.e., the operating point.
Example 8.1: For the figure below, calculate all DC currents and voltages.

Figure 8.7: Self-bias JFET circuit for Example 8.1.
Solution: Let us express $V_{G S}$ using the KVL equation of $G S$-loop and I_{D} from the transfer characteristics equation

$$
\begin{aligned}
V_{G S} & =-I_{D} R_{S}=-1 k I_{D} \\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=(8 m)\left(1+\frac{V_{G S}}{6}\right)^{2}
\end{aligned}
$$

where $-6 \leq V_{G S} \leq 0$.
We obtain $I_{D Q}$ and $V_{G S Q}$ by drawing these two equations on the same graph as shown in Figure 8.8 below

Figure 8.8: Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.7.
Finally, we obtain $V_{D S Q}$ from the $D S$-loop as

$$
V_{D S Q}=V_{D D}-I_{D Q}\left(R_{D}+R_{S}\right)=20-(2.6 m)(3.3 k+1 k)=8.82 \mathrm{~V}
$$

8.3.3 Voltage-Divider Bias Configuration

A voltage-divider bias JFET circuit is given in Figure 8.9 below

Figure 8.9: Voltage-divider bias JFET circuit.
Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 8.10 below

Figure 8.10: DC equivalent circuit of the voltage-divider configuration in Figure 8.9.

8.3.3.1 Gate-Source Loop

We can write KVL equation on the $G S$-loop

$$
\begin{align*}
V_{G}-V_{G S}-I_{S} R_{S} & =0 & & \ldots \text { where } V_{G}=\frac{R_{2}}{R_{1}+R_{2}} V_{D D} \tag{8.3.17}\\
V_{G S} & =V_{G}-I_{D} R_{S} & & \ldots \text { as } I_{S}=I_{D}
\end{align*}
$$

Then, we obtain $V_{G S Q}$ and $I_{D S Q}$ by solving the following two equations simultaneously

$$
\begin{align*}
V_{G S} & =V_{G}-I_{D} R_{S} \tag{8.3.19}\\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}
\end{align*}
$$

...transfer load-line
...transfer characteristics (8.3.20)
It is better to obtain the result graphically by plotting equations (8.3.19) and (8.3.20) on the same graph as shown in Figure 8.11 below.

Figure 8.11: Graphical solution (for transfer load-line and transfer characteristics equations) for the voltage-divider configuration in Figure 8.9.

The graphically obtained current value $I_{D Q}$ may be refined using equations (8.3.19) and (8.3.20) in an iteration loop as follows

1. Insert graphically obtained I_{D} into (8.3.19) and obtain a $V_{G S}$ value
2. Insert $V_{G S}$ obtained in Step 1 into (8.3.20) and obtain a new I_{D} value to be used in Step 1.
3. Repeat Step 1 and Step 2 until ΔI_{D}, the difference between the old I_{D} used in Step 1 and new I_{D} obtained in Step 2, is small enough.

8.3.3.2 Drain-Source Loop

Let us write down the KVL equation on the $D S$-loop

$$
\begin{aligned}
V_{D D}-I_{D} R_{D}-V_{D S}-I_{S} R_{S}=0 & \\
V_{D D}-I_{D} R_{D}-V_{D S}-I_{D} R_{S}=0 & \ldots \text { as } I_{S}=I_{D} \\
V_{D D}-I_{D}\left(R_{D}+R_{S}\right)-V_{D S}=0 & \ldots \text { DC load-lin }
\end{aligned}
$$

$$
\ldots \text { DC load-line equation (8.3.23) }
$$

As we already obtained $I_{D Q}$ in Figure 8.11 we find $V_{D S Q}$ as

$$
\begin{equation*}
V_{D S Q}=V_{D D}-I_{D Q}\left(R_{D}+R_{S}\right) \tag{8.3.24}
\end{equation*}
$$

Thus, we obtained the Q-point ($I_{D Q}, V_{D S Q}$), i.e., the operating point.
Example 8.2: For the figure below, calculate all DC currents and voltages.

Figure 8.12: Voltage-divider bias JFET circuit for Example 8.2.
Solution: Let us find V_{G}, and express $V_{G S}$ using the KVL equation of $G S$-loop and I_{D} from the transfer characteristics equation

$$
\begin{aligned}
V_{G} & =\frac{R_{2}}{R_{1}+R_{2}} V_{D D}=\frac{0.27 M}{2.1 M+0.27 M} 16=1.82 \mathrm{~V} . \\
V_{G S} & =V_{G}-I_{D} R_{S}=1.82-1.5 k I_{D} \\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=(8 m)\left(1+\frac{V_{G S}}{4}\right)^{2}
\end{aligned}
$$

where $-4 \leq V_{G S} \leq 0$.
We obtain $I_{D Q}$ and $V_{G S Q}$ by drawing these two equations on the same graph as shown in Figure 8.13 below

Figure 8.13: Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.12.
Finally, we obtain $V_{D S Q}$ from the $D S$-loop as

$$
V_{D S Q}=V_{D D}-I_{D Q}\left(R_{D}+R_{S}\right)=16-(2.4 m)(2.4 k+1.5 k)=6.64 \mathrm{~V}
$$

Example 8.3: For the figure below, calculate Q-point. Repeat for $R_{S}=150 \Omega$.

Figure 8.14: Voltage-divider bias DMOSFET circuit for Example 8.3.
Solution: Let us find V_{G}, and express $V_{G S}$ using the KVL equation of $G S$-loop and I_{D} from
the transfer characteristics equation

$$
\begin{aligned}
V_{G} & =\frac{R_{2}}{R_{1}+R_{2}} V_{D D}=\frac{10 M}{110 M+10 M} 18=1.5 \mathrm{~V} \\
V_{G S} & =V_{G}-I_{D} R_{S}=1.5-0.75 k I_{D} \\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=(6 m)\left(1+\frac{V_{G S}}{3}\right)^{2}
\end{aligned}
$$

where $V_{G S} \geq-3 \mathrm{~V}$.
We obtain $I_{D Q}$ and $V_{G S Q}$ by drawing these two equations on the same graph as shown in Figure 8.15 below

Figure 8.15: Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.14 with $R_{S}=750 \Omega$.

Finally, we obtain $V_{D S Q}$ from the $D S$-loop as

$$
V_{D S Q}=V_{D D}-I_{D Q}\left(R_{D}+R_{S}\right)=18-(3.1 m)(1.8 k+0.75 k)=10.1 \mathrm{~V}
$$

Let us repeat the calculations for $R_{S}=150 \Omega$. Transfer load-line equation ($G S$-loop equation) changes as below

$$
V_{G S}=V_{G}-I_{D} R_{S}=1.5-0.15 k I_{D}
$$

We reobtain $I_{D Q}$ and $V_{G S Q}$ by redrawing the transfer load-line and transfer characteristics equations on the same graph as shown in Figure 8.16 below

Figure 8.16: Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.14 with $R_{S}=150 \Omega$.
Finally, $V_{D S Q}$ is recalculated from the $D S$-loop as

$$
V_{D S Q}=V_{D D}-I_{D Q}\left(R_{D}+R_{S}\right)=18-(7.6 m)(1.8 k+0.15 k)=3.18 \mathrm{~V}
$$

Example 8.4: For the figure below, calculate all DC currents and voltages.

Figure 8.17: Voltage-divider bias EMOSFET circuit for Example 8.4.
Solution: Let us find V_{G}, and express $V_{G S}$ using the KVL equation of $G S$-loop and I_{D} from
the transfer characteristics equation

$$
\begin{aligned}
V_{G} & =\frac{R_{2}}{R_{1}+R_{2}} V_{D D}=\frac{18 M}{22 M+18 M} 40=18 \mathrm{~V} \\
V_{G S} & =V_{G}-I_{D} R_{S}=18-0.82 k I_{D} \\
I_{D} & =k\left(V_{G S}-V_{G S(T h)}\right)^{2}=(0.12 m)\left(V_{G S}-5\right)^{2}
\end{aligned}
$$

where $V_{G S} \geq 5 \mathrm{~V}$.
We obtain $I_{D Q}$ and $V_{G S Q}$ by drawing these two equations on the same graph as shown in Figure 8.18 below

Figure 8.18: Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.17.
Finally, we obtain $V_{D S Q}$ from the $D S$-loop as

$$
V_{D S Q}=V_{D D}-I_{D Q}\left(R_{D}+R_{S}\right)=40-(6.7 m)(3 k+0.82 k)=14.4 \mathrm{~V}
$$

8.3.4 Voltage-Feedback Bias Configuration

A voltage-feedback bias EMOSFET circuit is given in Figure 8.19 below

Figure 8.19: Voltage-feedback bias EMOSFET circuit.

Let us start DC analysis by drawing the DC equivalent circuit as shown in Figure 8.20 below

Figure 8.20: DC equivalent circuit (with $I_{G}=0$) of the voltage-feedback configuration in Figure 8.19.
Note that R_{G} is ignored as $I_{G}=0$.

8.3.4.1 Gate-Source Loop

We can write KVL equation on the $G S$-loop

$$
\begin{align*}
V_{D D}-V_{G S}-I_{D} R_{D} & =0 \tag{8.3.25}\\
V_{G S} & =V_{G}-I_{D} R_{D} \tag{8.3.26}
\end{align*}
$$

Then, we obtain $V_{G S Q}$ and $I_{D S Q}$ by solving the following two equations simultaneously

$$
\begin{align*}
V_{G S} & =V_{D D}-I_{D} R_{D} & & \ldots \text { transfer load-line } \tag{8.3.27}\\
I_{D} & =k\left(V_{G S}-V_{G S(T h)}\right)^{2} & & \ldots \text { transfer characteri } \tag{8.3.28}
\end{align*}
$$

It is better to obtain the result graphically by plotting equations (8.3.27) and (8.3.28) on the same graph as shown in Figure 8.21 below.

Figure 8.21: Graphical solution (for transfer load-line and transfer characteristics equations) for the voltage-feedback configuration in Figure 8.19.

The graphically obtained current value $I_{D Q}$ may be refined using equations (8.3.27) and (8.3.28) in an iteration loop as follows

1. Insert graphically obtained I_{D} into (8.3.27) and obtain a $V_{G S}$ value
2. Insert $V_{G S}$ obtained in Step 1 into (8.3.28) and obtain a new I_{D} value to be used in Step 1.
3. Repeat Step 1 and Step 2 until ΔI_{D}, the difference between the old I_{D} used in Step 1 and new I_{D} obtained in Step 2, is small enough.

8.3.4.2 Drain-Source Loop

Let us write down the KVL equation on the $D S$-loop

$$
\begin{equation*}
V_{D D}-I_{D} R_{D}-V_{D S}=0 \tag{8.3.29}
\end{equation*}
$$

... DC load-line equation

As we already obtained $I_{D Q}$ in Figure 8.21 we find $V_{D S Q}$ as

$$
\begin{equation*}
V_{D S Q}=V_{D D}-I_{D Q} R_{D} \tag{8.3.30}
\end{equation*}
$$

Note that, here $V_{D S Q}=V_{G S Q}$.
Thus, we obtained the Q-point ($I_{D Q}, V_{D S Q}$), i.e., the operating point.
Example 8.5: For the figure below, calculate all DC currents and voltages.

Figure 8.22: Voltage-feedback bias EMOSFET circuit for Example 8.5.
Solution: Let us find V_{G}, and express $V_{G S}$ using the KVL equation of $G S$-loop and I_{D} from the transfer characteristics equation

$$
\begin{aligned}
V_{G S} & =V_{D D}-I_{D} R_{D}=12-2 k I_{D} \\
I_{D} & =k\left(V_{G S}-V_{G S(T h)}\right)^{2}=(0.24 m)\left(V_{G S}-3\right)^{2}
\end{aligned}
$$

where $V_{G S} \geq 3 \mathrm{~V}$.
We obtain $I_{D Q}$ and $V_{G S Q}$ by drawing these two equations on the same graph as shown in Figure 8.23 below

Figure 8.23: Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.22.
Finally, we obtain $V_{D S Q}$ from the $D S$-loop as

$$
V_{D S Q}=V_{D D}-I_{D Q} R_{D}=12-(2.75 m)(2 k)=6.4 \mathrm{~V}
$$

8.3.5 p-channel FETs

The analysis for p-channel FET circuits is the same as that for n-channel FET circuits.
The only differences are that

1. Currents are flowing in the opposite direction.
2. Voltages have opposite polarity, e.g., $V_{S G} \geq V_{S G(T h)}$ (i.e., $\left.V_{G S} \leq V_{G S(T h)}\right)$ is needed to turn on a p-channel FET.
3. If properly biased, then $V_{S}>V_{D}$, i.e., $V_{S D}>0$.

Example 8.6: For the figure below, calculate all DC currents and voltages.

Figure 8.24: Voltage-divider bias JFET circuit for Example 8.6.
Solution: Let us find V_{G}, and express $V_{G S}$ using the KVL equation of $G S$-loop and I_{D} from the transfer characteristics equation

$$
\begin{aligned}
V_{G} & =\frac{R_{2}}{R_{1}+R_{2}} V_{D D}=\frac{20 k}{68 k+20 k}(-20)=-4.55 \mathrm{~V} . \\
V_{G S} & =V_{G}+I_{D} R_{S}=-4.55+1.8 k I_{D} \\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=(8 m)\left(1-\frac{V_{G S}}{4}\right)^{2}
\end{aligned}
$$

where $-4 \leq V_{G S} \leq 0$.
We obtain $I_{D Q}$ and $V_{G S Q}$ by drawing these two equations on the same graph as shown in Figure 8.25 below

Figure 8.25: Obtaining $I_{D Q}$ graphically for the circuit in Figure 8.24.

Finally, we obtain $V_{D S Q}$ from the $D S$-loop as

$$
V_{D S Q}=V_{D D}+I_{D Q}\left(R_{D}+R_{S}\right)=(-20)+(3.4 m)(2.7 k+1.8 k)=-4.7 \mathrm{~V} .
$$

Thus, $V_{S D Q}=4.7 \mathrm{~V}$.

8.4 Practical Applications

Some practical FET applications are listed below:

- Voltage-controlled resistor
- JFET voltmeter
- Timer network
- Fiber optic circuitry
- MOSFET relay driver

8.5 Summary

Summary of n-channel JFET and MOSFET bias circuits are given in Figure 8.26 and Figure 8.27, respectively.

Type	Configuration	Pertinent Equations	Graphical Solution
JFET Fixed-bias	$V_{G G}+\underset{\underline{\underline{\underline{\underline{T}}}}}{\stackrel{R_{G}}{2}}$	$\begin{aligned} V_{G S_{Q}} & =-V_{G G} \\ V_{D S} & =V_{D D}-I_{D} R_{D} \end{aligned}$	
JFET Self-bias		$\begin{aligned} & V_{G S}=-I_{D} R_{S} \\ & V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right) \end{aligned}$	
JFET Voltage-divider bias		$\begin{aligned} V_{G} & =\frac{R_{2}}{R_{1}+R_{2}} V_{D D} \\ V_{G S} & =V_{G}-I_{D} R_{S} \\ V_{D S} & =V_{D D}-I_{D}\left(R_{D}+R_{S}\right) \end{aligned}$	
JFET Common-gate		$\begin{aligned} & V_{G S}=V_{S S}-I_{D} R_{S} \\ & V_{D S}=V_{D D}+V_{S S}-I_{D}\left(R_{D}+R_{S}\right) \end{aligned}$	

Figure 8.26: n-channel JFET bias circuits.

Type	Configuration	Pertinent Equations	Graphical Solution
Depletion-type MOSFET Fixed-bias	$V_{G G} \underset{\underline{\tau}}{\stackrel{R_{G}}{\square}}$	$\begin{aligned} V_{G S_{Q}} & =+V_{G G} \\ V_{D S} & =V_{D D}-I_{D} R_{D} \end{aligned}$	
Depletion-type MOSFET Voltage-divider bias		$\begin{aligned} V_{G} & =\frac{R_{2}}{R_{1}+R_{2}} V_{D D} \\ V_{G S} & =V_{G}-I_{S} R_{S} \\ V_{D S} & =V_{D D}-I_{D}\left(R_{D}+R_{S}\right) \end{aligned}$	
Enhancement type MOSFET Feedback configuration		$\begin{aligned} & V_{G S}=V_{D S} \\ & V_{G S}=V_{D D}-I_{D} R_{D} \end{aligned}$	
Enhancement type MOSFET Voltage-divider bias		$\begin{aligned} V_{G} & =\frac{R_{2}}{R_{1}+R_{2}} V_{D D} \\ V_{G S} & =V_{G}-I_{D} R_{S} \end{aligned}$	

Figure 8.27: n-channel MOSFET bias circuits.

Chapter 9

AC-DC Load Lines of FET Circuits

9.1 FET AC Analysis

1. Draw the AC equivalent circuit (signal frequency is infinity, i.e., $f=\infty$)
a) Capacitors are short circuit, i.e., $X_{C} \rightarrow 0$.
b) Kill the DC power sources (short-circuit DC voltage sources and open-circuit DC current sources).
2. Write KVL for the loop which contains $D S$ terminals
a) Develop AC load-line equation.
3. Draw AC-DC load lines
a) Find available swings for a given input or find maximum undistorted swings.

9.1.1 AC and DC Load Lines

- AC and DC load line equations of FETs are similar to the AC and DC load line equations of BJTs where gate (G), drain (D) and source (S) replace base (B), collector (C) and emitter (E), respectively, in the subscripts of the equations.
- Thus, FET DC load line equation is given by

$$
\begin{equation*}
V_{D S}=V_{D D}-I_{D} R_{D C} \tag{9.1.1}
\end{equation*}
$$

where $R_{D C}$ is the equivalent output-loop ($D S$-loop) DC resistance. Hence, the rearranged DC load line equation (DC output equation) is given by

$$
\begin{equation*}
I_{D}=\frac{-1}{R_{D C}} V_{D S}+\frac{V_{D D}}{R_{D C}} \tag{9.1.2}
\end{equation*}
$$

- Similarly, FET AC load line equation is given by

$$
\begin{equation*}
v_{D S}=-i_{D} R_{a c}+V_{D S Q}+I_{D Q} R_{a c} \tag{9.1.3}
\end{equation*}
$$

where $R_{a c}$ is the equivalent output-loop ($D S$-loop) AC resistance, $v_{D S}=V_{D S Q}+v_{d s}$ and $i_{D}=$ $I_{D Q}+i_{d}$. Hence, the rearranged AC load line equation (AC output equation) is given by

$$
\begin{equation*}
i_{D}=\frac{-1}{R_{a c}} v_{D S}+I_{D Q}+\frac{V_{D S Q}}{R_{a c}} \tag{9.1.4}
\end{equation*}
$$

Let us draw DC and AC load lines together as shown in Figure 9.1 below.

Figure 9.1: AC-DC load lines for FETs.
Once the Q-point is known, peak values of the maximum undistorted voltage and current swings $v_{d s(p)(\max)}$ and $i_{d(p)(\max)}$ are given by

$$
\begin{equation*}
v_{d s(p)(\max)}=\min \left(V_{D S Q}, I_{D Q} R_{a c}\right) \tag{9.1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{d(p)(\max)}=\min \left(I_{D Q}, \frac{V_{D S Q}}{R_{a c}}\right) \tag{9.1.6}
\end{equation*}
$$

respectively

9.1.2 Maximum Symmetric Undistorted Swing Design

Once we obtained the desired Q-point in the middle of the AC load line, i.e.,

$$
\begin{equation*}
I_{D Q}=\frac{V_{D D}}{R_{D C}+R_{a c}} \tag{9.1.7}
\end{equation*}
$$

then the maximum available undistorted output swings will be obtained as shown in Figure 9.2 below.

Figure 9.2: Maximum undistorted swing design for FETs with Q-point in the middle of the AC load line.

9.1.3 Other Amplifier Configurations

We developed and plotted AC-DC load lines for the common-source configuration. Now, let us look at other configurations.

- Common-gate (CG) configuration

1. Obtain $R_{a c}$ from the $D G$ loop.
2. Obtain $R_{D C}$ from the $D S$ loop.
3. Draw the AC-DC load lines i_{D} vs. $v_{D S}$ as before.

NOTE: You can also draw the AC-DC load lines as i_{D} vs. $v_{D G}$ by shifting the voltage axis by $V_{G S Q}$ volts to the left as $V_{D G Q}=V_{D S Q}-V_{G S Q}$. Thus, current axis will be drawn at $\left.V_{D G}\right|_{I_{D}=0}=-V_{G S Q}$ volts not at 0 V .

- Common-drain (CD) configuration (also known as source-follower)

1. Obtain $R_{a c}$ and $R_{D C}$ from the $D S$ loop as before.
2. Draw the AC-DC load lines i_{S} vs. $v_{D S}$ where $i_{S}=i_{D}$.

- For p-channel FETs, we express the currents in the reverse direction (i.e., having positive current values) and reverse the polarity of the terminal voltages (i.e., having positive voltage values), and then draw the AC-DC load lines, e.g., i_{D} vs. $v_{S D}$.

Chapter 10

BJT Small-Signal Analysis

10.1 Purpose of SSAC Analysis

The purpose of small-signal AC (SSAC) analysis to determine the three parameters of an amplifier input resistance, output resistance and gain. In this course, we are mostly interested in the two-port voltage-gain amplifier model shown in Figure 10.1 below.

Figure 10.1: Two-port voltage-gain amplifier model.

- Input resistance R_{i} is defined by the no-load input voltage of the amplifier divided by the no-load input current to the amplifier, i.e.,

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} \tag{10.1.1}
\end{equation*}
$$

NOTE: Input resistance cannot include the source resistance R_{s}.

- Output resistance R_{o} is obtained by the test-voltage method, i.e., by dividing the test voltage value with the measured test current value. In the test-voltage method, load is replaced with a test voltage $v_{\text {test }}$ and the independent power sources (v_{s} or i_{s}) are killed, i.e., $v_{s}=0$ or $i_{s}=0$. Thus, output resistance R_{o} is given by

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}} \tag{10.1.2}
\end{equation*}
$$

NOTE: Output resistance cannot include the load resistance R_{L}.

- No-load voltage gain A_{v} (or $A_{V_{\mathrm{NL}}}$) is defined by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} \tag{10.1.3}
\end{equation*}
$$

- When load is connected, the voltage gain will decrease due to the voltage-divider consisting of R_{L} and R_{o}. So, voltage gain with load, A_{V}, is given by

$$
\begin{equation*}
A_{V}=\frac{v_{o}}{v_{i}}=\left(\frac{v_{o}}{A_{v} v_{i}}\right)\left(\frac{A_{v} v_{i}}{v_{i}}\right)=\frac{R_{L}}{R_{o}+R_{L}} A_{v} \tag{10.1.4}
\end{equation*}
$$

- Current gain A_{i} is defined by the output current versus the input current, i.e.,

$$
\begin{equation*}
A_{i}=\frac{i_{o}}{i_{i}}=\frac{v_{o} / R_{L}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{L}} A_{V}=\frac{R_{i}}{R_{o}+R_{L}} A_{v} \tag{10.1.5}
\end{equation*}
$$

- Finally, overall voltage gain $A_{V s}$ is given by

$$
\begin{equation*}
A_{V s}=\frac{v_{o}}{v_{s}}=\frac{R_{L}}{R_{o}+R_{L}} A_{v} \frac{R_{i}}{R_{s}+R_{i}} \tag{10.1.6}
\end{equation*}
$$

10.1.1 BJT SSAC Analysis Steps

1. Draw the SSAC equivalent circuit
a) Draw the AC equivalent circuit (signal frequency is infinity, i.e., $f=\infty$)
i. Capacitors are short circuit, i.e., $X_{C} \rightarrow 0$.
ii. Kill the DC power sources (i.e., AC value of DC sources is zero).
b) Replace BJT with its small-signal equivalent model (e.g., hybrid equivalent model or r_{e} model).
2. Calculate the three amplifier parameters: R_{i}, R_{o} and A_{v}
a) Calculate no-load input resistance, $R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}$.
b) Calculate output resistance, R_{o}.
c) Calculate no-load voltage gain, $A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}$.

10.2 BJT Small-Signal Models

A small-signal model is an equivalent circuit that represents the SSAC characteristics of the transistor. It uses circuit elements that approximate the behavior of the transistor.

Two commonly used models used in SSAC analysis of BJTs are given below:

- hybrid equivalent model
- r_{e} model

Mostly, we are going to use the hybrid equivalent model. But, we are going to introduce and provide results for the r_{e} model as well.

NOTE: Small-signal equivalent model and its analysis are the same for both $n p n$ and $p n p$ transistors.

10.2.1 Hybrid Equivalent Model

Parameters of the hybrid equivalent circuit provide the entire set on the specification sheet of a BJT and cover all operating conditions. Generalized hybrid equivalent circuit for any transistor configuration is provided in Figure 10.2 below.

Figure 10.2: Complete hybrid equivalent circuit.
Here,

- h_{i} : input resistance
- h_{r} : reverse transfer voltage ratio $\left(v_{i} / v_{o}\right)$
- h_{f} : forward transfer current ratio $\left(i_{o} / i_{i}\right)$
- h_{o} : output conductance

For a specific configuration, the model parameters modified with the label of the common-mode terminal in their subscript. So, common-emitter and common-base configurations and their hybrid equivalent models are shown in Figure 10.3 and Figure 10.4 below, respectively.

Figure 10.3: Common-emitter configuration and its complete hybrid equivalent circuit.

Figure 10.4: Common-base configuration and its complete hybrid equivalent circuit.

- For the common-collector configuration, we always use the common-emitter hybrid equivalent model.

10.2.1.1 Simplified Hybrid Equivalent Model

Because h_{r} is normally a relatively small quantity, its removal is approximated by $h_{r} \approx 0$ and $h_{r} v_{o}=0$, resulting in the simplified hybrid equivalent circuit shown in Figure 10.5 below. In this course, we are going to use the simplified hybrid equivalent model.

Figure 10.5: Simplified hybrid equivalent circuit.

This circuit, can be further simplified if a value for the parameter h_{o} or $1 / h_{o}$ is not provided. In that case, we can safely assume that $h_{o}=0$ or $1 / h_{o}=\infty$ resulting in the approximate hybrid equivalent circuit shown in Figure 10.6 below.

Figure 10.6: Approximate hybrid equivalent circuit.

10.2.1.2 Common-Emitter Hybrid Equivalent Model

Common-emitter simplified hybrid equivalent circuit is shown in Figure 10.7 below.

Figure 10.7: Common-emitter simplified hybrid equivalent circuit.
Here, the h-parameters are defined as below

$$
\begin{align*}
h_{i e} & =\left.\frac{\partial V_{B E}}{\partial I_{B}}\right|_{Q \text {-point }} & =\frac{\gamma}{I_{B Q}} & \ldots \text { see diode dynamic resistance in Section 1.3.11 } \tag{10.2.7}\\
h_{f e} & =\left.\frac{\partial I_{C}}{\partial I_{B}}\right|_{Q \text {-point }} & =\beta_{a c} & \tag{10.2.8}\\
1 / h_{o e} & =\left.\frac{\partial V_{C E}}{\partial I_{C}}\right|_{Q \text {-point }} & =\frac{V_{A}+V_{C E Q}}{I_{C Q}} & \ldots V_{A} \text { is the early voltage and } V_{A} \gg V_{C E Q} \tag{10.2.9}
\end{align*}
$$

Typical values of $h_{f e}$ run from 50 to $200, h_{i e}$ run from 500Ω to $7 \mathrm{k} \Omega$, and $1 / h_{o e}$ run from $40 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$.

Note that, as $I_{C Q}=\beta I_{B Q}$ and $I_{E Q}=(\beta+1) I_{B Q}$, we can also express $h_{i e}$ in terms of $I_{C Q}$ or $I_{E Q}$ as follows

$$
\begin{align*}
h_{i e} & =\frac{\gamma}{I_{B Q}} \tag{10.2.10}\\
& =h_{f e} \frac{\gamma}{I_{C Q}} \tag{10.2.11}\\
& =\left(h_{f e}+1\right) \frac{\gamma}{I_{E Q}} \tag{10.2.12}
\end{align*}
$$

where $\gamma=k T / q$ is the thermal voltage and have fixed values for a given temperature, e.g., $\gamma=26 \mathrm{mV}$ at room temperature $T=300 \mathrm{~K}$.

10.2.1.3 Common-Emitter r_{e} Model

Common-emitter r_{e} model is shown in Figure 10.8 below.

Figure 10.8: Common-emitter r_{e} model.
One-to-one correspondence with the h-parameters are given below,

$$
\begin{align*}
h_{f e} & =\beta \tag{10.2.13}\\
h_{i e} & =(\beta+1) r_{e} \cong \beta r_{e} \tag{10.2.14}\\
1 / h_{o e} & =r_{o} . \tag{10.2.15}
\end{align*}
$$

Thus, $\beta=h_{f e}, \beta r_{e}=h_{i e}$ and $r_{o}=1 / h_{o e}$.

10.2.1.4 Common-Base Hybrid Equivalent Model

Common-base simplified hybrid equivalent circuit is shown in Figure 10.9 below.

Figure 10.9: Common-base simplified hybrid equivalent circuit.
Here, the h-parameters are defined as below,

$$
\begin{align*}
h_{i b}=\left.\frac{\partial V_{B E}}{\partial I_{E}}\right|_{Q \text {-point }} & =\frac{\gamma}{I_{E Q}} \tag{10.2.16}\\
h_{f b} & =-\left.\frac{\partial I_{C}}{\partial I_{E}}\right|_{Q \text {-point }} \tag{10.2.17}\\
1 / h_{o b} & =-\left.\frac{\partial V_{C B}}{\partial I_{C}}\right|_{Q \text {-point }} \tag{10.2.18}
\end{align*} \quad \approx-1, ~ \$ \infty
$$

Typically, $h_{f b}=-1$, and $h_{i b}$ run from 5Ω to 50Ω, and $1 / h_{o b}$ is in the megohm range. Thus, $1 / h_{o b} \gg 1 / h_{o e}$.

Note that, the relationship between $h_{i b}$ and $h_{i e}$ is given below

$$
\begin{equation*}
h_{i e}=\left(h_{f e}+1\right) h_{i b} \tag{10.2.19}
\end{equation*}
$$

or $h_{i b}=\frac{h_{i e}}{h_{f e}+1}$.

10.2.1.5 Common-Base r_{e} Model

Common-base r_{e} model is shown in Figure 10.10 below.

Figure 10.10: Common-base r_{e} model.
One-to-one correspondence with the h-parameters are given below

$$
\begin{align*}
h_{f b} & =-\alpha \tag{10.2.20}\\
h_{i b} & =r_{e} \tag{10.2.21}\\
1 / h_{o b} & =r_{o} . \tag{10.2.22}
\end{align*}
$$

Thus, $\alpha=-h_{f b} \cong 1, r_{e}=h_{i b}$ and $r_{o}=1 / h_{o b} \cong \infty$. Note that, minus sign is due to the direction of the current source.

10.2.1.6 Phase Relationship

The phase relationship between input and output depends on the amplifier configuration circuit as listed below.

- Common-Emitter: 180 degrees
- Common-Base: 0 degrees
- Common-Collector: 0 degrees (Emitter-Follower)

10.3 Common-Emitter Fixed-Bias Configuration

Common-emitter fixed-bias configuration is given in Figure 10.11 below

Figure 10.11: Common-emitter fixed-bias configuration.
Let us start SSAC analysis by drawing the AC equivalent circuit as shown in Figure 10.12 below

Figure 10.12: AC equivalent circuit of the fixed-bias circuit in Figure 10.11.
Then, we are going to replace BJT with its common-emitter hybrid equivalent model as shown in Figure 10.13 below

Figure 10.13: Small-signal equivalent circuit of the fixed-bias circuit in Figure 10.11.

- Obtain $h_{f e}$ and $1 / h_{o e}$ from the specification sheet of the transistor or by testing the transistor using a curve tracer. Calculate $h_{i e}$ using the DC analysis values as $h_{i e}=\frac{26 \mathrm{mV}}{I_{B Q}}=h_{f e} \frac{26 \mathrm{mV}}{I_{C Q}}$.

10.3.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{B}| | h_{i e} \tag{10.3.23}
\end{equation*}
$$

- If $R_{B} \geq 10 h_{i e}$, then R_{i} simplifies to $R_{i}=h_{i e}$.
- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{i}=R_{B} \| \beta r_{e} \tag{10.3.24}
\end{equation*}
$$

10.3.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f e} i_{b}}\right)\left(\frac{h_{f e} i_{b}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left(-R_{C} \| 1 / h_{o e}\right)\left(h_{f e}\right)\left(\frac{1}{h_{i e}}\right) \\
& =-\frac{h_{f e}\left(R_{C} \| 1 / h_{o e}\right)}{h_{i e}}
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=-\frac{h_{f e}\left(R_{C} \| 1 / h_{o e}\right)}{h_{i e}} \tag{10.3.25}
\end{equation*}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
A_{v}=-\frac{R_{C} \| r_{o}}{r_{e}} \tag{10.3.26}
\end{equation*}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, no-load voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v}=-\frac{h_{f e} R_{C}}{h_{i e}} \quad \ldots r_{e} \text { model: } A_{v}=-\frac{R_{C}}{r_{e}} \tag{10.3.27}
\end{equation*}
$$

- For the circuit in Figure 10.13, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v} \tag{10.3.28}
\end{align*}
$$

- If $1 / h_{o e} \geq 10 R_{C}$ and $R_{B} \geq 10 h_{i e}$, current gain A_{i} reduces to

$$
\begin{equation*}
A_{i}=-h_{f e} \tag{10.3.29}
\end{equation*}
$$

$$
\ldots r_{e} \text { model: } A_{i}=-\beta
$$

10.3.3 Output Resistance

Figure 10.14: Test voltage circuit of Figure 10.13 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 10.14 above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \| 1 / h_{o e} \tag{10.3.30}
\end{equation*}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, then R_{o} simplifies to $R_{o}=R_{C}$.
- Output resistance R_{o} according to the \boldsymbol{r}_{e} model is given by

$$
\begin{equation*}
R_{o}=R_{C} \| r_{o} \tag{10.3.31}
\end{equation*}
$$

10.3.4 Phase Relationship

Figure 10.15: Demonstrating the 180° phase shift between input and output waveforms.

- The phase relationship between input and output is 180 degrees as shown in Figure 10.15 above.
- The negative sign used in the voltage gain formulas indicates the inversion.

10.4 Common-Emitter Voltage-Divider Bias Configuration

Common-emitter voltage-divider bias configuration is given in Figure 10.16 below

Figure 10.16: Common-emitter voltage-divider bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 10.17 below

Figure 10.17: Small-signal equivalent circuit of the voltage-divider bias circuit in Figure 10.16.

10.4.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{1}| | R_{2}| | h_{i e} \tag{10.4.32}
\end{equation*}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{i}=R_{1}\left\|R_{2}\right\| \beta r_{e} \tag{10.4.33}
\end{equation*}
$$

10.4.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f e} i_{b}}\right)\left(\frac{h_{f e} i_{b}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left(-R_{C} \| 1 / h_{o e}\right)\left(h_{f e}\right)\left(\frac{1}{h_{i e}}\right) \\
& =-\frac{h_{f e}\left(R_{C} \| 1 / h_{o e}\right)}{h_{i e}}
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=-\frac{h_{f e}\left(R_{C} \| 1 / h_{o e}\right)}{h_{i e}} \tag{10.4.34}
\end{equation*}
$$

- No-load voltage gain A_{v} according to the \boldsymbol{r}_{e} model is given by

$$
\begin{equation*}
A_{v}=-\frac{R_{C} \| r_{o}}{r_{e}} \tag{10.4.35}
\end{equation*}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, no-load voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v}=-\frac{h_{f e} R_{C}}{h_{i e}} \quad \ldots r_{e} \text { model: } A_{v}=-\frac{R_{C}}{r_{e}} \tag{10.4.36}
\end{equation*}
$$

- For the circuit in Figure 10.17, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v} \tag{10.4.37}
\end{align*}
$$

- If $1 / h_{o e} \geq 10$, and given $R^{\prime}=R_{1} \| R_{2}$, current gain A_{i} reduces to

$$
\begin{equation*}
A_{i}=-h_{f e} \frac{R^{\prime}}{R^{\prime}+h_{i e}} \quad \ldots r_{e} \text { model: } A_{i}=-\frac{R^{\prime}}{R^{\prime} / \beta+r_{e}} \tag{10.4.38}
\end{equation*}
$$

10.4.3 Output Resistance

Figure 10.18: Test voltage circuit of Figure 10.17 in order to calculate the output resistance R_{o}.

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 10.18 above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \| 1 / h_{o e} \tag{10.4.39}
\end{equation*}
$$

- If $1 / h_{o e} \geq 10 R_{C}$, then R_{o} simplifies to $R_{o}=R_{C}$.
- Output resistance R_{o} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{o}=R_{C} \| r_{o} \tag{10.4.40}
\end{equation*}
$$

10.4.4 Phase Relationship

- Phase relationship between input and output of a common-emitter amplifier configuration if always 180 degrees. This is independent of the type of the bias-configuration.

10.5 Common-Emitter Unbypassed-Emitter Bias Configuration

Common-emitter unbypassed-emitter bias configuration is given in Figure 10.19 below

Figure 10.19: Common-emitter unbypassed-emitter bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 10.20 below

Figure 10.20: Small-signal equivalent circuit of the unbypassed-emitter bias circuit in Figure 10.19.

- When R_{E} is not bypassed, we normally assume $1 / h_{o e}=\infty$ in order to reduce the calculation complexity. Because of the feedback, even $1 / h_{o e} \neq \infty$ the results do not really change at all.

10.5.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{array}{rlr}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =R_{B} \| R_{b} & \ldots R_{b}=h_{i e}+\left(h_{f e}+1\right) R_{E} \\
& =R_{B} \|\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] &
\end{array}
$$

As a result, R_{i} is given by

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{B} \|\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] \tag{10.5.41}
\end{equation*}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{i}=R_{B}\left\|(\beta+1)\left(r_{e}+R_{E}\right) \cong R_{B}\right\| \beta\left(r_{e}+R_{E}\right) \tag{10.5.42}
\end{equation*}
$$

10.5.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f e} i_{b}}\right)\left(\frac{h_{f e} i_{b}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left(-R_{C}\right)\left(h_{f e}\right)\left(\frac{1}{R_{b}}\right) \\
& =-\frac{h_{f e} R_{C}}{h_{i e}+\left(h_{f e}+1\right) R_{E}}
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=-\frac{h_{f e} R_{C}}{h_{i e}+\left(h_{f e}+1\right) R_{E}} \tag{10.5.43}
\end{equation*}
$$

- No-load voltage gain A_{v} according to the \boldsymbol{r}_{e} model is given by

$$
\begin{equation*}
A_{v}=-\frac{R_{C}}{r_{e}+R_{E}} \tag{10.5.44}
\end{equation*}
$$

- If $\left(h_{f e}+1\right) R_{E} \geq 10 h_{i e}$, no-load voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v}=-\frac{R_{C}}{R_{E}} \quad \ldots r_{e} \text { model: } A_{v}=-\frac{R_{C}}{R_{E}} \tag{10.5.45}
\end{equation*}
$$

- For the circuit in Figure 10.20, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v} \tag{10.5.46}
\end{align*}
$$

- Resultant current gain A_{i} is given by

$$
\begin{equation*}
A_{i}=-h_{f e} \frac{R_{B}}{R_{B}+R_{b}} \quad \ldots r_{e} \text { model: } A_{i}=-\frac{R_{B}}{R_{B} / \beta+r_{e}+R_{E}} \tag{10.5.47}
\end{equation*}
$$

10.5.3 Output Resistance

Figure 10.21: Test voltage circuit of Figure 10.20 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 10.21 above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \tag{10.5.48}
\end{equation*}
$$

- Output resistance R_{o} according to the \boldsymbol{r}_{e} model is given by

$$
\begin{equation*}
R_{o}=R_{C} \tag{10.5.49}
\end{equation*}
$$

10.5.4 Phase Relationship

- Phase relationship between input and output of a common-emitter amplifier configuration if always 180 degrees. This is independent of the type of the bias-configuration.

10.6 Emitter-Follower Configuration

Emitter-follower (common-collector) configuration is given in Figure 10.22 below

Figure 10.22: Emitter-follower configuration.
Corresponding SSAC equivalent circuit is shown in Figure 10.23 below

Figure 10.23: Small-signal equivalent circuit of the emitter-follower circuit in Figure 10.22.

- When R_{E} is not bypassed, we normally assume $1 / h_{o e}=\infty$ in order to reduce the calculation complexity.

10.6.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{array}{rlr}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =R_{B} \| R_{b} & \ldots R_{b}=h_{i e}+\left(h_{f e}+1\right) R_{E} \\
& =R_{B} \|\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] &
\end{array}
$$

As a result, R_{i} is given by

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{B} \|\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] \tag{10.6.50}
\end{equation*}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{i}=R_{B}\left\|(\beta+1)\left(r_{e}+R_{E}\right) \cong R_{B}\right\| \beta\left(r_{e}+R_{E}\right) \tag{10.6.51}
\end{equation*}
$$

10.6.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{i_{b}}\right)\left(\frac{i_{b}}{v_{i}}\right) \\
& =\left[\left(h_{f e}+1\right) R_{E}\right]\left(\frac{1}{R_{b}}\right) \\
& =\frac{\left(h_{f e}+1\right) R_{E}}{h_{i e}+\left(h_{f e}+1\right) R_{E}} \cong 1
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=\frac{\left(h_{f e}+1\right) R_{E}}{h_{i e}+\left(h_{f e}+1\right) R_{E}} \cong 1 \tag{10.6.52}
\end{equation*}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
A_{v}=\frac{R_{E}}{r_{e}+R_{E}} \cong 1 \tag{10.6.53}
\end{equation*}
$$

- For the circuit in Figure 10.23, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{E}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{E}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{E}} A_{v} \tag{10.6.54}
\end{align*}
$$

- Resultant current gain A_{i} is given by,

$$
\begin{equation*}
A_{i}=\left(h_{f e}+1\right) \frac{R_{B}}{R_{B}+R_{b}} \quad \ldots r_{e} \text { model: } A_{i}=\frac{R_{B}}{R_{B} /(\beta+1)+r_{e}+R_{E}} \tag{10.6.55}
\end{equation*}
$$

10.6.3 Output Resistance

Figure 10.24: Test voltage circuit of Figure 10.23 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 10.24 above.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{E} \| \frac{h_{\text {ie }}}{h_{f e}+1} \tag{10.6.56}
\end{equation*}
$$

- Output resistance R_{o} according to the \boldsymbol{r}_{e} model is given by

$$
\begin{equation*}
R_{o}=R_{E} \| r_{e} \tag{10.6.57}
\end{equation*}
$$

- If $1 / h_{o e} \neq \infty$, then replace R_{E} with $\left(R_{E} \| 1 / h_{o e}\right)$ in R_{i}, A_{v} and R_{o} calculations.
- If a voltage source with source resistance R_{s} is connected to the input, replace $h_{i e}$ with $\left(h_{i e}+R_{B} \| R_{s}\right)$ in R_{o} calculations.

10.6.4 Phase Relationship

- Emitter-follower (common-collector) configuration has no phase shift between input and output.

10.7 Common-Emitter Collector Feedback Configuration

Common-emitter collector feedback bias configuration is given in Figure 10.25 below

Figure 10.25: Common-emitter collector feedback bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 10.26 below

Figure 10.26: Small-signal equivalent circuit of the collector feedback bias circuit in Figure 10.25.

10.7.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{array}{rlr}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =\frac{h_{i e}}{1+\frac{h_{i e}+h_{f e} R_{C}}{R_{F}+R_{C}}} & \ldots i_{f}=-\frac{h_{i e}+h_{f e} R_{C}}{R_{F}+R_{C}} i_{b} \\
& \cong \frac{h_{i e}}{1+\frac{h_{f e} R_{C}}{R_{F}+R_{C}}} & \ldots h_{f e} R_{C} \gg h_{i e}
\end{array}
$$

As a result, R_{i} is given by

$$
\begin{equation*}
R_{i}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} \cong \frac{h_{i e}}{1+\frac{h_{f e} R_{C}}{R_{F}+R_{C}}} \tag{10.7.58}
\end{equation*}
$$

- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{i} \cong \frac{\beta r_{e}}{1+\frac{\beta R_{C}}{R_{F}+R_{C}}} \tag{10.7.59}
\end{equation*}
$$

10.7.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{array}{rlrl}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{h_{f e} R_{F}-h_{i e}}{R_{F}+R_{C}}\right)\left(\frac{-R_{C}}{h_{i e}}\right) & & \ldots i_{f}=-\frac{h_{i e}+h_{f e} R_{C}}{R_{F}+R_{C}} i_{b} \\
& \cong\left(\frac{h_{f e} R_{F}}{R_{F}+R_{C}}\right)\left(\frac{-R_{C}}{h_{i e}}\right) & \ldots h_{f e} R_{F} \gg h_{i e} \\
& \approx-\frac{h_{f e} R_{C}}{h_{i e}} & \ldots R_{F} \gg R_{C}
\end{array}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} \approx-\frac{h_{f e} R_{C}}{h_{i e}} \tag{10.7.60}
\end{equation*}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
A_{v} \approx-\frac{R_{C}}{r_{e}} \tag{10.7.61}
\end{equation*}
$$

- For the circuit in Figure 10.26, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v} \tag{10.7.62}
\end{align*}
$$

- Resultant current gain A_{i} is given by,

$$
\begin{equation*}
A_{i} \cong-\frac{h_{f e}\left(R_{F}+R_{C}\right)}{R_{F}+\left(h_{f e}+1\right) R_{C}} \quad \ldots r_{e} \text { model: } A_{i}=-\frac{R_{F}+R_{C}}{R_{F} / \beta+R_{C}} \tag{10.7.63}
\end{equation*}
$$

10.7.3 Output Resistance

Figure 10.27: Test voltage circuit of Figure 10.26 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 10.27 above. Note that in the circuit $i_{b}=0$, so $h_{f e} i_{b}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \| R_{F} \tag{10.7.64}
\end{equation*}
$$

- Output resistance R_{o} according to the \boldsymbol{r}_{e} model is given by

$$
\begin{equation*}
R_{o}=R_{C} \| R_{F} \tag{10.7.65}
\end{equation*}
$$

- If $1 / h_{o e} \neq \infty$, then replace R_{C} with $\left(R_{C} \| 1 / h_{o e}\right)$ in R_{i}, A_{v} and R_{o} calculations.
- If a voltage source with source resistance R_{s} is connected to the input, replace R_{F} with $\left[R_{F}\left(R_{s}+h_{i e}\right) /\left(h_{f e} R_{s}+h_{i e}\right)\right]$ in R_{o} calculations.

10.7.4 Phase Relationship

- Phase relationship between input and output of a common-emitter amplifier configuration if always 180 degrees. This is independent of the type of the bias-configuration.

10.8 Common-Base Configuration

Common-base configuration is given in Figure 10.28 below

Figure 10.28: Common-base configuration.

Corresponding SSAC equivalent circuit is shown in Figure 10.29 below

Figure 10.29: Small-signal equivalent circuit of the common-base circuit in Figure 10.28.

- Here, $h_{i b}=\frac{h_{i e}}{h_{f e}+1}=\frac{26 \mathrm{mV}}{I_{E Q}}$ and $h_{f b}=-\alpha_{a c}=-1$.

10.8.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{E} \| h_{i b} \tag{10.8.66}
\end{equation*}
$$

- If $R_{E} \geq 10 h_{i b}$, then R_{i} simplifies to $R_{i}=h_{i b}$.
- Input resistance R_{i} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{i}=R_{E} \| r_{e} \tag{10.8.67}
\end{equation*}
$$

10.8.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{h_{f b} i_{e}}\right)\left(\frac{h_{f b} i_{e}}{i_{e}}\right)\left(\frac{i_{e}}{v_{i}}\right) \\
& =\left(-R_{C}\right)\left(h_{f b}\right)\left(\frac{1}{h_{i b}}\right) \\
& =\frac{R_{C}}{h_{i b}} \quad \ldots h_{f b}=-1
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=\frac{R_{C}}{h_{i b}} \tag{10.8.68}
\end{equation*}
$$

- No-load voltage gain A_{v} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
A_{v}=\frac{R_{C}}{r_{e}} \tag{10.8.69}
\end{equation*}
$$

- For the circuit in Figure 10.29, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{C}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{C}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{C}} A_{v} \tag{10.8.70}
\end{align*}
$$

- Resultant current gain A_{i} is given by,

$$
\begin{equation*}
A_{i}=\frac{R_{E} \| h_{i b}}{h_{i b}} \approx 1 \quad \ldots r_{e} \text { model: } A_{i}=\frac{R_{E} \| r_{e}}{r_{e}} \approx 1 \tag{10.8.71}
\end{equation*}
$$

10.8.3 Output Resistance

Figure 10.30: Test voltage circuit of Figure 10.29 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 10.30 above. Note that in the circuit $i_{e}=0$, so $h_{f b} i_{e}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{C} \tag{10.8.72}
\end{equation*}
$$

- Output resistance R_{o} according to the $\boldsymbol{r}_{\boldsymbol{e}}$ model is given by

$$
\begin{equation*}
R_{o}=R_{C} \tag{10.8.73}
\end{equation*}
$$

- If $1 / h_{o b} \neq \infty$, then replace R_{C} with $\left(R_{C} \| 1 / h_{o b}\right)$ in R_{i}, A_{v} and R_{o} calculations.

10.8.4 Phase Relationship

- A common-base amplifier configuration has no phase shift between input and output

Example 10.1: Consider the common-base BJT amplifier in the figure below.
a) Perform DC analysis and find the Q-point.
b) Evaluate the overall voltage gain $A_{V s}$ and the current gain A_{i}.
c) Sketch v_{o} on the $\mathrm{AC}+\mathrm{DC}$ load line graph when
i. $v_{s}=100 \sin (\omega t) \mathrm{mV}$,
ii. $v_{s}=900 \sin (\omega t) \mathrm{mV}$.

Figure 10.31: BJT amplifier circuit for Example 10.1.
Solution: a) Let us first draw the DC equivalent circuit first as shown in Figure 10.32 below,

Figure 10.32: DC equivalent circuit of Figure 10.31: (a) as it is (b) Thévenin applied.
Here, $R_{E}=R_{E_{1}}+R_{E_{2}}=0.2 k+1.5 k=1.7 \mathrm{k} \Omega$.

Now, let us calculate $V_{B B}, R_{B B}, I_{C Q}, V_{C E Q}$ and $V_{C B Q}$

$$
\begin{aligned}
V_{B B} & =\left(\frac{30 k}{30 k+180 k}\right)(10)=1.43 \mathrm{~V} \\
R_{B B} & =30 k \| 180 k=25.71 \mathrm{k} \Omega \\
I_{C Q} \cong I_{E Q} & =\frac{1.43-0.7}{25.71 k / 201+1.7 k}=0.4 \mathrm{~mA}, \\
V_{C E Q} & =10-(0.4 m)(4.7 k+1.7 k)=7.44 \mathrm{~V}, \\
V_{C B Q} & =7.44-0.7=6.74 \mathrm{~V} .
\end{aligned}
$$

b) In order to calculate the voltage gain, we need to draw the common-base SSAC equivalent circuit. As it is not given $1 / h_{o b}=\infty$. Let us now calculate $h_{i b}$ as

$$
h_{i b}=\frac{26 m}{0.4 m}=65 \Omega .
$$

So, the small-signal equivalent circuit is given in Figure 10.32 below

Figure 10.33: Small-signal equivalent circuit of Figure 10.31.
Now, let us calculate input resistance R_{i} and voltage gain with load A_{V} as follows

$$
\begin{aligned}
R_{i} & =R_{E_{2}}\left\|\left(R_{E 1}+h_{i b}\right)=1.5 k\right\|(200+65) \cong 225 \Omega \\
A_{V} & =\frac{v_{o}}{v_{i}}=\left(\frac{v_{o}}{h_{f b} i_{e}}\right)\left(\frac{h_{f b} i_{e}}{i_{e}}\right)\left(\frac{i_{e}}{v_{i}}\right) \\
& =\left(-R_{C} \| R_{L}\right)\left(h_{f b}\right)\left(\frac{1}{R_{E_{1}}+h_{i b}}\right)=\frac{R_{C} \| R_{L}}{R_{E_{1}}+h_{i b}} \\
& =\frac{4.7 k \| 10 k}{200+65}=\frac{3.2 k}{0.265 k}=12.08 .
\end{aligned}
$$

Thus, overall voltage gain $A_{V s}$ and current gain A_{i} are given by

$$
\begin{aligned}
A_{V s}=\frac{v_{o}}{v_{s}} & =\left(\frac{v_{o}}{v_{i}}\right)\left(\frac{v_{i}}{v_{s}}\right)=A_{V} \frac{R_{i}}{R_{s}+R_{i}}=(12.08)\left(\frac{225}{100+225}\right) \\
& =8.36 \\
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{L}}{v_{i} / R_{i}}=A_{V} \frac{R_{i}}{R_{L}}=(12.08)\left(\frac{0.225 k}{10 k}\right) \\
& =0.27 .
\end{aligned}
$$

c) Let us write down the AC load line equation for this common-base amplifier, noting that $v_{o}=v_{c b}=-i_{c}\left(R_{C} \| R_{L}\right)=-i_{c} R_{a c}$ and $\left.v_{c b}=v_{c e}-v_{b e}=v_{c e}-\frac{h_{i b}}{R_{E_{1}}+h_{i b}} v_{i} \approx v_{c e}\right)$

$$
\begin{aligned}
v_{C B} & =-i_{C} R_{a c}+V_{C B Q}+I_{C Q} R_{a c} & & \ldots V_{C B Q}=V_{C E Q}-V_{B E Q} \\
v_{C E}-V_{B E Q} & =-i_{C} R_{a c}+V_{C E Q}-V_{B E Q}+I_{C Q} R_{a c} & & \ldots v_{C B} \approx v_{C E}-V_{B E Q} \\
v_{C E} & =-i_{C} R_{a c}+V_{C E Q}+I_{C Q} R_{a c} & &
\end{aligned}
$$

So, we calculate $R_{a c}$ from the C-B loop and $R_{D C}$ from the C-E loop as follows

$$
\begin{aligned}
R_{a c} & =R_{C}\left\|R_{L}=4.7 k\right\| 10 k=3.2 \mathrm{k} \Omega \\
R_{D C} & =R_{C}+R_{E}=4.7 k+1.7 k=6.4 \mathrm{k} \Omega
\end{aligned}
$$

Note that, maximum available undistorted swing amplitude is

$$
\min \left(V_{C E Q}, I_{C Q} R_{a c}\right)=\min (7.44,(0.4 m)(3.2 k))=\min (7.44,1.28)=1.28 \mathrm{~V}
$$

Thus, as $A_{V s}=8.36$, maximum input source amplitude which gives an undistorted output is

$$
\max \left(v_{s(p)}\right)=1.28 / 8.36=153.1 \mathrm{mV}
$$

If the input source amplitude exceeds this value, we will observe distortion at the output.
i. For $v_{s}=100 \sin (\omega t) \mathrm{mV}$, we are going to observe an undistorted sinusoidal output with an amplitude of 0.836 V around $V_{C B Q}=6.74 \mathrm{~V}$ as shown in Figure 10.34 below.

Figure 10.34: AC-DC load-lines for Example 10.1with input $v_{s}=100 \sin (\omega t) \mathrm{mV}$.
ii. For $v_{s}=900 \sin (\omega t) \mathrm{mV}$, we are going to observe a distorted output as shown in Figure 10.35 below.

Figure 10.35: AC-DC load-lines for Example 10.1with input $v_{s}=900 \sin (\omega t) \mathrm{mV}$.

Chapter 11

FET Small-Signal Analysis

11.0.1 FET SSAC Analysis Steps

1. Draw the SSAC equivalent circuit
a) Draw the AC equivalent circuit (signal frequency is infinity, i.e., $f=\infty$)
i. Capacitors are short circuit, i.e., $X_{C} \rightarrow 0$.
ii. Kill the DC power sources (i.e., AC value of DC sources is zero).
b) Replace FET with its small-signal equivalent model.
2. Calculate the three amplifier parameters: R_{i}, R_{o} and A_{v}
a) Calculate no-load input resistance, $R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}$.
b) Calculate output resistance, R_{o}.
c) Calculate no-load voltage gain, $A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}$.

11.1 FET Small-Signal Model

Small-signal equivalent model for a FET transistor is provided in Figure 11.1 below. This model and its analysis is the same for all FET types, i.e., JFET, DMOSFET, EMOSFET, n-channel and p-channel.

Figure 11.1: FET small-signal equivalent circuit.
Here,

- $g_{m}=g_{f s}=y_{f s}=\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{Q \text {-point }}$ is the forward transfer conductance,
- $r_{d s}=\frac{1}{g_{o s}}=\frac{1}{y_{o s}}=\left.\frac{\partial V_{D S}}{\partial I_{D}}\right|_{Q \text {-point }}$ is the output resistance.

Forward transfer conductance g_{m} is mostly called as the transconductance parameter.
When $r_{d s} \neq \infty$, we can also use the voltage-controlled voltage source model (via Norton-to-Thévenin transformation, a.k.a source transformation) as shown in Figure 11.2 below. We mostly use this model for the common-gate and unbypassed self-bias configurations.

Figure 11.2: FET small-signal equivalent circuit with the voltage-controlled voltage source.
Here $\mu=g_{m} r_{d s}$ is the forward transfer-voltage gain.

- Typical values of g_{m} run from 1 mS to 5 mS ,
- Typical values of $r_{d s}$ run from $20 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$,
- Consequently, typical values of μ run from 20 to 500 .

11.1.0.1 Transconductance Parameter (g_{m})

Transconductance parameter g_{m} is given by

$$
\begin{equation*}
g_{m}=\left.\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{Q \text {-point }} \cong \frac{\Delta I_{D}}{\Delta V_{G S}}\right|_{Q \text {-point }} \tag{11.1.1}
\end{equation*}
$$

In other words, g_{m} is the slope of the characteristics at the point of operation as shown in Figure 11.3 below.

Figure 11.3: Graphical definition of the transconductance g_{m}.

- Let us derive g_{m} for the JFET equation, $I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$

$$
\begin{array}{rlr}
g_{m} & =\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{Q \text {-point }}=\left.\frac{2 I_{D S S}}{\left|V_{P}\right|}\left(1-\frac{V_{G S}}{V_{P}}\right)\right|_{Q \text {-point }} \\
& =\frac{2 I_{D S S}}{\left|V_{P}\right|}\left(1-\frac{V_{G S Q}}{V_{P}}\right) & \ldots I_{D Q}=I_{D S S}\left(1-\frac{V_{G S Q}}{V_{P}}\right)^{2} \\
& =\frac{2 I_{D S S}}{\left|V_{P}\right|} \sqrt{\frac{I_{D Q}}{I_{D S S}}} & \ldots g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}
\end{array}
$$

- Let us derive g_{m} for the MOSFET equation, $I_{D}=k\left(V_{G S}-V_{G S(T h)}\right)^{2}$

$$
\begin{array}{rlr}
g_{m} & =\left.\frac{\partial I_{D}}{\partial V_{G S}}\right|_{Q \text {-point }}=\left.2 k\left(V_{G S}-V_{G S(T h)}\right)\right|_{Q \text {-point }} & \\
& =2 k\left(V_{G S Q}-V_{G S(T h)}\right) & \\
& =2 \sqrt{k} \sqrt{I_{D Q}} & \ldots I_{D Q}=k\left(V_{G S}-V_{G S(T h)}\right)^{2} \tag{11.1.5}
\end{array}
$$

11.1.0.2 Phase Relationship

The phase relationship between input and output depends on the amplifier configuration circuit as listed below.

- Common-Source: 180 degrees
- Common-Gate: 0 degrees
- Common-Drain: 0 degrees (Source-Follower)

11.2 Common-Source Fixed-Bias Configuration

Common-source fixed-bias configuration is given in Figure 11.4 below

Figure 11.4: Common-source fixed-bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 11.5 below

Figure 11.5: Small-signal equivalent circuit of the fixed-bias circuit in Figure 11.4.

11.2.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{G} \tag{11.2.6}
\end{equation*}
$$

11.2.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{g_{m} v_{g s}}\right)\left(\frac{g_{m} v_{g s}}{v_{g s}}\right)\left(\frac{v_{g s}}{v_{i}}\right) \\
& =\left(-R_{D} \| r_{d s}\right)\left(g_{m}\right)(1) \\
& =-g_{m}\left(R_{D} \| r_{d s}\right)
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=-g_{m}\left(R_{D} \| r_{d s}\right) \tag{11.2.7}
\end{equation*}
$$

- If $r_{d s} \geq 10 R_{D}$, voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v}=-g_{m} R_{D} \tag{11.2.8}
\end{equation*}
$$

- For the circuit in Figure 11.5, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{D}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{D}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{D}} A_{v} \tag{11.2.9}
\end{align*}
$$

- If $r_{d s} \geq 10 R_{D}$, current gain A_{i} reduces to

$$
\begin{equation*}
A_{i}=-g_{m} R_{G} \tag{11.2.10}
\end{equation*}
$$

11.2.3 Output Resistance

Figure 11.6: Test voltage circuit of Figure 11.5 in order to calculate the output resistance R_{o}.

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 11.6 above. Note that in the circuit $v_{g s}=0$, so $g_{m} v_{g s}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{D} \| r_{d s} \tag{11.2.11}
\end{equation*}
$$

- If $r_{d s} \geq 10 R_{D}$, then R_{o} simplifies to $R_{o}=R_{D}$.

11.3 Common-Source Self-Bias Configuration

Common-source self-bias configuration is given in Figure 11.7 below

Figure 11.7: Common-source self-bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 11.8 below

Figure 11.8: Small-signal equivalent circuit of the self-bias circuit in Figure 11.7.

11.3.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{G} \tag{11.3.12}
\end{equation*}
$$

11.3.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{g_{m} v_{g s}}\right)\left(\frac{g_{m} v_{g s}}{v_{g s}}\right)\left(\frac{v_{g s}}{v_{i}}\right) \\
& =\left(-R_{D} \| r_{d s}\right)\left(g_{m}\right)(1) \\
& =-g_{m}\left(R_{D} \| r_{d s}\right)
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=-g_{m}\left(R_{D} \| r_{d s}\right) \tag{11.3.13}
\end{equation*}
$$

- If $r_{d s} \geq 10 R_{D}$, no-load voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v}=-g_{m} R_{D} \tag{11.3.14}
\end{equation*}
$$

- For the circuit in Figure 11.8, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{D}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{D}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{D}} A_{v} \tag{11.3.15}
\end{align*}
$$

- If $r_{d s} \geq 10 R_{D}$, current gain A_{i} reduces to

$$
\begin{equation*}
A_{i}=-g_{m} R_{G} \tag{11.3.16}
\end{equation*}
$$

11.3.3 Output Resistance

Figure 11.9: Test voltage circuit of Figure 11.8 in order to calculate the output resistance R_{o}.

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 11.9 above. Note that in the circuit $v_{g s}=0$, so $g_{m} v_{g s}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{D} \| r_{d s} \tag{11.3.17}
\end{equation*}
$$

- If $r_{d s} \geq 10 R_{D}$, then R_{o} simplifies to $R_{o}=R_{D}$.

11.4 Common-Source Voltage-Divider Bias Configuration

Common-source voltage-divider bias configuration is given in Figure 11.10 below

Figure 11.10: Common-source voltage-divider bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 11.11 below

Figure 11.11: Small-signal equivalent circuit of the voltage-divider bias circuit in Figure 11.10.

11.4.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{1}| | R_{2} \tag{11.4.18}
\end{equation*}
$$

11.4.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{g_{m} v_{g s}}\right)\left(\frac{g_{m} v_{g s}}{v_{g s}}\right)\left(\frac{v_{g s}}{v_{i}}\right) \\
& =\left(-R_{D} \| r_{d s}\right)\left(g_{m}\right)(1) \\
& =-g_{m}\left(R_{D} \| r_{d s}\right)
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=-g_{m}\left(R_{D} \| r_{d s}\right) \tag{11.4.19}
\end{equation*}
$$

- If $r_{d s} \geq 10 R_{D}$, no-load voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v}=-g_{m} R_{D} \tag{11.4.20}
\end{equation*}
$$

- For the circuit in Figure 11.11, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{D}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{D}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{D}} A_{v} \tag{11.4.21}
\end{align*}
$$

- If $r_{d s} \geq 10 R_{D}$, current gain A_{i} reduces to

$$
\begin{equation*}
A_{i}=-g_{m}\left(R_{1} \| R_{2}\right) \tag{11.4.22}
\end{equation*}
$$

11.4.3 Output Resistance

Figure 11.12: Test voltage circuit of Figure 11.11 in order to calculate the output resistance R_{o}.

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 11.12 above. Note that in the circuit $v_{g s}=0$, so $g_{m} v_{g s}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{D} \| r_{d s} \tag{11.4.23}
\end{equation*}
$$

- If $r_{d s} \geq 10 R_{D}$, then R_{o} simplifies to $R_{o}=R_{D}$.

11.5 Common-Source Unbypassed Self-Bias Configuration

Common-source unbypassed self-bias (unbypassed R_{S}) configuration is given in Figure 11.13 below

Figure 11.13: Common-source unbypassed self-bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 11.14 below

Figure 11.14: Small-signal equivalent circuit of the unbypassed self-bias circuit in Figure 11.13.

- When R_{S} is not bypassed, we normally use the voltage-controlled voltage source model in the small-signal equivalent circuit as shown in Figure 11.14 above.

11.5.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{G} \tag{11.5.24}
\end{equation*}
$$

11.5.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{array}{rlr}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{i_{d}}\right)\left(\frac{i_{d}}{v_{g s}}\right)\left(\frac{v_{g s}}{v_{i}}\right) \\
& =\left(-R_{D}\right)\left(\frac{\mu}{R_{S}+R_{D}+r_{d s}}\right)\left(\frac{v_{g s}}{v_{g s}+i_{d} R_{S}}\right) \quad \ldots i_{d}=\frac{\mu v_{g s}}{R_{S}+R_{D}+r_{d s}} \\
& =\left(-R_{D}\right)\left(\frac{\mu}{R_{S}+R_{D}+r_{d s}}\right)\left(\frac{1}{1+\frac{\mu R_{S}}{R_{S}+R_{D}+r_{d s}}}\right) & \\
& =-\frac{\mu R_{D}}{(\mu+1) R_{S}+R_{D}+r_{d s}} & \ldots \mu=g_{m} r_{d s} \\
& =-\frac{g_{m} R_{D}}{1+g_{m} R_{S}+\frac{R_{S}+R_{D}}{r_{d s}}} &
\end{array}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=-\frac{g_{m} R_{D}}{1+g_{m} R_{S}+\frac{R_{S}+R_{D}}{r_{d s}}} \tag{11.5.25}
\end{equation*}
$$

- If $r_{d s} \geq 10\left(R_{D}+R_{S}\right)$, no-load voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v}=-\frac{g_{m} R_{D}}{1+g_{m} R_{S}} \tag{11.5.26}
\end{equation*}
$$

- If $r_{d s} \geq 10\left(R_{D}+R_{S}\right)$ and $g_{m} R_{S} \gg 1$, no-load voltage gain A_{v} reduces to

$$
\begin{equation*}
A_{v} \approx-\frac{R_{D}}{R_{S}} \tag{11.5.27}
\end{equation*}
$$

- For the circuit in Figure 11.14, we can obtain the current gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{D}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{D}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{D}} A_{v} \tag{11.5.28}
\end{align*}
$$

11.5.3 Output Resistance

Figure 11.15: Test voltage circuit of Figure 11.14 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 11.15 above.

$$
\begin{array}{rlrl}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}} & =\frac{v_{\text {test }}}{\frac{v_{\text {test }}}{R_{D}}+i_{d}} & \ldots i_{\text {test }}=i_{R_{D}}+i_{d} \\
& =\frac{v_{\text {test }}}{\frac{v_{\text {test }}}{R_{D}}-\frac{v_{g s}}{R_{S}}} & \ldots v_{s}=-v_{g s}, i_{d}=\frac{-v_{g s}}{R_{S}} \\
& =\frac{v_{\text {test }}}{\frac{v_{\text {test }}}{R_{D}}+\frac{v_{\text {test }}}{(\mu+1) R_{S}+r_{d s}}} & \ldots v_{g s}=-\frac{v_{\text {test }}}{(\mu+1)+r_{\text {ds }} / R_{S}} \\
& =R_{D} \|\left[(\mu+1) R_{S}+r_{d s}\right] & \ldots \mu=g_{m} r_{d s} \\
& =R_{D} \|\left[\left(g_{m} R_{S}+1\right) r_{d s}+R_{S}\right] & & \\
& \cong R_{D}
\end{array}
$$

As a result, R_{o} is given by

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}} \cong R_{D} \tag{11.5.29}
\end{equation*}
$$

11.6 Source-Follower Configuration

Source-follower (common-drain) configuration is given in Figure 11.16 below

Figure 11.16: Source-follower configuration.
Corresponding SSAC equivalent circuit is shown in Figure 11.17 below

Figure 11.17: Small-signal equivalent circuit of the source-follower circuit in Figure 11.16.

11.6.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{equation*}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty}=R_{G} \tag{11.6.30}
\end{equation*}
$$

11.6.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\left(\frac{v_{o}}{v_{g s}}\right)\left(\frac{v_{g s}}{v_{i}}\right) \\
& =\left[g_{m}\left(R_{S} \| r_{d s}\right)\right]\left(\frac{1}{1+g_{m}\left(R_{S} \| r_{d s}\right)}\right) \\
& =\frac{g_{m}\left(R_{S} \| r_{d s}\right)}{1+g_{m}\left(R_{S}| | r_{d s}\right)} \\
& \cong 1
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=\frac{g_{m}\left(R_{S}| | r_{d s}\right)}{1+g_{m}\left(R_{S}| | r_{d s}\right)} \cong 1 \tag{11.6.31}
\end{equation*}
$$

- For the circuit in Figure 11.17, we can obtain the current-gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{S}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{S}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{S}} A_{v} \tag{11.6.32}
\end{align*}
$$

11.6.3 Output Resistance

Figure 11.18: Test voltage circuit of Figure 11.17 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 11.18 above.

$$
\begin{array}{rlr}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}} & =\frac{v_{\text {test }}}{\frac{v_{\text {test }}}{R_{S} \| r_{d s}}-g_{m} v_{g s}} & \ldots i_{\text {test }}=i_{R_{S} \| r_{d s}}-g_{m} v_{g s} \\
& =\frac{v_{\text {test }}}{\frac{v_{\text {test }}}{R_{S} \| r_{r s}}+g_{m} v_{\text {test }}} & \ldots v_{\text {test }}=-v_{g s} \\
& =\frac{v_{\text {test }}}{\frac{v_{\text {test }}}{R_{S} \| r_{d s}}+\frac{v_{\text {test }}}{1 / g_{m}}} & \\
& =R_{S}\left\|r_{d s}\right\| \frac{1}{g_{m}} &
\end{array}
$$

As a result, R_{o} is given by

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{S}\left\|r_{d s}\right\| \frac{1}{g_{m}} \tag{11.6.33}
\end{equation*}
$$

- If $\left(R_{S} \| r_{d s}\right) \geq 10 / g_{m}$, output resistance R_{o} reduces to

$$
\begin{equation*}
R_{o} \cong \frac{1}{g_{m}} \tag{11.6.34}
\end{equation*}
$$

11.7 Common-Source Drain Feedback Configuration

Common-source drain feedback bias configuration is given in Figure 11.19 below

Figure 11.19: Common-source drain feedback bias configuration.
Corresponding SSAC equivalent circuit is shown in Figure 11.20 below

Figure 11.20: Small-signal equivalent circuit of the drain feedback bias circuit in Figure 11.19.

11.7.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{aligned}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =\frac{v_{g s}}{g_{m} v_{g s}+v_{o} /\left(R_{D} \| r_{d s}\right)} & \ldots v_{i}=v_{g s} \\
& =\frac{R_{F}+R_{D} \| r_{d s}}{1+g_{m}\left(R_{D} \| r_{d s}\right)} & \ldots v_{o}=\frac{\left(1-g_{m} R_{F}\right)\left(R_{D} \| r_{d s}\right) v_{g s}}{R_{F}+R_{D} \| r_{d s}} \\
& \cong \frac{R_{F}}{1+g_{m}\left(R_{D} \| r_{d s}\right)} & \ldots R_{F} \gg R_{D} \| r_{d s}
\end{aligned}
$$

As a result, R_{i} is given by

$$
\begin{equation*}
R_{i}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} \cong \frac{R_{F}}{1+g_{m}\left(R_{D}| | r_{d s}\right)} \tag{11.7.35}
\end{equation*}
$$

11.7.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{aligned}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\frac{\left(1-g_{m} R_{F}\right)\left(R_{D} \| r_{d s}\right)}{R_{F}+R_{D} \| r_{d s}} & \ldots v_{i}=v_{g s} \\
& \cong-g_{m}\left(R_{D}| | r_{d s} \| R_{F}\right) & \ldots g_{m} R_{F} \gg 1
\end{aligned}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} \cong-g_{m}\left(R_{D}| | r_{d s} \| R_{F}\right) \tag{11.7.36}
\end{equation*}
$$

- For the circuit in Figure 11.20, we can obtain the current-gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{D}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{D}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{D}} A_{v} \tag{11.7.37}
\end{align*}
$$

11.7.3 Output Resistance

Figure 11.21: Test voltage circuit of Figure 11.20 in order to calculate the output resistance R_{o}.
Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 11.21 above. Note that in the circuit $v_{g s}=0$, so $g_{m} v_{g s}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{D}\left\|r_{d s}\right\| R_{F} \tag{11.7.38}
\end{equation*}
$$

- If a voltage source with source resistance R_{s} is connected to the input, replace R_{F} with $\left[\left(R_{F}+R_{s}\right) /\left(1+g_{m} R_{s}\right)\right]$ in R_{o} calculations.

11.8 Common-Gate Configuration

Common-gate configuration is given in Figure 11.22 below

Figure 11.22: Common-gate configuration.
Corresponding SSAC equivalent circuit is shown in Figure 11.23 below

Figure 11.23: Small-signal equivalent circuit of the common-gate circuit in Figure 11.22.

11.8.1 Input Resistance

Input resistance R_{i} is given as

$$
\begin{aligned}
R_{i}=\left.\frac{v_{i}}{i_{i}}\right|_{R_{L}=\infty} & =\frac{v_{i}}{v_{i} / R_{S}-i_{d}} & \ldots v_{i}=-v_{g s} \\
& =\frac{v_{i}}{v_{i} / R_{S}+v_{i} /\left(\frac{R_{D}+r_{d s}}{\mu+1}\right)} & \ldots i_{d}=\frac{(\mu+1) v_{g s}}{R_{D}+r_{d s}} \\
& =R_{S} \| \frac{R_{D}+r_{d s}}{1+g_{m} r_{d s}} & \ldots \mu=g_{m} r_{d s} \\
& \cong R_{S} \| \frac{1}{g_{m}} & \ldots r_{d s} \geq 10 R_{D} \text { and } g_{m} r_{d s} \gg 1
\end{aligned}
$$

As a result, R_{i} is given by

$$
\begin{equation*}
R_{i}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} \cong R_{S} \| \frac{1}{g_{m}} \tag{11.8.39}
\end{equation*}
$$

11.8.2 Voltage Gain

No-load voltage gain A_{v} is given by

$$
\begin{array}{rlrl}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} & =\frac{-i_{d} R_{D}}{-v_{g s}} & \ldots v_{i}=-v_{g s} \\
& =\frac{(\mu+1) R_{D}}{R_{D}+r_{d s}} & \ldots i_{d}=\frac{(\mu+1) v_{g s}}{R_{D}+r_{d s}} \\
& =\frac{\left(g_{m} r_{d s}+1\right) R_{D}}{R_{D}+r_{d s}} & & \ldots \mu=g_{m} r_{d s} \\
& \cong g_{m} R_{D} & \ldots r_{d s} \geq 10 R_{D} \text { and } g_{m} r_{d s} \gg 1
\end{array}
$$

As a result, A_{v} is given by

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty} \cong g_{m} R_{D} \tag{11.8.41}
\end{equation*}
$$

- For the circuit in Figure 11.23, we can obtain the current-gain A_{i} as follows

$$
\begin{align*}
A_{i}=\frac{i_{o}}{i_{i}} & =\frac{v_{o} / R_{D}}{v_{i} / R_{i}}=\frac{R_{i}}{R_{D}} \frac{v_{o}}{v_{i}} \\
& =\frac{R_{i}}{R_{D}} A_{v} \tag{11.8.42}
\end{align*}
$$

- If $r_{d s} \geq 10 R_{D}$ and $g_{m} r_{d s} \gg 1$, current-gain A_{i} reduces to

$$
\begin{equation*}
A_{i}=g_{m}\left(R_{S} \| \frac{1}{g_{m}}\right) \approx 1 \tag{11.8.43}
\end{equation*}
$$

11.8.3 Output Resistance

Figure 11.24: Test voltage circuit of Figure 11.23 in order to calculate the output resistance R_{o}.

Output resistance, i.e., Thévenin equivalent resistance, R_{o} is calculated using the test voltage circuit in Figure 11.24 above. Note that in the circuit $v_{g s}=0$, so $g_{m} v_{g s}=0$ as well.

$$
\begin{equation*}
R_{o}=\left.\frac{v_{\text {test }}}{i_{\text {test }}}\right|_{v_{s}=0, R_{L}=v_{\text {test }}}=R_{D} \| r_{d s} \tag{11.8.44}
\end{equation*}
$$

- If $r_{d s} \geq 10 R_{D}$, then R_{o} simplifies to $R_{o}=R_{D}$.
- If a voltage source with source resistance R_{s} is connected to the input, replace $r_{d s}$ with $\left(\left[1+g_{m}\left(R_{s} \| R_{G}\right)\right] r_{d s}+R_{s} \| R_{G}\right)$ in R_{o} calculations. We can say that $R_{o} \approx R_{D}$ in most cases.

Chapter 12

Frequency Response of Amplifiers

12.1 First-Order RC Filters

12.1.1 First-Order Highpass RC Filter

Consider the first order highpass (HP) RC circuit given in Figure 12.1 below, let us calculate the voltage gain $A=v_{o} / v_{i}$. Note that, as the impedance of the capacitor changes with the frequency the gain will change with the frequency.

Figure 12.1: First order highpass RC filter.

$$
\begin{align*}
A(\omega)=\frac{v_{o}}{v_{i}} & =\frac{R}{R+Z_{C}} & \ldots Z_{C}=-j X_{C}=-j \frac{1}{\omega C} \\
& =\frac{1}{1+\frac{Z_{C}}{R}} & \ldots \omega=2 \pi f \\
& =\frac{1}{1-j \frac{1}{\omega C R}} &
\end{align*}
$$

$A(\omega)$ is called frequency response of the filter circuit above. As the frequency response $A(\omega)$ is complex, it has a magnitude and phase, i.e.,

$$
\begin{equation*}
A(\omega)=|A(\omega)| e^{j \angle A(\omega)} \tag{12.1.2}
\end{equation*}
$$

Thus, $A(\omega)$ is called the frequency response, $|A(\omega)|$ is called the magnitude response and $\angle A(\omega)$ is called the phase response.

Given that we know the frequency response of the system. Then, for a sinusoidal input $v_{i}(t)$

$$
\begin{equation*}
v_{i}(t)=V_{m} \cos \left(\omega_{0} t\right), \tag{12.1.3}
\end{equation*}
$$

we obtain the output signal $v_{o}(t)$ as

$$
\begin{equation*}
v_{o}(t)=\left|A\left(\omega_{0}\right)\right| V_{m} \cos \left(\omega_{0} t+\angle A\left(\omega_{0}\right)\right) \tag{12.1.4}
\end{equation*}
$$

So, the magnitude and phase of the output determined by the frequency response of the system.
For this highpass system given in (12.1.1), magnitude response $|A(\omega)|$ and phase response $\angle A(\omega)$ are given by

$$
\begin{align*}
|A(\omega)| & =\frac{1}{\sqrt{1+\frac{1}{\omega^{2} R^{2} C^{2}}}} \tag{12.1.5}\\
\angle A(\omega) \mid & =\arctan \left(\frac{1}{\omega R C}\right) \tag{12.1.6}
\end{align*}
$$

Note that $\omega \rightarrow \infty \Rightarrow|A(\omega)| \rightarrow 1$ and $\omega \rightarrow 0 \Rightarrow|A(\omega)| \rightarrow 0$.

12.1.1.1 Cutoff Frequency

The frequency where the output power drops to half (of the maximum output power) is called the cutoff frequency or corner frequency, ω_{c}. Thus, at the cutoff frequency, the output voltage gain magnitude square will drop to half. As, in this case the maximum gain is one, i.e. $\max |A(\omega)|=1$,

$$
\begin{array}{rlrl}
\left|A\left(\omega_{c}\right)\right|^{2} & =\frac{1}{2} & & \ldots \text { i.e., }\left|A\left(\omega_{c}\right)\right|=\frac{1}{\sqrt{2}} \\
\frac{1}{1+\frac{1}{\omega_{c}^{2} R^{2} C^{2}}} & =\frac{1}{2} & & \\
\omega_{c} & =\frac{1}{R C} & \ldots f_{c}=\frac{1}{2 \pi R C}
\end{array}
$$

Thus, cutoff frequency ω_{c} for the first order highpass RC filter is given by

$$
\begin{equation*}
\omega_{c}=\frac{1}{R C} \tag{12.1.7}
\end{equation*}
$$

Consequently, frequency response of the highpass filter $A(\omega)$ is given by

$$
\begin{align*}
A(\omega) & =\frac{1}{1-j \frac{\omega_{c}}{\omega}} \tag{12.1.8}\\
|A(\omega)| & =\frac{1}{\sqrt{1+\frac{\omega_{c}^{2}}{\omega^{2}}}} \tag{12.1.9}\\
\angle A(\omega) \mid & =\arctan \left(\frac{\omega_{c}}{\omega}\right) \tag{12.1.10}
\end{align*}
$$

12.1.1.2 Bode Plot

Amplitude response in (12.1.9) above has two asymptotes as shown below

$$
\begin{align*}
& \frac{\omega_{c}^{2}}{\omega^{2}} \ll 1 \Rightarrow|A(\omega)|=1 \tag{12.1.11}\\
& \frac{\omega_{c}^{2}}{\omega^{2}} \gg 1 \Rightarrow|A(\omega)|=\frac{\omega}{\omega_{c}} \tag{12.1.12}
\end{align*}
$$

These two lines intersect at $\omega=\omega_{c}$ as shown in Figure 12.2 below.

Figure 12.2: Asymptotic Bode plot (scalar) of the first order highpass RC filter in Figure 12.1.

12.1.1.3 Decibels (dB)

The decibel (dB) is a logarithmic unit used to express the ratio of two values of a physical quantity, often power or intensity. One of these values is often a standard reference value, in which case the decibel is used to express the level of the other value relative to this reference. The term decibel has
its origin in the fact that power and audio levels are related on a logarithmic basis, i.e.,

$$
\begin{align*}
G_{d B} & =10 \log _{10} \frac{P_{o}}{P_{i}} \tag{12.1.13}\\
& =20 \log _{10}\left|\frac{V_{o}}{V_{i}}\right| \tag{12.1.14}
\end{align*}
$$

Thus, magnitude response in decibels is given by

$$
\begin{equation*}
|A(\omega)|_{\mathrm{dB}}=20 \log _{10}|A(\omega)| \tag{12.1.15}
\end{equation*}
$$

Consequently, the normalized magnitude response (i.e., maximum value is 1) in decibels is given by

$$
\begin{equation*}
|\tilde{A}(\omega)|_{\mathrm{dB}}=20 \log _{10} \frac{|A(\omega)|}{\max |A(\omega)|} \tag{12.1.16}
\end{equation*}
$$

The two asymptotes of the amplitude response in (12.1.9) are expressed in dB as follows

$$
\begin{align*}
& \frac{\omega_{c}^{2}}{\omega^{2}} \ll 1 \Rightarrow 20 \log _{10} 1=0 \mathrm{~dB} \tag{12.1.17}\\
& \frac{\omega_{c}^{2}}{\omega^{2}} \gg 1 \Rightarrow|A(\omega)|=20 \log _{10} \frac{\omega}{\omega_{c}}=20 \log _{10} \omega-20 \log _{10} \omega_{c} \tag{12.1.18}
\end{align*}
$$

These two lines intersect at $\omega=\omega_{c}$ as shown in Figure 12.3 below.

Figure 12.3: Asymptotic Bode plot (dB) of the first order highpass RC filter in Figure 12.1.
As we see from the asymptotic magnitude response in Figure 12.3 above, a highpass filter attenuates the low frequencies and keeps the high frequencies intact.

Let us consider the second asymptote (i.e., $20 \log _{10} \frac{\omega}{\omega_{c}}$) and for a given $\omega=\omega_{1}$ consider the two cases where $\omega_{2}=\omega_{1} / 2$ and $\omega_{3}=\omega_{1} / 10$, then

$$
\begin{align*}
& 20 \log _{10} \frac{\omega_{2}}{\omega_{c}}=20 \log _{10} \frac{\omega_{1}}{\omega_{c}}-20 \log _{10} 2 \cong 20 \log _{10} \frac{\omega_{1}}{\omega_{c}}-6 \mathrm{~dB} \tag{12.1.19}\\
& 20 \log _{10} \frac{\omega_{3}}{\omega_{c}}=20 \log _{10} \frac{\omega_{1}}{\omega_{c}}-20 \log _{10} 10=20 \log _{10} \frac{\omega_{1}}{\omega_{c}}-20 \mathrm{~dB} \tag{12.1.20}
\end{align*}
$$

A change in frequency by a factor of two is equivalent to one octave. Similarly, a change in frequency by a factor of ten is equivalent to one decade.

Thus, the slope of the second asymptote (i.e., $20 \log _{10} \frac{\omega}{\omega_{c}}$) is $6 \mathrm{~dB} /$ octave or $20 \mathrm{~dB} /$ decade.
So, actual magnitude of the normalized magnitude response at the cutoff frequency ω_{c} is $\left|\tilde{A}\left(\omega_{c}\right)\right|=$ $1 / \sqrt{2}$. Thus, in dBs

$$
\begin{equation*}
20 \log _{10}\left|\tilde{A}\left(\omega_{c}\right)\right|=20 \log _{10} \frac{1}{\sqrt{2}} \cong-3 \mathrm{~dB} \tag{12.1.21}
\end{equation*}
$$

Thus, cutoff frequency is always 3 dB below the maximum gain.
As a result if we plot (12.1.9) and (12.1.10) against ω, we obtain the magnitude and phase responses of the first order highpass RC filter as shown in Figure 12.4 below.

Figure 12.4: Magnitude (top) and phase (bottom) responses of the first order highpass RC filter in Figure 12.1.

12.1.2 First-Order Lowpass RC Filter

Consider the first order lowpass (LP) RC circuit given in Figure 12.5 below, let us calculate the voltage gain $A=v_{o} / v_{i}$. Note that, as the impedance of the capacitor changes with the frequency the gain
will change with the frequency.

Figure 12.5: First order lowpass RC filter.

$$
\begin{align*}
A(\omega)=\frac{v_{o}}{v_{i}} & =\frac{Z_{C}}{Z_{C}+R} & \ldots Z_{C}=-j X_{C}=\frac{1}{j \omega C} \\
& =\frac{1}{1+\frac{R}{Z_{C}}} & \ldots \omega=2 \pi f
\end{align*}
$$

Thus, magnitude response $|A(\omega)|$ and phase response $\angle A(\omega)$ are given as

$$
\begin{align*}
|A(\omega)| & =\frac{1}{\sqrt{1+\omega^{2} R^{2} C^{2}}} \tag{12.1.23}\\
\angle A(\omega) \mid & =-\arctan (\omega R C) \tag{12.1.24}
\end{align*}
$$

Note that $\omega \rightarrow \infty \Rightarrow|A(\omega)| \rightarrow 0$ and $\omega \rightarrow 0 \Rightarrow|A(\omega)| \rightarrow 1$.

12.1.2.1 Cutoff Frequency

Cutoff frequency ω_{c} can be found as,

$$
\begin{aligned}
\left|A\left(\omega_{c}\right)\right|^{2} & =\frac{1}{2} & & \ldots \text { i.e., }\left|A\left(\omega_{c}\right)\right|=\frac{1}{\sqrt{2}} \\
\frac{1}{1+\omega_{c}^{2} R^{2} C^{2}} & =\frac{1}{2} & & \ldots f_{c}=\frac{1}{2 \pi R C}
\end{aligned}
$$

Thus, cutoff frequency ω_{c} for the first order lowpass RC filter is given by

$$
\begin{equation*}
\omega_{c}=\frac{1}{R C} \tag{12.1.25}
\end{equation*}
$$

Consequently, frequency response of the lowpass filter $A(\omega)$ is given by

$$
\begin{align*}
A(\omega) & =\frac{1}{1+j \frac{\omega}{\omega_{c}}} \tag{12.1.26}\\
|A(\omega)| & =\frac{1}{\sqrt{1+\frac{\omega^{2}}{\omega_{c}^{2}}}} \tag{12.1.27}\\
\angle A(\omega) \mid & =-\arctan \left(\frac{\omega}{\omega_{c}}\right) \tag{12.1.28}
\end{align*}
$$

12.1.2.2 Bode Plot

The two asymptotes of the amplitude response in (12.1.27) are expressed in dB as follows

$$
\begin{align*}
& \frac{\omega^{2}}{\omega_{c}^{2}} \ll 1 \Rightarrow 20 \log _{10} 1=0 \mathrm{~dB} \tag{12.1.29}\\
& \frac{\omega^{2}}{\omega_{c}^{2}} \gg 1 \Rightarrow|A(\omega)|=20 \log _{10} \frac{\omega_{c}}{\omega}=20 \log _{10} \omega_{c}-20 \log _{10} \omega \tag{12.1.30}
\end{align*}
$$

These two lines intersect at $\omega=\omega_{c}$ as shown in Figure 12.6 below.

Figure 12.6: Asymptotic Bode plot (dB) of the first order lowpass RC filter in Figure 12.5.
As we see from the asymptotic magnitude response in Figure 12.6 above, a lowpass filter keeps the low frequencies intact and attenuates the high frequencies.

Let us consider the second asymptote (i.e., $20 \log _{10} \frac{\omega_{c}}{\omega}$) and for a given $\omega=\omega_{1}$ consider the two cases where $\omega_{2}=2 \omega_{1}$ and $\omega_{3}=10 \omega_{1}$, then

$$
\begin{align*}
& 20 \log _{10} \frac{\omega_{c}}{\omega_{2}}=20 \log _{10} \frac{\omega_{c}}{\omega_{1}}-20 \log _{10} 2 \cong 20 \log _{10} \frac{\omega_{c}}{\omega_{1}}-6 \mathrm{~dB} \tag{12.1.31}\\
& 20 \log _{10} \frac{\omega_{c}}{\omega_{3}}=20 \log _{10} \frac{\omega_{c}}{\omega_{1}}-20 \log _{10} 10=20 \log _{10} \frac{\omega_{c}}{\omega_{1}}-20 \mathrm{~dB} \tag{12.1.32}
\end{align*}
$$

Thus, the slope of the second asymptote (i.e., $20 \log _{10} \frac{\omega}{\omega_{c}}$) is $6 \mathrm{~dB} /$ octave or $20 \mathrm{~dB} /$ decade.
So, actual magnitude of the normalized magnitude response at the cutoff frequency ω_{c} is $\left|\tilde{A}\left(\omega_{c}\right)\right|=$ $1 / \sqrt{2}$. Thus, in dBs

$$
\begin{equation*}
20 \log _{10}\left|\tilde{A}\left(\omega_{c}\right)\right|=20 \log _{10} \frac{1}{\sqrt{2}} \cong-3 \mathrm{~dB} \tag{12.1.33}
\end{equation*}
$$

Thus, cutoff frequency is always 3 dB below the maximum gain.
As a result if we plot (12.1.27) and (12.1.28) against ω, we obtain the magnitude and phase responses of the first order lowpass RC filter as shown in Figure 12.7 below.

Figure 12.7: Magnitude (top) and phase (bottom) responses of the first order lowpass RC filter in Figure 12.5.

12.2 Typical Frequency Response

The magnitudes of the gain response curves of an RC-coupled amplifier system are given in Figure 12.8 below. In the plot low-, high-, and mid-frequency regions are defined. This magnitude response shown in Figure 12.8 below is the response of a bandpass amplifier. It amplifies a band of frequencies
(namely midband, or mid-frequency band) and attenuates the low or high frequencies. Note that, the low-frequency part of the amplifier looks like a highpass amplifier and the high-frequency part of the amplifier looks like a lowpass amplifier. Thus, we can obtain a bandpass amplifier by combining a highpass and a lowpass amplifier.

Figure 12.8: Typical magnitude response of a transistor amplifier.
The purpose of frequency analysis in this course is to determine the low-frequency cutoff f_{L} and the high-frequency cutoff f_{H} of the amplifier. Low-frequency cut-off f_{L} is determined by the capacitors in the circuit, i.e., C_{1}, C_{2} and C_{3}, and high-frequency cutoff f_{H} is determined by the internal device capacitances, wiring capacitances or parasitic capacitances.

Typically, low-frequency capacitors C_{1}, C_{2} and C_{3} are in the microFarad ($\mu \mathrm{F}$) range, and highfrequency capacitances (wiring capacitances and parasitic capacitances) are in the picoFarad (pF) range.

Consequently, low-frequency capacitors are short-circuit for high-frequency, and high-frequency capacitances are open-circuit for low-frequency. So, low-frequency response and high-frequency response will be dealt with separately. The bandwidth (or passband, or midband) of the amplifier is determined as,

$$
\begin{equation*}
\text { Bandwidth }(\mathrm{BW})=f_{H}-f_{L} \tag{12.2.34}
\end{equation*}
$$

Up to now, we have calculated the mid-frequency (midband) input resistance $R_{i}=Z_{i_{m i d}}$, voltage gain $A_{v}=A_{v_{m i d}}$ and output resistance input resistance $R_{o}=Z_{o_{m i d}}$, where we ignored the low-frequency and high-frequency effects assuming the low-frequency capacitances were short-circuit and high-frequency capacitances were open-circuit.

Scalar and decibel plot of the normalized magnitude response is shown in Figure 12.9 and Figure 12.10 below, respectively.

Figure 12.9: Normalized scalar plot of the magnitude response given in Figure 12.8.

Figure 12.10: Normalized decibel plot of the magnitude response given in Figure 12.8.

12.3 Low Frequency Response

12.3.1 BJT Amplifiers

For the circuit shown in Figure 12.11 below, the capacitors C_{1}, C_{2}, and C_{3} will determine the lowfrequency response. Capacitors C_{1} and C_{2} at the input and output of the circuit are called the coupling capacitors, and C_{3} is called the bypass capacitor. We will now examine the impact of each independently in the order listed as first order RC filters.

Figure 12.11: A common-emitter voltage-divider bias BJT circuit.

12.3.1.1 Effect of Coupling Capacitor C_{1}

For the BJT circuit shown in Figure 12.11 above, capacitor C_{1} and the equivalent-resistance of R_{s} and $R_{i}\left(R_{e q_{1}}=R_{s}+R_{i}\right)$ form a first-order highpass filter structure given in Figure 12.1 with a cutoff frequency $f_{L_{1}}$ of

$$
\begin{equation*}
f_{L_{1}}=\frac{1}{2 \pi\left(R_{s}+R_{i}\right) C_{1}} \tag{12.3.35}
\end{equation*}
$$

where R_{s} is the source (e.g., voltage source) resistance and R_{i} is the input resistance of the amplifier, value of which for this circuit is given by

$$
R_{i}=R_{1}\left\|R_{2}\right\| h_{i e}
$$

12.3.1.2 Effect of Coupling Capacitor C_{2}

For the BJT circuit shown in Figure 12.11 above, capacitor C_{2} and the equivalent-resistance of R_{o} and $R_{L}\left(R_{e q_{2}}=R_{o}+R_{L}\right)$ form a first-order highpass filter structure given in Figure 12.1 with a cutoff frequency $f_{L_{2}}$ of

$$
\begin{equation*}
f_{L_{2}}=\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{2}} \tag{12.3.36}
\end{equation*}
$$

where R_{L} is the load resistance and R_{o} is the output resistance of the amplifier, value of which for this circuit is given by

$$
R_{o}=R_{C} \| 1 / h_{o e}
$$

12.3.1.3 Effect of Bypass Capacitor C_{3}

For the BJT circuit shown in Figure 12.11 above, capacitor C_{3} and the equivalent Thévenin resistance $R_{e q_{3}}$ seen by C_{3} form a first-order lowpass filter structure given in Figure 12.5 with a cutoff frequency $f_{L_{3}}$ of

$$
\begin{equation*}
f_{L_{3}}=\frac{1}{2 \pi R_{e q_{3}} C_{3}} \tag{12.3.37}
\end{equation*}
$$

where $R_{e q_{3}}$ is the Thévenin resistance seen by C_{3} (i.e., like the output resistance of the emitter-follower), value of which for this circuit is given by

$$
R_{e q_{3}}=R_{E} \| \frac{R_{s}\left\|R_{1}\right\| R_{2}+h_{i e}}{h_{f e}+1}
$$

12.3.1.4 Combined Effect of C_{1}, C_{2} and C_{3}

Each cutoff frequency $f_{L_{1}}, f_{L_{2}}$ and $f_{L_{3}}$ adds an additional $6 \mathrm{~dB} /$ octave slope as shown in Figure 12.12 below. Overall cutoff frequency f_{L} is higher than the highest value of these three cutoff frequencies, i.e.,

$$
\begin{equation*}
f_{L} \geq \max \left(f_{L_{1}}, f_{L_{2}}, f_{L_{3}}\right) \tag{12.3.38}
\end{equation*}
$$

When the three cut-off frequencies (or the highest cutoff frequency) are a decade apart from each other, than the overall cutoff frequency is almost equal to the highest of these three frequencies as depicted in Figure 12.12 below, i.e.,

$$
\begin{equation*}
f_{L} \approx \max \left(f_{L_{1}}, f_{L_{2}}, f_{L_{3}}\right) \tag{12.3.39}
\end{equation*}
$$

Figure 12.12: Low-frequency plot for the circuit given in Figure 12.11.
As $R_{e q_{3}}$ normally has the lowest resistance value, generally $f_{L_{3}}$ holds the highest value. Also as generally $R_{i}>R_{o}$, mostly $f_{L_{2}}>f_{L_{1}}$. So, generally $f_{L_{3}}>f_{L_{2}}>f_{L_{1}}$.

Even though these assumptions may not hold, we generally select the value of the capacitors C_{1}, C_{2} and C_{3} properly to have the cutoff frequencies to be at least a decade apart, e.g., $f_{L_{3}}>10 f_{L_{2}}>10 f_{L_{1}}$, in order to reduce the coupling effect of all three capacitors to the cutoff frequency f_{L}.

If the decade-apart condition do not hold, then the cutoff frequency f_{L} will move up towards the midfrequency range and has to be calculated from the overall third-order highpass system by considering the effects of all three-capacitors.

12.3.2 FET Amplifiers

For the circuit shown in Figure 12.13 below, the capacitors C_{1}, C_{2}, and C_{3} will determine the lowfrequency response. Capacitors C_{1} and C_{2} at the input and output of the circuit are called the coupling capacitors, and C_{3} is called the bypass capacitor. We will now examine the impact of each independently in the order listed as first order RC filters.

Figure 12.13: A common-source self-bias JFET circuit.

12.3.2.1 Effect of Coupling Capacitor C_{1}

For the JFET circuit shown in Figure 12.13 above, capacitor C_{1} and the equivalent-resistance of R_{s} and $R_{i}\left(R_{e q_{1}}=R_{s}+R_{i}\right)$ form a first-order highpass filter structure given in Figure 12.1 with a cutoff frequency $f_{L_{1}}$ of

$$
\begin{equation*}
f_{L_{1}}=\frac{1}{2 \pi\left(R_{s}+R_{i}\right) C_{1}} \tag{12.3.40}
\end{equation*}
$$

where R_{s} is the source (e.g., voltage source) resistance and R_{i} is the input resistance of the amplifier, value of which for this circuit is given by

$$
R_{i}=R_{G}
$$

12.3.2.2 Effect of Coupling Capacitor C_{2}

For the JFET circuit shown in Figure 12.13 above, capacitor C_{2} and the equivalent-resistance of R_{o} and $R_{L}\left(R_{e q_{2}}=R_{o}+R_{L}\right)$ form a first-order highpass filter structure given in Figure 12.1 with a cutoff frequency $f_{L_{2}}$ of

$$
\begin{equation*}
f_{L_{2}}=\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{2}} \tag{12.3.41}
\end{equation*}
$$

where R_{L} is the load resistance and R_{o} is the output resistance of the amplifier, value of which for this circuit is given by

$$
R_{o}=R_{D} \| r_{d s}
$$

12.3.2.3 Effect of Bypass Capacitor C_{3}

For the JFET circuit shown in Figure 12.13 above, capacitor C_{3} and the equivalent Thévenin resistance $R_{e q_{3}}$ seen by C_{3} form a first-order lowpass filter structure given in Figure 12.5 with a cutoff frequency $f_{L_{3}}$ of

$$
\begin{equation*}
f_{L_{3}}=\frac{1}{2 \pi R_{e q_{3}} C_{3}} \tag{12.3.42}
\end{equation*}
$$

where $R_{e q_{3}}$ is the Thévenin resistance seen by C_{3} (i.e., like the output resistance of the source-follower), value of which for this circuit is given by

$$
R_{e q_{3}}=R_{S}\left\|r_{d s}\right\| \frac{1}{g_{m}}
$$

12.3.2.4 Combined Effect of C_{1}, C_{2} and C_{3}

Each cutoff frequency $f_{L_{1}}, f_{L_{2}}$ and $f_{L_{3}}$ adds an additional 6 dB /octave slope as shown in Figure 12.14 below. Overall cutoff frequency f_{L} is higher than the highest value of these three cutoff frequencies, i.e.,

$$
\begin{equation*}
f_{L} \geq \max \left(f_{L_{1}}, f_{L_{2}}, f_{L_{3}}\right) \tag{12.3.43}
\end{equation*}
$$

When the three cut-off frequencies (or the highest cutoff frequency) are a decade apart from each other, than the overall cutoff frequency is almost equal to the highest of these three frequencies as depicted in Figure 12.14 below, i.e.,

$$
\begin{equation*}
f_{L} \approx \max \left(f_{L_{1}}, f_{L_{2}}, f_{L_{3}}\right) \tag{12.3.44}
\end{equation*}
$$

Figure 12.14: Low-frequency plot for the circuit given in Figure 12.13.
As $R_{e q_{3}}$ has the lowest resistance value, $f_{L_{3}}$ holds the highest value. Also as $R_{i} \gg R_{o}, f_{L_{2}}>f_{L_{1}}$. So, almost always $f_{L_{3}}>f_{L_{2}}>f_{L_{1}}$.

We generally select the value of the capacitors C_{1}, C_{2} and C_{3} properly to have the cutoff frequencies to be at least a decade apart, e.g., $f_{L_{3}}>10 f_{L_{2}}>10 f_{L_{1}}$, in order to reduce the coupling effect of all three capacitors to the cutoff frequency f_{L}.

12.4 Miller Effect

For inverting amplifiers (phase shift of 180° between input and output, resulting in a negative value for A_{v}), the input and output capacitance is increased by a capacitance level sensitive to the interelectrode capacitance between the input and output terminals of the device and the gain of the amplifier. Thus, Miller effect only occurs in common-emitter and common-source amplifiers.

Capacitance C_{f} between input and output will be represented by its equivalent Miller capacitance at the input $C_{M_{i}}$ and at the output $C_{M_{o}}$.

For noninverting amplifiers such as the common-base and emitter-follower (or common-gate and source-follower) configurations, the Miller effect capacitance is not a contributing concern for highfrequency applications.

12.4.0.1 Miller Input Capacitance $C_{M_{i}}$

Consider the network shown in Figure 12.15 below, let us calculate the input impedance $Z_{i}=v_{i} / i_{i}$

$$
\begin{aligned}
Z_{i}=\frac{v_{i}}{i_{i}} & =\frac{v_{i}}{i_{1}+i_{f}} & \ldots i_{1}=\frac{v_{i}}{R_{i}}, i_{f}=\frac{v_{i}-v_{o}}{Z_{C_{f}}} \\
& =\frac{v_{i}}{v_{i} / R_{i}+\frac{v_{i}-A_{v} v_{i}}{Z_{C_{f}}}} & \ldots v_{o}=A_{v} v_{i}, Z_{C_{f}}=\frac{1}{j \omega C_{f}} \\
& =R_{i} \| \frac{Z_{C_{f}}}{1-A_{v}} & \ldots Z_{M_{i}}=\frac{Z_{C_{f}}}{1-A_{v}} \\
& =Z_{M_{i}} \| R_{i} & \ldots Z_{M_{i}}=\frac{1}{j \omega C_{M_{i}}}, C_{M_{i}}=\left(1-A_{v}\right) C_{f}
\end{aligned}
$$

Figure 12.15: Circuit employed in the derivation of an equation for the Miller input capacitance $C_{M_{i}}$, where $A_{v}<0$.

So, Miller input capacitance $C_{M_{i}}$ is given by

$$
\begin{equation*}
C_{M_{i}}=\left(1-A_{v}\right) C_{f} \tag{12.4.45}
\end{equation*}
$$

Thus, the feedback capacitance C_{f} appears as a higher capacitance at the input, increased by a factor of $\left(1-A_{v}\right)$. Note that, $A_{v}<0$.

12.4.0.2 Miller Output Capacitance $C_{M_{o}}$

Consider the network shown in Figure 12.16 below, let us calculate the output impedance $Z_{o}=v_{o} / i_{o}$

$$
\begin{aligned}
Z_{o}=\frac{v_{o}}{i_{o}} & =\frac{v_{o}}{i_{1}+i_{f}} \\
& =\frac{v_{o}}{v_{o} / R_{o}+\frac{v_{o}-v_{o} / A_{v}}{Z_{C_{f}}}} \\
& =R_{o} \| \frac{Z_{C_{f}}}{1-\frac{1}{A_{v}}} \\
& =R_{o} \| Z_{M_{o}}
\end{aligned}
$$

$$
\begin{aligned}
& \ldots i_{1}=\frac{v_{o}}{R_{o}}, i_{f}=\frac{v_{o}-v_{i}}{Z_{C_{f}}} \\
& \ldots v_{o}=A_{v} v_{i}, Z_{C_{f}}=\frac{1}{j \omega C_{f}}
\end{aligned}
$$

$$
\ldots Z_{M_{o}}=\frac{Z_{C_{f}}}{1-\frac{1}{A_{v}}}
$$

$$
\ldots Z_{M_{o}}=\frac{1}{j \omega C_{M_{o}}}, C_{M_{o}}=\left(1-\frac{1}{A_{v}}\right) C_{f}
$$

Figure 12.16: Circuit employed in the derivation of an equation for the Miller output capacitance $C_{M_{o}}$, where $A_{v}<0$.

So, Miller output capacitance $C_{M_{o}}$ is given by

$$
\begin{equation*}
C_{M_{o}}=\left(1-\frac{1}{A_{v}}\right) C_{f} \cong C_{f} \tag{12.4.46}
\end{equation*}
$$

Thus, the feedback capacitance C_{f} appears as a similar capacitance at the output. Note that, $A_{v}<0$ and $\left|A_{v}\right| \gg 1$.

12.4.0.3 Miller Representation

Miller input and output capacitances for the feedback capacitance (C_{f}) remove the feedback and simplify the representation as shown in Figure 12.17 below.

Figure 12.17: Miller representation of the feedback capacitance in negative gain amplifiers.

12.5 High Frequency Response

12.5.1 BJT Amplifiers

For the high-frequency circuit shown in Figure 12.18 below, there are two factors that define the -3 dB cutoff point: the network capacitance (parasitic ($C_{b e}, C_{b c}, C_{c e}$) and wiring ($C_{W_{i}}, C_{W_{o}}$) capacitance) and the frequency dependence of $h_{f e}$ (or β). Note that, low-frequency capacitors C_{1}, C_{2} and C_{3} are short circuit and have no effect in high-frequency analysis.

Figure 12.18: A common-emitter voltage-divider bias BJT circuit with the capacitors that affect the high-frequency response.

12.5.1.1 Input Circuit Cutoff Frequency $f_{H_{1}}$

For the BJT circuit shown in Figure 12.18 above, equivalent total input capacitance $C_{e q_{i}}$ and the Thévenin equivalent input resistance of $R_{e q_{i}}=R_{s} \| R_{i}$ form a first-order lowpass filter structure given
in Figure 12.5 with a cutoff frequency $f_{H_{1}}$ of

$$
\begin{equation*}
f_{H_{1}}=\frac{1}{2 \pi\left(R_{s} \| R_{i}\right) C_{e q_{i}}} \tag{12.5.47}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{e q_{i}}=C_{W_{i}}+C_{M_{i}}+C_{b e} \tag{12.5.48}
\end{equation*}
$$

where R_{s} is the source (e.g., voltage source) resistance, R_{i} is the input resistance of the amplifier and $C_{M_{i}}$ is the Miller input capacitance given by

$$
\begin{align*}
R_{i} & =R_{1}\left\|R_{2}\right\| h_{i e} \tag{12.5.49}\\
C_{M_{i}} & =\left(1-A_{V}\right) C_{b c} \tag{12.5.50}
\end{align*}
$$

12.5.1.2 Output Circuit Cutoff Frequency $f_{H_{2}}$

For the BJT circuit shown in Figure 12.18 above, equivalent total output capacitance $C_{e q_{o}}$ and the Thévenin equivalent output resistance of $R_{e q_{o}}=R_{o} \| R_{L}$ form a first-order lowpass filter structure given in Figure 12.5 with a cutoff frequency $f_{H_{2}}$ of

$$
\begin{equation*}
f_{H_{2}}=\frac{1}{2 \pi\left(R_{o}| | R_{L}\right) C_{e q_{o}}} \tag{12.5.51}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{e q_{o}}=C_{c e}+C_{M_{o}}+C_{W_{o}} \tag{12.5.52}
\end{equation*}
$$

where R_{L} is the load resistance, R_{o} is the output resistance of the amplifier and $C_{M_{o}}$ is the Miller output capacitance given by

$$
\begin{align*}
R_{o} & =R_{C} \| 1 / h_{o e} \tag{12.5.53}\\
C_{M_{o}} & =\left(1-1 / A_{V}\right) C_{b c} \cong C_{b c} . \tag{12.5.54}
\end{align*}
$$

12.5.1.3 $h_{f e}\left(\right.$ or β) Variation Cutoff Frequency f_{β}

The $h_{f e}$ parameter (or β) of a transistor varies with frequency as shown in Figure 12.19 below and given by

$$
\begin{equation*}
h_{f e}=\frac{h_{f e_{m i d}}}{1+j \frac{f}{f_{\beta}}} \tag{12.5.55}
\end{equation*}
$$

where f_{β} is given by

$$
\begin{equation*}
f_{\beta}=\frac{f_{T}}{h_{f e_{m i d}}} \cong \frac{1}{2 \pi h_{i e}\left(C_{b e}+C_{b c}\right)} \quad \ldots f_{T} \cong \frac{1}{2 \pi r_{e}\left(C_{b e}+C_{b c}\right)} \tag{12.5.56}
\end{equation*}
$$

Figure 12.19: $h_{f e}$ and $h_{f b}$ versus frequency in the high-frequency region.

12.5.1.4 Combined Effect of $f_{H_{1}}, f_{H_{2}}$ and f_{β}

Each cutoff frequency $f_{H_{1}}, f_{H_{2}}$ and f_{β} adds an additional 6 dB /octave slope as shown in Figure 12.20 below. Overall cutoff frequency f_{H} is lower than the lowest value of these three cutoff frequencies, i.e.,

$$
\begin{equation*}
f_{H} \leq \min \left(f_{H_{1}}, f_{H_{2}}, f_{\beta}\right) \tag{12.5.57}
\end{equation*}
$$

When the three cut-off frequencies (or the lowest cutoff frequency) are a decade apart from each other, than the overall higher cutoff frequency f_{H} is almost equal to the lowest of these three frequencies as depicted in Figure 12.20 below, i.e.,

$$
\begin{equation*}
f_{H} \approx \min \left(f_{H_{1}}, f_{H_{2}}, f_{\beta}\right) \tag{12.5.58}
\end{equation*}
$$

Figure 12.20: Normalized magnitude response (normalized gain vs. frequency) for the circuit given in Figure 12.18.

As Miller input capacitance $C_{M_{i}}$ has the highest capacitance, almost always $f_{H_{1}}$ holds the lowest value. Also not always, but generally $f_{\beta}<f_{H_{2}}$.

12.5.2 FET Amplifiers

For the high-frequency circuit shown in Figure 12.21 below, there are two factors that define the -3 dB cutoff point: the network capacitance (parasitic ($C_{g s}, C_{g d}, C_{d s}$) and wiring ($C_{W_{i}}, C_{W_{o}}$) capacitance). Note that, low-frequency capacitors C_{1}, C_{2} and C_{3} are short circuit and have no effect in highfrequency analysis.

Figure 12.21: A common-source self-bias JFET circuit with the capacitors that affect the highfrequency response.

12.5.2.1 Input Circuit Cutoff Frequency $f_{H_{1}}$

For the JFET circuit shown in Figure 12.21 above, equivalent total input capacitance $C_{e q_{i}}$ and the Thévenin equivalent input resistance of $R_{e q_{i}}=R_{s} \| R_{i}$ form a first-order lowpass filter structure given in Figure 12.5 with a cutoff frequency $f_{H_{1}}$ of

$$
\begin{equation*}
f_{H_{1}}=\frac{1}{2 \pi\left(R_{s}| | R_{i}\right) C_{e q_{i}}} \tag{12.5.59}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{e q_{i}}=C_{W_{i}}+C_{M_{i}}+C_{g s} \tag{12.5.60}
\end{equation*}
$$

where R_{s} is the source (e.g., voltage source) resistance, R_{i} is the input resistance of the amplifier and $C_{M_{i}}$ is the Miller input capacitance given by

$$
\begin{align*}
R_{i} & =R_{G} \tag{12.5.61}\\
C_{M_{i}} & =\left(1-A_{V}\right) C_{g d} . \tag{12.5.62}
\end{align*}
$$

12.5.2.2 Output Circuit Cutoff Frequency $f_{H_{2}}$

For the JFET circuit shown in Figure 12.21 above, equivalent total output capacitance $C_{e q_{o}}$ and the Thévenin equivalent output resistance of $R_{e q_{o}}=R_{o} \| R_{L}$ form a first-order lowpass filter structure given in Figure 12.5 with a cutoff frequency $f_{H_{2}}$ of

$$
\begin{equation*}
f_{H_{2}}=\frac{1}{2 \pi\left(R_{o}| | R_{L}\right) C_{e q_{o}}} \tag{12.5.63}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{e q_{o}}=C_{d s}+C_{M_{o}}+C_{W_{o}} \tag{12.5.64}
\end{equation*}
$$

where R_{L} is the load resistance, R_{o} is the output resistance of the amplifier and $C_{M_{o}}$ is the Miller output capacitance given by

$$
\begin{align*}
R_{o} & =R_{D} \| r_{d s} \tag{12.5.65}\\
C_{M_{o}} & =\left(1-1 / A_{V}\right) C_{g d} \cong C_{g d} . \tag{12.5.66}
\end{align*}
$$

12.5.2.3 Combined Effect of $f_{H_{1}}$ and $f_{H_{2}}$

Each cutoff frequency $f_{H_{1}}$ and $f_{H_{2}}$ adds an additional 6 dB /octave slope. Overall cutoff frequency f_{H} is lower than the lowest value of these three cutoff frequencies, i.e.,

$$
\begin{equation*}
f_{H} \leq \min \left(f_{H_{1}}, f_{H_{2}}\right) \tag{12.5.67}
\end{equation*}
$$

When the two cut-off frequencies are a decade apart from each other, than the overall higher cutoff frequency f_{H} is almost equal to the lowest of the two frequencies, i.e.,

$$
\begin{equation*}
f_{H} \approx \min \left(f_{H_{1}}, f_{H_{2}}\right) \tag{12.5.68}
\end{equation*}
$$

As Miller input capacitance $C_{M_{i}}$ has the highest capacitance, almost always $f_{H_{1}}>f_{H_{2}}$.

12.6 Gain-Bandwidth Product

There is a Figure of Merit applied to amplifiers called the Gain-Bandwidth Product (GBP) that is commonly used to initiate the design process of an amplifier. It provides important information about the relationship between the gain of the amplifier and the expected operating frequency range.

The gain-bandwidth product of an amplifier is constant. Thus, gain and bandwidth are inversely proportional, i.e., when we increase the gain, the bandwidth decreases. As a result, we can express the gain-bandwidth product (GBP) as follows

$$
\begin{align*}
\mathrm{GBP} & =\left|A_{v_{m i d}}\right| \times \mathrm{BW} & & \ldots \mathrm{BW}=f_{H}-f_{L} \tag{12.6.69}\\
& \cong\left|A_{v_{m i d}}\right| \times f_{H} & & \ldots f_{H} \gg f_{L}
\end{align*}
$$

For example, f_{T} is the gain-bandwidth product for f_{β} as it is the cutoff frequency for $h_{f e}=1$, i.e., $f_{\alpha} \cong f_{T}$.

Chapter 13

Multistage (Cascaded) Amplifiers

13.1 Cascaded Systems

In cascaded (or multistage) systems output of one amplifier is connected to the input to the next amplifier as shown in Figure 13.1 below.

Figure 13.1: A cascaded (or multistage) system.
We would like to represent the overall system as a voltage-gain amplifier as shown in Figure 13.2 below.

Figure 13.2: Overall representation of the system as a single voltage-gain amplifier.
So, the input resistance $R_{i}=\frac{v_{i}}{i_{i}}$, the output resistance $R_{o}=\frac{v_{L \text { (open-circuit) }}}{i_{L \text { (short-circuit) }}}$ and the no-load voltage gain $A_{v}=\frac{v_{o \text { (nolload })}}{v_{i}}$ of the whole cascaded system is given by

$$
\begin{align*}
& R_{i}=R_{i_{1}} \tag{13.1.1}\\
& R_{o}=R_{o_{n}} \tag{13.1.2}\\
& A_{v}=A_{v_{1}} \times \frac{R_{i_{2}}}{R_{o_{1}}+R_{i_{2}}} \times A_{v_{2}} \times \cdots \times \frac{R_{i_{k}}}{R_{o_{k-1}}+R_{i_{k}}} \times A_{v_{k}} \times \cdots \times \frac{R_{i_{n}}}{R_{o_{n-1}}+R_{i_{n}}} \times A_{v_{n}} \tag{13.1.3}
\end{align*}
$$

where $R_{i_{k}}, R_{o_{k}}$ and $A_{v_{k}}$ are the input resistance, output resistance and no-load gain of the k-th stage, respectively, $1 \leq k \leq n$ and n is the maximum number of stages.

NOTE: Thus, the input resistance of the current stage acts as a load for the previous stage, or the output resistance of the previous stage acts as a source resistance for the current stage.

Consequently, we can represent the overall no-load voltage-gain A_{v} in terms of the load-included voltage gains of each stage except the last stage

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=A_{V_{1}} \times A_{V_{2}} \times \cdots A_{V_{k}} \cdots \times A_{v_{n}} \tag{13.1.4}
\end{equation*}
$$

where $A_{V_{k}}$ is the load-included voltage gain of k-th stage given by

$$
\begin{equation*}
A_{V_{k}}=A_{v_{k}}\left(\frac{R_{i_{k+1}}}{R_{o_{k}}+R_{i_{k+1}}}\right) . \tag{13.1.5}
\end{equation*}
$$

Similarly, we can represent the overall no-load voltage-gain A_{v} in terms of the source-included voltage gains of each stage except the first stage

$$
\begin{equation*}
A_{v}=\left.\frac{v_{o}}{v_{i}}\right|_{R_{L}=\infty}=A_{v_{1}} \times A_{v s_{2}} \times \cdots A_{v s_{k}} \cdots \times A_{v s_{n}} \tag{13.1.6}
\end{equation*}
$$

where $A_{v s_{k}}$ is the source-included voltage gain of k-th stage given by

$$
\begin{equation*}
A_{v s_{k}}=\left(\frac{R_{i_{k}}}{R_{o_{k-1}}+R_{i_{k}}}\right) A_{v_{k}} \tag{13.1.7}
\end{equation*}
$$

Example 13.1: For the figure below, find the input resistance R_{i}, output resistance R_{o} and the overall voltage gain $A_{V s}=v_{o} / v_{s}$ of the whole system.

Figure 13.3: A two-stage cascaded system for Example 13.1.
Solution: The input resistance R_{i}, output resistance R_{o} and the total voltage gain $A_{V s}$ of the overall system are given as follows

$$
\begin{align*}
R_{i} & =R_{i_{1}}=10 \mathrm{k} \Omega \tag{13.1.8}\\
R_{o} & =R_{o_{2}}=5.1 \mathrm{k} \Omega \tag{13.1.9}\\
A_{v} & =A_{v_{1}}\left(\frac{R_{i_{2}}}{R_{o_{1}}+R_{i_{2}}}\right) A_{v_{2}}=(1)\left(\frac{26}{12+26}\right)(240) \cong 164.21 \tag{13.1.10}\\
A_{V s} & =\left(\frac{R_{i}}{R_{s}+R_{i}}\right) A_{v}\left(\frac{R_{L}}{R_{o}+R_{L}}\right)=\left(\frac{10 k}{1 k+10 k}\right)(164.21)\left(\frac{8.2 k}{5.1 k+8.2 k}\right) \cong 92 . \tag{13.1.11}
\end{align*}
$$

Homework 13.1: Calculate the overall voltage gain $A_{V s}$ by removing the first stagein Figure 13.3, i.e., connecting R_{s} directly to the second stage. Thus, explain the purpose of the first stage.

13.2 AC-Coupled Multistage Amplifiers

In AC-coupled multistage amplifiers, the DC bias circuits are isolated from each other by the coupling capacitors at the input and output of each stage.

Thus,

- The DC calculations are independent of the cascading.
- The AC calculations for gain and impedance are interdependent.

Example 13.2: For the figure below, find the input resistance R_{i}, output resistance R_{o} and the no-load voltage gain $A_{v}=v_{o} / v_{i}$ of the whole system.

Figure 13.4: An AC-coupled two-stage FET amplifier for Example 13.2.
Solution: The input resistance R_{i}, output resistance R_{o} and the no-load voltage gain A_{v} of the overall system are given as follows

$$
\begin{align*}
R_{i} & =R_{G_{1}} \tag{13.2.12}\\
R_{o} & =R_{D_{2}} \| r_{d s_{2}} \tag{13.2.13}\\
A_{v} & =\left[-g_{m_{2}}\left(R_{D_{2}} \| r_{d s_{2}}\right)\right]\left[-g_{m_{1}}\left(R_{D_{1}}\left\|r_{d s_{1}}\right\| R_{i_{2}}\right)\right] \tag{13.2.14}\\
& =g_{m_{2}} g_{m_{1}}\left(R_{D_{2}} \| r_{d s_{2}}\right)\left(R_{D_{1}}\left\|r_{d s_{1}}\right\| R_{G_{2}}\right) . \tag{13.2.15}
\end{align*}
$$

Example 13.3: For the figure below, find the input resistance R_{i}, output resistance R_{o} and the no-load voltage gain $A_{v}=v_{o} / v_{i}$ of the whole system.

Figure 13.5: An AC-coupled two-stage BJT amplifier for Example 13.3.
Solution: The input resistance R_{i}, output resistance R_{o} and the no-load voltage gain A_{v} of the overall system are given as follows

$$
\begin{align*}
R_{i} & =R_{1}\left\|R_{2}\right\| h_{i e_{1}} \tag{13.2.16}\\
R_{o} & =R_{C_{2}} \| 1 / h_{o e_{2}} \tag{13.2.17}\\
A_{v} & =\left(-\frac{h_{f e_{2}}\left(R_{C_{2}} \| 1 / h_{o e_{2}}\right)}{h_{i e_{2}}}\right)\left(-\frac{h_{f e_{1}}\left(R_{C_{1}}\left\|1 / h_{o e_{1}}\right\| R_{i_{2}}\right)}{h_{i e_{1}}}\right) \tag{13.2.18}\\
& =\frac{h_{f e_{2}} h_{f e_{1}}\left(R_{C_{2}} \| 1 / h_{o e_{2}}\right)\left(R_{C_{1}}\left\|1 / h_{o e_{1}}\right\| R_{3}\left\|R_{4}\right\| h_{i e_{2}}\right)}{h_{i e_{2}} h_{i e_{1}}} . \tag{13.2.19}
\end{align*}
$$

- We can also represent these results in the r_{e} model as follows

$$
\begin{align*}
R_{i} & =R_{1}\left\|R_{2}\right\| \beta_{1} r_{e_{1}} \tag{13.2.20}\\
R_{o} & =R_{C_{2}} \| r_{o_{2}} \tag{13.2.21}\\
A_{v} & =\left(\frac{-R_{C_{2}} \| r_{o_{2}}}{r_{e_{2}}}\right)\left(-\frac{R_{C_{1}}\left\|r_{o_{1}}\right\| R_{i_{2}}}{r_{e_{1}}}\right) \tag{13.2.22}\\
& =\frac{\left(R_{C_{2}} \| r_{o_{2}}\right)\left(R_{C_{1}}\left\|r_{o_{1}}\right\| R_{3}\left\|R_{4}\right\| \beta_{2} r_{e_{2}}\right)}{r_{e_{2}} r_{e_{1}}} . \tag{13.2.23}
\end{align*}
$$

Example 13.4: For the figure below,
a) Draw AC and DC load lines for both transistors.
b) Calculate the overall voltage gain $A_{V s}=v_{o} / v_{s}$.
c) Find $v_{s(\max)}$ which produces maximum undistorted output voltage.

Figure 13.6: An AC-coupled two-stage BJT amplifier for Example 13.4.
Homework 13.2: Solve the question given in Example 13.4.

13.3 DC-Coupled Multistage Amplifiers

In DC-coupled multistage amplifiers, the DC bias circuits are not isolated from each other. Thus,

- The DC calculations are not independent of the cascading.
- The AC calculations for gain and impedance are interdependent.

DC-coupled multistage amplifiers are used either to amplify very low frequency signals or to amplify DC signals.

Example 13.5: For the figure below,
a) Draw AC and DC load lines for both transistors.
b) Calculate the overall voltage gain $A_{V s}=v_{o} / v_{s}$.
c) Find $v_{s(\max)}$ which produces maximum undistorted output voltage.

Figure 13.7: A DC-coupled two-stage BJT amplifier for Example 13.5.
Solution: a) Let us first start with DC analysis and apply the Thévenin theorem at the base od the first transistor

$$
\begin{align*}
V_{B B_{1}} & =\frac{30 k}{30 k+60 k} 30=10 \mathrm{~V} \tag{13.3.24}\\
R_{B B_{1}} & =30 k \| 60 k=20 \mathrm{k} \Omega \tag{13.3.25}
\end{align*}
$$

Note that, $I_{E_{1}}=I_{R E_{1}}+I_{B_{2}} \cong I_{R E_{1}}$ assuming $I_{E_{2}} \sim I_{E_{1}}$. So, we can find $I_{R E_{1}}$ as follows

$$
\begin{equation*}
I_{R E_{1}} \cong \frac{V_{B B_{1}}-V_{B E_{1}(O N)}}{R_{E_{1}}+R_{B B_{1}} /(\beta+1)}=\frac{10-0.6}{1 k+20 k / 21} \cong 4.82 \mathrm{~mA} \tag{13.3.26}
\end{equation*}
$$

Consequently, $I_{C Q_{1}} \cong I_{R E_{1}}=4.82 \mathrm{~mA}$ and $R_{D C_{1}} \cong R_{E_{1}}=1 \mathrm{k} \Omega$. Also, as $V_{B_{2}}=V_{E_{2}}=4.82 \mathrm{~V}$, we can find $I_{E_{2}}$ as

$$
\begin{equation*}
I_{E_{2}}=\frac{V_{E_{1}}-V_{B E_{2}(O N)}}{R_{E_{2}}}=\frac{4.82-0.6}{1 k} \cong 4.22 \mathrm{~mA} \tag{13.3.27}
\end{equation*}
$$

Thus, $I_{E_{2}} \sim I_{E_{1}}$ and our assumption holds. Here assuming $\alpha=20 / 21 \approx 1$, we obtain $R_{D C_{2}} \cong$ $R_{C}+R_{E_{2}}=3 \mathrm{k} \Omega$.

As $R_{a c_{1}} \cong R_{D C_{1}}=1 \mathrm{k} \Omega$ and $R_{a c_{2}}=R_{D C_{2}}=3 \mathrm{k} \Omega$, AC and DC load-lines coincide for both transistors, i.e.,

$$
\begin{aligned}
& v_{C E_{1}}=V_{C C}-i_{C_{1}} R_{a c_{1}} \\
& v_{C E_{2}}=V_{C C}-i_{C_{2}} R_{a c_{2}}
\end{aligned}
$$

...AC-DC load lines are the same (13.3.28)
...AC-DC load lines are the same (13.3.29)

Consequently, AC (and DC) load-line for the first transistor is shown in Figure 13.8 below

Figure 13.8: AC-DC load-line for the first transistor in Example 13.5.
We can see that maximum undistorted swing for the first transistor is given by

$$
\begin{equation*}
v_{C E_{1(\max)}}=\min \left(V_{C E Q_{1}}, I_{C Q_{1}} R_{a c_{1}}\right)=\min (25.18,4.82)=4.82 \mathrm{~V} \tag{13.3.30}
\end{equation*}
$$

Similarly, AC (and DC) load-line for the second transistor is shown in Figure 13.9 below

Figure 13.9: AC-DC load-line for the second transistor in Example 13.5.
We can see that maximum undistorted swing for the second transistor is given by

$$
\begin{equation*}
v_{C E_{2(\max)}}=\min \left(V_{C E Q_{2}}, I_{C Q_{2}} R_{a c_{2}}\right)=\min (17.34,12.66)=12.66 \mathrm{~V} . \tag{13.3.31}
\end{equation*}
$$

b) Let us first find $h_{i e_{1}}, h_{i e_{2}}$ and $R_{i_{1}}$

$$
\begin{align*}
& i e_{1}=h_{f e_{1}} \frac{\gamma}{I_{C Q_{1}}}=20 \frac{26 m}{4.82 m}=(20)(5.39) \cong 108 \Omega \tag{13.3.32}\\
& h_{i e_{2}}=\left(h_{f e_{2}}+1\right) \frac{\gamma}{I_{C Q_{2}}}=21 \frac{26 m}{4.22 m}=(21)(6.16) \cong 129 \Omega \tag{13.3.33}\\
& R_{i_{1}} \cong R_{1}\left\|R_{2}\right\|\left[h_{i e_{1}}+\left(h_{f e_{1}}+1\right) R_{E_{1}}\right]=30 k\|60 k\|[108+(21)(1 k)] \cong 10.3 \mathrm{k} \Omega \tag{13.3.34}
\end{align*}
$$

Later, let us calculate the no-load gain $A_{v_{2}}=v_{o} / v_{i_{2}}=v_{o} / v_{o_{1}}$ of the second stage

$$
\begin{equation*}
A_{v_{2}}=\frac{v_{o}}{v_{o_{1}}}=\frac{-h_{f e_{2}} R_{C}}{h_{i e_{2}}+\left(h_{f e_{2}}+1\right) R_{E_{2}}}=\frac{-(20)(2 k)}{129+(21)(1 k)}=1.89 \tag{13.3.35}
\end{equation*}
$$

Now, let us calculate the overall gain $A_{V s_{1}}=v_{o_{1}} / v_{s}$ of the first stage

$$
\begin{align*}
A_{V s_{1}}=\frac{v_{o_{1}}}{v_{s}} & =\left(\frac{R_{i_{1}}}{R_{s}+R_{i_{1}}}\right)\left(\frac{\left(h_{f e_{1}}+1\right) R_{E_{1}}}{h_{i e_{1}}+\left(h_{f e_{1}}+1\right) R_{E_{1}}}\right) \\
& =\left(\frac{10.3 k}{1 k+10.3 k}\right)\left(\frac{(21)(1 k)}{108+(21)(1 k)}\right) \cong 0.91 . \tag{13.3.36}
\end{align*}
$$

So, the overall voltage gain $A_{V s}$ is given by

$$
\begin{equation*}
A_{V s}=A_{V s_{1}} \times A_{v_{2}}=(0.91)(1.89)=1.72 \tag{13.3.37}
\end{equation*}
$$

c) From $v_{C E_{1(\max)}}$ and $v_{C E_{2(\max)}}$ calculated (13.3.30) and (13.3.31) in part (a), and from $A_{v_{2}}$ and $A_{V s_{1}}$ calculated (13.3.35) and (13.3.36) in part (b), we see that the limiting factor comes from the first stage. Because

$$
\begin{equation*}
\left(v_{C E_{1(\max)}}<\frac{v_{C E_{2(\max)}}}{A_{v_{2}}}\right) \Rightarrow\left(4.82<\frac{12.66}{1.89}\right) \Rightarrow(4.82 \mathrm{~V}<6.7 \mathrm{~V}) \tag{13.3.38}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
v_{s(\max)}=\frac{v_{C E_{1(\max)}}}{A_{V s_{1}}}=\frac{4.82}{0.91}=5.30 \mathrm{~V} . \tag{13.3.39}
\end{equation*}
$$

Example 13.6: For the figure below,
a) Draw AC and DC load lines for both transistors.
b) Calculate the overall voltage gain $A_{V s}=v_{o} / v_{s}$.
c) Find $v_{s(\max)}$ which produces maximum undistorted output voltage.

Figure 13.10: A DC-coupled two-stage BJT amplifier for Example 13.6.
Homework 13.3: Solve the question given in Example 13.6.

Example 13.7: For the figure below,
a) Calculate the overall voltage gain $A_{V s}=v_{o} / v_{s}$.
b) Find the output resistance R_{o}.

Figure 13.11: A DC-coupled two-stage BJT amplifier for Example 13.7.
Homework 13.4: Solve the question given in Example 13.7.

13.4 Cascode Amplifier

The cascode configuration is a CE-CB combination, where the collector of the first transistor is connected to the emitter of the second transistor as shown in Figure 13.12 below.

Figure 13.12: A cascode configuration.
The arrangements provide a relatively high-input impedance with low voltage gain for the first CE stage to ensure the input Miller capacitance is at a minimum, whereas the following CB stage provides the high gain.

Therefore, therefore this combination works well in high frequency applications.

Example 13.8: For the cascode amplifier below, find the input resistance R_{i}, output resistance R_{o} and the voltage gain $A_{v}=v_{o} / v_{i}$.

Figure 13.13: A cascode amplifier circuit for Example 13.8.
Solution: Let us perform DC analysis first and calculate $I_{E Q_{1}}$

$$
\begin{align*}
I_{E Q_{1}} & =\frac{V_{B_{1}}-V_{B E(O N)}}{R_{E}} \tag{13.4.40}\\
& \cong \frac{\frac{R_{B_{3}}}{R_{B_{1}}+R_{B_{2}}+R_{B_{3}}} V_{C C}-V_{B E(O N)}}{R_{E}} \tag{13.4.41}\\
& =\frac{\frac{4.7 k}{6.8 k+5.6 k+4.7 k} 18-0.7}{1 k}=\frac{4.95-0.7}{1 k} \tag{13.4.42}\\
& =4.25 \mathrm{~mA} \tag{13.4.43}
\end{align*}
$$

\ldots ignoring $I_{B_{1}}$ and $I_{B_{2}}$ as $\beta R_{E} \gg R_{B_{3}}$

As $\alpha=100 / 101 \cong 1, I_{E Q_{1}} \cong I_{C Q_{1}}=I_{E Q_{2}} \cong I_{C Q_{2}}$. So, $h_{i e}=h_{i e_{1}}=h_{i e_{2}}$ given by

$$
\begin{equation*}
h_{i e}=\left(h_{f e}+1\right) \frac{\gamma}{I_{E Q}}=(101)\left(\frac{26 m}{4.25 m}\right) \cong 618 \Omega \tag{13.4.45}
\end{equation*}
$$

So, the SSAC equivalent circuit is given in Figure ?? below

Figure 13.14: SSAC equivalent circuit for Example 13.8.
Thus, we can calculate R_{i}, R_{o} and A_{v} as follows

$$
\begin{align*}
R_{i} & =R_{B_{3}}\left\|R_{B_{2}}\right\| h_{i e_{1}}=4.7 k\|5.6 k\| 618 \cong 498 \Omega \tag{13.4.46}\\
R_{o} & =R_{C}=1.2 \mathrm{k} \Omega \tag{13.4.47}\\
A_{v} & =\left(\frac{v_{o}}{i_{e_{2}}}\right)\left(\frac{i_{e_{2}}}{i_{b_{1}}}\right)\left(\frac{i_{b_{1}}}{v_{i}}\right) \tag{13.4.48}\\
& =\left(-h_{f b_{2}} R_{C}\right)\left(-h_{f e_{1}}\right)\left(\frac{1}{h_{i e_{1}}}\right) \tag{13.4.49}\\
& =-\frac{(100)(1.2 k)}{0.618 k}=-194 \tag{13.4.50}
\end{align*}
$$

Homework 13.5: Show that the voltage gain $A_{V_{1}}=v_{o_{1}} / v_{i}=-1$ for the first stage of the amplifier. Consequently, comment on the Miller effect.

13.5 Darlington Pair

A very popular connection of $n p n$ two bipolar junction transistors for operation as one superbeta npn transistor is the Darlington connection shown in Figure 13.15 below.

Figure 13.15: Darlington combination.
The main feature of the Darlington connection is that the composite transistor as shown in Figure 13.16 below acts as a single unit with a current gain that is the product of the current gains of the individual transistors.

Figure 13.16: Single npn transistor representation of the Darlington pair.
Consequently, current gain β_{D} and base-emitter turn-on voltage $V_{B E_{D}(O N)}$ are given as follows

$$
\begin{align*}
\beta_{D} & =\beta_{1} \beta_{2}+\beta_{1}+\beta_{2} \approx \beta_{1} \beta_{2} \tag{13.5.51}\\
V_{B E_{D}(O N)} & =2 V_{B E(O N)} \tag{13.5.52}
\end{align*}
$$

Such that $I_{C}=\beta_{D} I_{B}$ and $I_{E}=\left(\beta_{D}+1\right) I_{B}$ when both transistors are in the forward active mode.
Homework 13.6: Show that expressions (13.5.51) and (13.5.52) above for β_{D} and $V_{B E_{D}(O N)}$ are correct.

13.6 Feedback Pair

The feedback pair connection shown in Figure 13.17 below is a two-transistor circuit that operates like the Darlington circuit.

Figure 13.17: Feedback pair connection.
Notice that the feedback pair uses a $p n p$ transistor driving an $n p n$ transistor, the two devices acting effectively much like one $p n p$ transistor as shown in Figure 13.18 below. As with a Darlington connection, the feedback pair also provides a very high current gain.

Figure 13.18: Single $p n p$ transistor representation of the feedback pair.
Consequently, current gain β_{F} and emitter-base turn-on voltage $V_{B E_{F}(O N)}$ are given as follows

$$
\begin{align*}
\beta_{F} & =\beta_{1} \beta_{2}+\beta_{1} \approx \beta_{1} \beta_{2} \tag{13.6.53}\\
V_{B E_{F}(O N)} & =V_{B E(O N)} \tag{13.6.54}
\end{align*}
$$

Such that $I_{C}=\beta_{F} I_{B}$ and $I_{E}=\left(\beta_{F}+1\right) I_{B}$ when both transistors are in the forward active mode.
Homework 13.7: Show that expressions (13.6.53) and (13.6.54) above for β_{F} and $V_{B E_{F}(O N)}$ are correct.

