Contents

Differential Amplifiers
Three Modes of Operation
DC Biasing
Small-Signal Analysis
Single-Ended Mode Operation
Common-Mode Operation
Differential-Mode Operation
Linear Operation
Common-Mode Rejection (Noise Rejection)
Differential Amplifier with a Constant-Current Source
Constant-Current Source Circuits
Analysis of Differential Amplifier with a Constant-Current Source
Differential Amplifier Parameters
Improvements
FET Differential Amplifier Small-Signal Analysis
Uses of Differential Amplifiers
Examples
Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential amplifier can be realized by using two BJTs by connecting their emitter terminals together, where inputs are given from the base terminals and outputs are taken from the collectors of the two transistors, as shown below.

It can be operated with a dual power supply: $V_{C C}$ to $-V_{E E}$; or with a single supply: $V_{C C}$ to $G N D$.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \| 23-Oct-2017 $3 / 42$

Differential Amplifiers

Differential amplifier circuits have 2 inputs and 2 outputs, as shown by the model below.

Differential amplifiers are used to amplify the difference between the two inputs. Thus, differential amplifiers are high gain and low noise amplifiers.

Differential Amplifiers

Three Modes of Operation

There are three modes of operation for differential amplifiers:

1. Single-ended mode

an input signal is applied to one of the inputs and the other input is grounded.
2. Common-mode

- the same input signal is applied to both inputs.

Differential-mode

- two opposite polarity input signals are applied to its inputs.

DC Biasing

Both inputs are grounded (no AC input) and we assume that both transistors are well matched $\left(Q_{1} \equiv Q_{2}\right)$.

$V_{E Q}=0-V_{B E(O N)}=-V_{B E(O N)} \quad \ldots\left(\right.$ as $\left.V_{B E_{1}(O N)}=V_{B E_{2}(O N)}\right)$
$I_{E Q}=\frac{V_{E Q}-\left(-V_{E E}\right)}{R_{E}}=\frac{V_{E E}-V_{B E(O N)}}{R_{E}}$
$I_{C Q}=I_{C Q_{1}}=I_{C Q_{2}}=\frac{I_{E Q}}{2}$
$\ldots\left(\right.$ as $I_{B Q_{1}}=I_{B Q_{2}}$ and $\left.\beta_{1}=\beta_{2} \gg 1\right)$

Differential Amplifiers DC Biasing

We can now calculate the DC voltages around the circuit as follows

$$
\begin{array}{rlrl}
V_{C Q} & =V_{C C}-I_{C Q} R_{C} & \ldots V_{C Q_{1}}=V_{C Q_{2}}=V_{C Q} \\
V_{C E Q} & =V_{C C}+V_{E E}-I_{C Q}\left(R_{C}+2 R_{E}\right) & & \ldots V_{C E Q_{1}}=V_{C E Q_{2}}=V_{C E Q}
\end{array}
$$

Note that as $I_{B Q_{1}}=I_{B Q_{2}}$ and $\beta_{1}=\beta_{2}$ (i.e., $h_{f e_{1}}=h_{f e_{2}}$),

$$
h_{i e_{1}}=h_{i e_{2}}=h_{i e} .
$$

Small-Signal Analvsis

Let us express the outputs in terms of the base currents assuming $h_{o e_{1}}=h_{o e_{2}}=0$,

$$
\begin{aligned}
& v_{o_{1}}=-h_{f e} i_{b_{1}} R_{C} \\
& v_{o_{2}}=-h_{f e} i_{b_{2}} R_{C} .
\end{aligned}
$$

Let us express the inputs in terms of the base currents where $v_{e}=\left[\left(h_{f e}+1\right) i_{b_{1}}+\left(h_{f e}+1\right) i_{b_{2}}\right] R_{E}$,

$$
\begin{aligned}
v_{i_{1}} & =v_{b e_{1}}+v_{e}=h_{i e} i_{b_{1}}+\left[\left(h_{f e}+1\right) i_{b_{1}}+\left(h_{f e}+1\right) i_{b_{2}}\right] R_{E} \\
& =\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] i_{b_{1}}+\left(h_{f e}+1\right) R_{E} i_{b_{2}} \\
v_{i_{2}} & =v_{b e_{2}}+v_{e}=h_{i e} i_{b_{2}}+\left[\left(h_{f e}+1\right) i_{b_{1}}+\left(h_{f e}+1\right) i_{b_{2}}\right] R_{E} \\
& =\left(h_{f e}+1\right) R_{E} i_{b_{1}}+\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] i_{b_{2}}
\end{aligned}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential Amplifiers Single-Ended Mode Operation

Single-Ended Mode Operation

By setting $v_{i_{2}}=0$ in the output equations, we obtain

$$
A_{v}=\frac{v_{o_{1}}}{v_{i_{1}}}=\frac{-h_{f e} R_{C}\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right]}{\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right] h_{i e}} \cong \frac{-h_{f e} R_{C}}{2 h_{i e}}
$$

Note that if take the output from the opposite collector, the gain becomes positive,

$$
\frac{v_{o_{2}}}{v_{i_{1}}}=\frac{h_{f e} R_{C}\left[\left(h_{f e}+1\right) R_{E}\right]}{\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right] h_{i e}} \cong \frac{h_{f e} R_{C}}{2 h_{i e}}=-A_{v} .
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics 23-Oct-2017 o 42

In order to obtain $i_{b_{1}}$ and $i_{b_{2}}$ in terms of let us first express the input voltage equations using matrices and take the inverse of the equation matrix (you can also obtain base currents using the classical variable elimination method)

$$
\left[\begin{array}{l}
v_{i_{1}} \\
v_{i_{2}}
\end{array}\right]=\left[\begin{array}{cc}
h_{i e}+\left(h_{f e}+1\right) R_{E} & \left(h_{f e}+1\right) R_{E} \\
\left(h_{f e}+1\right) R_{E} & h_{i e}+\left(h_{f e}+1\right) R_{E}
\end{array}\right]\left[\begin{array}{l}
i_{b_{1}} \\
i_{b_{2}}
\end{array}\right]
$$

Thus, base currents $i_{b_{1}}$ and $i_{b_{2}}$ are given by

$$
\left[\begin{array}{l}
i_{b_{1}} \\
i_{b_{2}}
\end{array}\right]=\frac{1}{h_{i e}\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right]}\left[\begin{array}{cc}
h_{i e}+\left(h_{f e}+1\right) R_{E} & -\left(h_{f e}+1\right) R_{E} \\
-\left(h_{f e}+1\right) R_{E} & h_{i e}+\left(h_{f e}+1\right) R_{E}
\end{array}\right]\left[\begin{array}{c}
v_{i_{1}} \\
v_{i_{2}}
\end{array}\right] .
$$

Hence,

$$
\begin{aligned}
i_{b_{1}} & =\frac{\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] v_{i_{1}}-\left(h_{f e}+1\right) R_{E} v_{i_{2}}}{h_{i e}\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right]} \\
i_{b_{2}} & =\frac{\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] v_{i_{2}}-\left(h_{f e}+1\right) R_{E} v_{i_{1}}}{h_{i e}\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right]} .
\end{aligned}
$$

Finally, the output voltages are expressed in terms of the input voltages as follows,

$$
\begin{aligned}
& v_{o_{1}}=-h_{f e} R_{C} \frac{\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] v_{i_{1}}-\left(h_{f e}+1\right) R_{E} v_{i_{2}}}{h_{i e}\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right]} \\
& v_{o_{2}}=-h_{f e} R_{C} \frac{\left[h_{i e}+\left(h_{f e}+1\right) R_{E}\right] v_{i_{2}}-\left(h_{f e}+1\right) R_{E} v_{i_{1}}}{h_{i e}\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right]} .
\end{aligned}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential Amplifiers Single-Ended Mode Operation

- Input resistance of the single-ended mode is given as

$$
\begin{aligned}
R_{i_{s}} & =\frac{v_{i_{1}}}{i_{b_{1}}} \\
& =\frac{\left[h_{i e}+2\left(h_{f e}+1\right) R_{E}\right] h_{i e}}{h_{i e}+\left(h_{f e}+1\right) R_{E}} \\
& \cong 2 h_{i e} .
\end{aligned}
$$

Consequently, input resistance of the single-ended mode is given by

$$
R_{i_{s}} \cong 2 h_{i e}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \|
23-Oct-2017

Common-Mode Operation

In this mode, the same signal is applied to both inputs, i.e., $v_{i_{1}}=v_{i_{2}}=v_{i}$. As the differential amplifier amplifies the difference between the inputs, common-mode gain should be quite small.

By setting $v_{i_{1}}=v_{i_{2}}=v_{i}$ in the output equations, we obtain

$$
A_{c}=\frac{v_{o_{1}}}{v_{i}}=\frac{v_{o_{2}}}{v_{i}}=\frac{-h_{f e} R_{C}}{h_{i e}+2\left(h_{f e}+1\right) R_{E}}
$$

Differential Amplifiers Common-Mode Operation

- We see that input resistance of the common-mode, $R_{i_{c}}=\frac{v_{i}}{i_{b_{1}}+i_{b_{2}}}$, is

$$
R_{i_{c}}=\frac{h_{i e}}{2}+\left(h_{f e}+1\right) R_{E} \approx\left(h_{f e}+1\right) R_{E}
$$

- As we define the differential output as

$$
v_{o}=v_{o_{1}}-v_{o_{2}},
$$

if the differential amplifier is balanced, i.e.

$$
R_{C_{1}}=R_{C_{2}}=R_{C}
$$

then the differential output common-mode gain is zero,

$$
\frac{v_{o}}{v_{i}}=\frac{v_{o_{1}}-v_{o_{2}}}{v_{i}}=\frac{-h_{f e}\left(R_{C_{1}}-R_{C_{2}}\right)}{h_{i e}+2\left(h_{f e}+1\right) R_{E}}=\frac{-h_{f e}\left(R_{C}-R_{C}\right)}{h_{i e}+2\left(h_{f e}+1\right) R_{E}}=0 .
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential Amplifiers Differential-Mode Operation

- Note that if take the output from the opposite collector, the gain becomes positive,

$$
\frac{v_{o_{2}}}{v_{d}}=-\frac{v_{o_{1}}}{v_{d}}=\frac{h_{f e} R_{C}}{2 h_{i e}} .
$$

- We see that, input resistance of the differential-mode, $R_{i_{d}}=\frac{v_{d}}{i_{b_{1}}}$, is

$$
R_{i_{d}}=2 h_{i e}
$$

- As we define the differential output as

$$
v_{o}=v_{o_{1}}-v_{o_{2}},
$$

if the differential amplifier is balanced, i.e.,

$$
R_{C_{1}}=R_{C_{2}}=R_{C},
$$

then the differential output differential-mode gain is doubled,

$$
\frac{v_{o}}{v_{d}}=\frac{v_{o_{1}}-v_{o_{2}}}{v_{d}}=\frac{-h_{f e}\left(R_{C_{1}}+R_{C_{2}}\right)}{2 h_{i e}}=\frac{-h_{f e}\left(2 R_{C}\right)}{2 h_{i e}}=2 A_{d} .
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 23-Oct-2017 $15 / 42$

Common-Mode Rejection (Noise Rejection)

In common-mode, the signal common to both inputs will have a low gain $\left(A_{c}\right)$. In differential-mode (single-ended or double-ended), any signal that is common to both inputs will have a low gain. In differential-mode, any signal that is common to both inputs is noise.

The ability of the amplifier to have a low common-mode gain, i.e., not amplify signals that are common to both inputs, is called Common-Mode Rejection.

- Then, the Common-Mode Rejection Ratio (CMRR) is given by

$$
\begin{aligned}
\mathrm{CMRR} & =\left|\frac{A_{d}}{A_{c}}\right| \\
& =\frac{h_{i e}+2\left(h_{f e}+1\right) R_{E}}{2 h_{i e}}
\end{aligned}
$$

- CMRR can be also represented in dBs, i.e.,

$$
\mathrm{CMRR}=20 \log _{10}\left|\frac{A_{d}}{A_{c}}\right|
$$

Differential-Mode Operation

In this mode, two opposite polarity signals $v_{i_{1}}=-v_{i_{2}}=\frac{v_{d}}{2}$ are applied to the inputs

By setting $v_{i_{1}}=\frac{v_{d}}{2}$ and $v_{i_{2}}=-\frac{v_{d}}{2}$ in the output equations, we obtain

$$
A_{d}=\frac{v_{o_{1}}}{v_{d}}=\frac{-h_{f e} R_{C}}{2 h_{i e}}
$$

Here, v_{d} is called the differential input, i.e.,

$$
v_{d}=v_{i_{1}}-v_{i_{2}} .
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential Amplifiers Linear Operatio

Linear Operation

- Let us represent the two input signals $v_{i_{1}}$ and $v_{i_{2}}$ in terms of their average $v_{\mathrm{avg}}=\frac{v_{i_{1}}+v_{i_{2}}}{2}$ and difference $v_{d}=v_{i_{1}}-v_{i_{2}}$,

$$
\begin{aligned}
& v_{i_{1}}=v_{\mathrm{avg}}+\frac{v_{d}}{2} \\
& v_{i_{2}}=v_{\mathrm{avg}}-\frac{v_{d}}{2}
\end{aligned}
$$

- If the system is linear then we can write the two outputs $v_{o_{1}}$ and $v_{o_{2}}$ as follows

$$
\begin{array}{|l}
v_{o_{1}}=A_{c} v_{\mathrm{avg}}+A_{d} v_{d} \\
v_{o_{2}}=A_{c} v_{\mathrm{avg}}-A_{d} v_{d} \\
\hline
\end{array}
$$

- Similarly, the differential output v_{o} of a balanced differential amplifier becomes

$$
v_{o}=v_{o_{1}}-v_{o_{2}}=2 A_{d} v_{d}
$$

NOTE: Differential amplifier with a common emitter resistance can always be considered to be linear.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

- To improve common-mode rejection:
- A_{d} must increase
- A_{c} must decrease, i.e., R_{E} must increase.
- One method is to increase the value of R_{E} by replacing it with a constant-current source circuit.

Differential Amplifier with a Constant-Current Source

This increases the AC impedance for R_{E}.
Constant-current sources can be built using FETs, BJTs and a combination of these devices.
Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 23-Oct-2017 $19 / 42$

Differential Amplifiers Differential Amplifier with a Constant-Current Source

Current source with a Zener diode

Collector current I_{C} is independent of the load circuit connected to the collector and given by

$$
\begin{aligned}
I_{C} & \cong I_{E} \\
& =\frac{V_{Z}-V_{B E(O N)}}{R_{E}} .
\end{aligned}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 23-Oct-2017 $21 / 42$

Constant-Current Source Circuits

Collector current I_{C} is independent of the load circuit connected to the collector and given by

$$
I_{C} \cong I_{E}
$$

$$
=\frac{V_{B}-V_{B E(O N)}-\left(-V_{E E}\right)}{R_{E}}
$$

$$
\approx \frac{\frac{R_{2}}{R_{1}+R_{2}} V_{E E}-V_{B E(O N)}}{R_{E}} \quad \ldots \text { where }\left(I_{R_{1}} \cong I_{R_{2}}\right) \gg I_{B}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II
23-Oct-2017

Differential Amplifiers Differential Amplifier with a Constant-Current Source

Current Mirror

Current-source current I is given by

$$
\begin{aligned}
I & =I_{C_{2}} \\
& =I_{C_{1}} \\
& \cong \quad \ldots \text { as } Q_{1} \equiv Q_{2}, \text { i.e., } V_{B E_{1}(O N)}=V_{B E_{2}(O N)} \text { and } \beta_{1}=\beta_{2}, \\
& =\frac{V_{C C}-V_{B E(O N)}}{R_{X}} .
\end{aligned}
$$

Current-mirror circuits are used to provide constant current in integrated circuits

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 23 -Oct-2017 | $22 / 42$ |
| :--- | :--- | :--- | :--- | :--- |

Differential Amplifiers Differential Amplifier with a Constant-Current Source

Identical current-mirror constant-current sources ($I_{1}=I_{2}=\cdots=I_{N}$) can be made as shown above.

Homework 1: For the improved current-mirror constant-current source above, find I.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential Amplifiers Differential Amplifier with a Constant-Current Source
Analysis of Differential Amplifier with a Constant-Current Source

Let us analyse the differential amplifier with a constant-current source shown above. Note that sum of the emitter currents is constant due to the constant-current source, i.e.

$$
i_{E_{1}}+i_{E_{2}}=I_{0}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Before continuing any further, let us remember the $p n$-junction diode characteristic equation,

$$
I_{D}=I_{S}\left(e^{V_{D} / \gamma}-1\right) \quad \ldots \text { where } \gamma=26 \mathrm{mV} \text { at } 300 \mathrm{~K} .
$$

Under forward bias, the diode current I_{D} simplifies to

$$
I_{D} \cong I_{S} e^{V_{D} / \gamma}
$$

In a BJT, as $B E$-junction is as $p n$-junction, under forward bias we can write down the emitter currents of a differential amplifier as follows

$$
\begin{aligned}
& i_{E_{1}}=I_{E S} e^{v_{B E} / \gamma} \\
& i_{E_{2}}=I_{E S} e^{v_{B E} / \gamma} \quad \ldots \text { Note that } Q_{1} \equiv Q_{2} .
\end{aligned}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 23-Oct-2017 $25 / 42$

Differential Amplifiers Differential Amplifier with a Constant-Current Source

As the collector currents are (almost) equal to the emitter currents, we can plot these ratios as follows

From the figure above, we see that the linear region resides in between $\pm(1.15 \gamma)$.
Thus, if

$$
\left|v_{i_{1}}-v_{i_{2}}\right|=\left|v_{d}\right| \leq 30 \mathrm{mV}
$$

then, differential amplifier with constant-current source is in the linear region and the following linear operations will hold,

$$
\begin{aligned}
& v_{o_{1}}=A_{c} v_{\mathrm{avg}}+A_{d} v_{d} \\
& v_{o_{2}}=A_{c} v_{\mathrm{avg}}-A_{d} v_{d}
\end{aligned}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \|
23-Oct-2017 27 / 42

Let us express the ratio of constant-current source current I_{0} to the emitter current $I_{E_{1}}$ as follows

$$
\begin{aligned}
\frac{I_{0}}{i_{E_{1}}} & =1+\frac{i_{E_{2}}}{i_{E_{1}}} \\
& =1+\frac{I_{E S} e^{v_{B E_{2}} / \gamma}}{I_{E S} e^{v_{B E_{1}} / \gamma}} \\
& =1+e^{\left(v_{B E_{2}}-v_{B E_{1}}\right) / \gamma} \\
& =1+e^{\left(v_{i_{2}}-v_{i_{1}}\right) / \gamma}
\end{aligned}
$$

where $v_{B E_{1}}=V_{B E(O N)}+v_{i 1}$ and $v_{B E_{2}}=V_{B E(O N)}+v_{i 2}$
We can now express the inverse ratios $\frac{i_{E_{1}}}{I_{0}}$ and $\frac{i_{E_{2}}}{I_{0}}$ as

$$
\frac{i_{E_{1}}}{I_{0}}=\frac{1}{1+e^{\left(v_{i_{2}}-v_{i_{1}}\right) / \gamma}} \quad \text { and } \quad \frac{i_{E_{2}}}{I_{0}}=\frac{1}{1+e^{\left(v_{i_{1}}-v_{i_{2}}\right) / \gamma}}
$$

respectively. Note that

$$
\frac{i_{E_{1}}}{I_{0}}+\frac{i_{E_{2}}}{I_{0}}=1 .
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics ॥

Differential Amplifier Example 1

Example 1: For the circuit below find $v_{o}=v_{o_{1}}-v_{o_{2}}$ for
$v_{i_{1}}=0 \mathrm{~V}$ and $v_{i_{2}}=58.5 \mathrm{mV}$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential Amplifier Parameters

- Input offset voltage : $V_{I O}$
- Input voltage difference $\left(V_{B_{1}}-V_{B_{2}}\right)$ which makes $v_{o}=0 \mathrm{~V}$.
- Due to the $V_{B E(O N)}$ difference of the two BJTs, i.e., when $V_{B E_{1}(O N)} \neq V_{B E_{2}(O N)}$.
- Input offset current : $I_{I O}$
- Input current difference $\left(I_{B_{1}}-I_{B_{2}}\right)$ which makes $v_{o}=0 \mathrm{~V}$.
- Due to the $h_{f e}$ difference of the two BJTs, i.e., when $h_{f e_{1}} \neq h_{f e_{2}}$

$$
\begin{aligned}
v_{o} & =\left(V_{C C}-i_{C_{1}} R_{C}\right)-\left(V_{C C}-i_{C_{2}} R_{C}\right) \\
& =\left(i_{C_{2}}-i_{C_{1}}\right) R_{C} \\
& =(9.05 m-0.95 m) 1 k \\
& =\underline{8.1 \mathrm{~V}} .
\end{aligned}
$$

FET Differential Amplifier

Differential amplifier can also be realized by using two FETs by connecting their source terminals together, where inputs are given from the gate terminals and outputs are taken from the drains of the two transistors, as shown below.

Differential Amplifiers FET Differential Amplifier

Small-Signal Analysis

Let us express the outputs in terms of the base currents assuming $r_{d s_{1}}=r_{d s_{2}}=\infty$,

$$
\begin{aligned}
& v_{o_{1}}=-g_{m} v_{g s_{1}} R_{D} \\
& v_{o_{2}}=-g_{m} v_{g s_{2}} R_{D} . \quad \ldots \text { As } Q_{1} \equiv Q_{2} \text { and } I_{D Q_{1}}=I_{D Q_{2}}, g_{m}=g_{m_{1}}=g_{m_{2}} .
\end{aligned}
$$

Let us express the inputs in terms of the gate-to-source voltages using matrices, where $v_{s}=\left[g_{m} v_{g s_{1}}+g_{m} v_{g s_{2}}\right] R_{S}$

$$
\left[\begin{array}{c}
v_{i_{1}} \\
v_{i_{2}}
\end{array}\right]=\left[\begin{array}{cc}
1+g_{m} R_{S} & g_{m} R_{S} \\
g_{m} R_{S} & 1+g_{m} R_{S}
\end{array}\right]\left[\begin{array}{c}
v_{g s_{1}} \\
v_{g s_{2}}
\end{array}\right]
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.)	ELE315 Electronics II	23-Oct-2017	$34 / 42$

Uses of Differential Amplifiers

1. Gain amplifiers in operational amplifiers

- Due to high voltage gain

2. Comparators

- Due to high sensitivity to the differential input, e.g., measurement circuit below

Here, $R_{T h}$ signifies a thermistor whose resistance varies with temperature. Note that, the output is zero, i.e., $v_{o}=0 \mathrm{~V}$, only when $V_{1}=V_{2}$.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Differential Amplifier Example 2

Example 2: For the circuit below,
i. Calculate the value of R_{C} in order to make $v_{o}=0 \mathrm{~V}$ when $v_{i}=0 \mathrm{~V}$.
i. Find v_{o} when $v_{i}=1 \mathrm{mV} \sin (\omega t)$.

$$
h_{f e}=h_{F E}=100, \alpha=1, V_{B E(O N)}=0.6 \mathrm{~V}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 23-Oct-2017 $37 / 42$

Differential Amplifiers Examples

Hence, $I_{B Q_{8}}=I_{C Q_{7}}=8.2 \mu \mathrm{~A}$.
$I_{C Q_{8}}=h_{F E} I_{B Q_{8}}=(100)(8.2 \mu)=0.82 \mathrm{~mA}$
Consequently, R_{C} is given by

$$
\begin{aligned}
R_{C} & =\frac{V_{C C}-v_{o}}{I_{C Q_{8}}} \\
& =\frac{20-0}{0.82 m} \\
& =24.39 \mathrm{k} \Omega .
\end{aligned}
$$

i. First stage differential amplifier (with a constant-current source) is in the linear mode (as $v_{d}=1 \mathrm{mV}<30 \mathrm{mV}$), so let us calculate the $h_{i e}$ values for the relevant transistors and the input resistance $R_{i_{8}}$ of the last stage as $R_{C_{7}}=R_{i_{8}}$

$$
\begin{aligned}
h_{i e_{1}}=h_{i e_{2}} & =h_{f e} \frac{\gamma}{I_{C Q_{1}}}=100 \frac{25 m}{5 \mu}=500 \mathrm{k} \Omega, \\
h_{i e_{6}}=h_{i e_{7}} & =h_{f e} \frac{\gamma}{I_{C Q_{7}}}=100 \frac{25 m}{8.2 \mu}=305 \mathrm{k} \Omega, \\
h_{i e_{8}} & =h_{f e} \frac{\gamma}{I_{C Q_{8}}}=100 \frac{25 \mathrm{~m}}{0.82 m}=3.05 \mathrm{k} \Omega \\
R_{C_{7}}=R_{i 8} & =h_{i e_{8}}+\left(h_{f e}+1\right) R_{7}=3.05 k+(101)(5 k)=508.05 \mathrm{k} \Omega .
\end{aligned}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 23-Oct-2017 $39 / 42$

Differential Amplifiers Examples

Differential Amplifier Example 3

Example 3: For the circuit below, (HINT: Use forward bias diode equation for diodes)
i. Calculate the value of R in order to make $v_{o}=0 \mathrm{~V}$ when $v_{i}=0 \mathrm{~V}$
ii. Find v_{o} when $v_{i}=20 \mathrm{mV} \sin (\omega t)$.

$$
h_{f e}=h_{F E}=20, \alpha=1, V_{B E(O N)}=0.6 \mathrm{~V}, \gamma=25 \mathrm{mV}
$$

Solution: i. Let us first calculate the value of the constant-current source I_{0}

$$
\begin{aligned}
I_{0} & \cong \frac{V_{C C}-V_{B E(O N)}-\left(-V_{E E}\right)}{R_{4}+R_{5}} \quad \ldots \text { ignoring } I_{B_{5}}, I_{B_{4}} \text { and } I_{B_{3}} \\
& =\frac{20-0.6-(-20)}{2 M+1.94 M} \\
& =10 \mu \mathrm{~A} .
\end{aligned}
$$

Thus, $I_{C Q_{1}}=I_{C Q_{2}}=\frac{I_{0}}{2}=\frac{10 \mu}{2}=5 \mu \mathrm{~A}$.
In order to find $I_{R 6}$, we need to write a KVL equation for the (R_{6}, R_{1}, R_{4})-loop

$$
V_{C C}-R_{6} I_{R 6}-V_{B E_{6}(O N)}+R_{1} I_{R 1}+V_{B E_{3}(O N)}+R_{4} I_{R 4}=V_{C C}
$$

Thus $I_{R 6}$ is given by

$$
\begin{aligned}
I_{R 6} & =\frac{R_{1} I_{R 1}+R_{4} I_{R 4}}{R_{6}} \\
& =\frac{(0.1 M)(5 \mu)+(2 M)(10 \mu)}{1.25 M} \quad \ldots I_{R 4} \cong I_{0}=10 \mu \mathrm{~A} \\
& =16.4 \mu \mathrm{~A} .
\end{aligned}
$$

Thus, $I_{C Q_{6}}=I_{C Q_{7}}=\frac{I_{R 6}}{2}=\frac{16.4 \mu}{2}=8.2 \mu \mathrm{~A}$.

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 23-Oct-2017 | $38 / 42$ |
| :--- | :--- | :--- | :--- | :--- |

Linear-mode differential output of the first stage, $\left(v_{C_{2}}-v_{C_{1}}\right)$, is given by

$$
\begin{aligned}
v_{C_{2}}-v_{C_{1}} & =\frac{h_{f e} 2 R_{C} \| 2 h_{i e_{6}}}{2 h_{i e_{1}}} v_{i}=\frac{h_{f e} R_{C} \| h_{i e_{6}}}{h_{i e_{1}}} v_{i} \\
& =\frac{(100)(100 k \| 305 k)}{500 k}(1 \mathrm{~m}) \\
& =0.015 \mathrm{~V} .
\end{aligned}
$$

Output of the second stage, $v_{C_{7}}$, is given by

$$
\begin{aligned}
v_{C_{7}} & =\frac{-h_{f e} R_{C_{7}}}{2 h_{i e_{7}}}\left(v_{B_{7}}-v_{B_{6}}\right) \\
& =\frac{-(100)(508.05 k)}{(2)(305 k)}(0.015) \\
& =-1.25 \mathrm{~V} .
\end{aligned}
$$

Finally output v_{o} is given by,

$$
\begin{aligned}
v_{o} & =\frac{-h_{f e} R_{C}}{h_{i e_{8}}+\left(h_{f e}+1\right) R_{7}} v_{C_{7}} \quad \ldots v_{o} \cong-\frac{R_{C}}{R_{7}} v_{C_{7}} \\
& =\frac{-(100)(24.39 k)}{508.05 k}(-1.67) \\
& =\underline{6 \mathrm{~V} \sin (\omega t) .}
\end{aligned}
$$

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 23-Oct-2017 | $40 / 42$ |
| :--- | :--- | :--- | :--- | :--- |

Differential Amplifiers Examples

Differential Amplifier Example 4

Example 4: For the circuit below, calculate the value of R_{2} / R_{1} in order to make $v_{o}=0 \mathrm{~V}$ when $v_{i}=0 \mathrm{~V}$.

$$
h_{f e}=h_{F E}=100, \alpha=1, V_{B E(O N)}=0.6 \mathrm{~V}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \|

