Multistage Amplifiers

Cascade Connection

(b)

(Parasitic capacitances
of network and active
devices and frequency
dependence of the gain of the transistor, FET, or tube)
(c)

AC Coupled Multistage Amplifiers

The output of one amplifier is the input to the next amplifier.
Note the DC bias circuits are isolated from each other by the coupling capacitors.
The DC calculations are independent of the cascading.
The AC calculations for gain and impedance are interdependent.
The overall gain:

$$
A_{v}=A_{v_{1}} \times \frac{Z_{i_{2}}}{Z_{o_{1}}+Z_{i_{2}}} \times A_{v_{2}} \times \cdots \frac{Z_{i_{k}}}{Z_{o_{k-1}}+Z_{i_{k}}} \times A_{v_{k}} \cdots \times \frac{Z_{i_{n}}}{Z_{o_{n-1}}+Z_{i_{n}}} \times A_{v_{n}}
$$

with $Z_{i}=Z_{i_{1}} \quad$ and $\quad Z_{o}=Z_{o_{n}}$

AC Coupled Multistage Amplifiers

We can also express the overall gain as follows

$$
A_{v}=A_{v_{1}}^{*} \times A_{v_{2}}^{*} \times \cdots A_{v_{k}}^{*} \cdots \times A_{v_{n}}
$$

where

$$
A_{v_{k}}^{*}=A_{v_{k}} \times \frac{Z_{i_{k+1}}}{Z_{o_{k}}+Z_{i_{k+1}}}
$$

FET Cascade Amplifier

Voltage Gain:

$$
A_{v}=A_{v_{2}} A_{v_{1}}^{*}=\left(-\boldsymbol{g}_{m_{2}} \boldsymbol{R}_{\boldsymbol{D}_{2}}\right)\left[-\boldsymbol{g}_{\boldsymbol{m}_{1}}\left(\boldsymbol{R}_{\boldsymbol{D}_{1}} \| \boldsymbol{R}_{\boldsymbol{G}_{2}}\right)\right]
$$

Input Impedance: $\quad \mathbf{Z}_{\mathbf{i}}=\boldsymbol{R}_{\mathbf{G}_{\mathbf{1}}}$
Output Impedance: $\quad Z_{o}=\boldsymbol{R}_{\boldsymbol{D}_{\mathbf{2}}}$

BJT Cascade Amplifier

Voltage Gain:

$$
A_{v}=A_{v_{2}} A_{v_{1}}^{*}=\left(-\frac{\boldsymbol{h}_{\boldsymbol{f} e_{2}} \boldsymbol{R}_{\boldsymbol{C}_{2}}}{\boldsymbol{h}_{\boldsymbol{i e}_{2}}}\right)\left(-\frac{\boldsymbol{h}_{\boldsymbol{f} e_{1}}\left[\boldsymbol{R}_{\boldsymbol{C}_{1}} \|\left(\boldsymbol{R}_{3}\left\|\boldsymbol{R}_{4}\right\| \boldsymbol{h}_{\boldsymbol{i} e_{2}}\right)\right]}{\boldsymbol{h}_{\boldsymbol{i} \boldsymbol{e}_{1}}}\right)
$$

Input Impedance: $\quad \mathbf{Z}_{\boldsymbol{i}}=\boldsymbol{R}_{\mathbf{1}}\left\|\boldsymbol{R}_{\mathbf{2}}\right\| \boldsymbol{h}_{\boldsymbol{i e}_{1}}$
Output Impedance: $\quad Z_{\boldsymbol{o}}=\boldsymbol{R}_{C 2} \| \frac{\mathbf{1}}{\boldsymbol{h}_{\boldsymbol{o e}_{2}}}$

Combination of FET and BJT Cascade

A FET-BJT cascade is calculated in a similar fashion as a FET-FET or a BJT-BJT cascade.

This combination provides a high gain from the BJT with the high input impedance from the FET.

Ex1:

a) Draw AC and DC load lines for both transistors.
b) Calculate the overall voltage gain $\mathbf{A}_{\mathbf{V}}=\mathbf{v}_{\mathbf{0}} / \mathbf{v}_{\mathbf{s}}$.
c) Find $\mathbf{v}_{\mathbf{s}(\max)}$ which produces maximum undistorted output voltage.

DC Coupled Multistage Amplifiers

The output of one amplifier is the input to the next amplifier.

Note the DC bias circuits are not isolated from each other The DC calculations are not independent of the cascading.

Used either to amplify very low frequency signals or to amplify DC signals

The overall gain:

$$
A_{v}=A_{v_{1}} \times \frac{Z_{i_{2}}}{Z_{o_{1}}+Z_{i_{2}}} \times A_{v_{2}} \times \cdots \frac{Z_{i_{k}}}{Z_{o_{k-1}}+Z_{i_{k}}} \times A_{v_{k}} \cdots \times \frac{Z_{i_{n}}}{Z_{o_{n-1}}+Z_{i_{n}}} \times A_{v_{n}}
$$

with

$$
Z_{i}=Z_{i_{1}} \quad \text { and } \quad Z_{o}=Z_{o_{n}}
$$

Ex2:

a) Draw AC and DC load lines for both transistors.
b) Calculate the overall voltage gain $\mathbf{A}_{\mathbf{V}}=\mathbf{v}_{\mathbf{0}} / \mathbf{v}_{\mathbf{s}}$.
c) Find $\mathbf{v}_{\mathbf{s} \text { (max) }}$ which produces maximum undistorted output voltage.

Ex3:

a) Draw AC and DC load lines for both transistors.
b) Calculate the overall voltage gain $\mathbf{A}_{\mathbf{V}}=\mathbf{v}_{\mathbf{0}} / \mathbf{v}_{\mathbf{s}}$.
c) Find $\mathbf{v}_{\mathbf{s} \text { (max) }}$ which produces maximum undistorted output voltage.

Ex4:

b) Calculate the overall voltage gain $\mathbf{A}_{\mathbf{v}}=\mathbf{v}_{\mathbf{0}} / \mathbf{v}_{\mathbf{s}}$.
c) Find \mathbf{R}_{0}.

Cascode Connection

This is a CE - CB combination.
This arrangement provides high input impedance but a low voltage gain.
The low voltage gain reduces the Miller Input Capacitance therefore this combination works well in high frequency applications.

A more elaborate version of cascode amplifier

Ex5:

Consider the cascode amplifier above
a) Find the voltage gain $\mathbf{A}_{\mathbf{v}}=\mathbf{v}_{\mathbf{0}} / \mathbf{v}_{\mathbf{i}}$
b) Find the input resistance $\mathbf{R}_{\mathbf{i}}$
c) Find the output resistance $\mathbf{R}_{\mathbf{o}}$

Darlington Connection

This combination provides large current gain, typically a few thousand.
It has a voltage gain of near 1 , a low output impedance and a high input impedance.

Feedback Pair

This is a two-transistor circuit that operates like a Darlington pair.
It has similar characteristics: high current gain, voltage gain of near 1, low output impedance and high input impedance.
Note: it is not the Darlington configuration:
Darlington: 2 npn BJTs
Feedback Pair: pnp driving an npn BJT

