Contents		
Operational Amplifiers		
Ideal Op-Amp Properties		
MC1530 Operational Amplifier		
DC Analysis		
Small-signal Analysis		
Op-Amp Gain		
Inverting Op Amp Amplifier		
Virtual Ground		
Gain		
Practical Op-Amp Circuits		
Logarithmic Amplifier		
Op-Amp Specifications		
Input Bias and Offset Currents		
Input Offset Voltage		
Power Supply Rejection Ratio		
Slew Rate		
Common-Mode Rejection Ratio		
Open-Loop Bandwidth Op-Amp Performance		
Effects of Offset Voltage and Bias Currents		
Multistage Gains		
Active Filters		
Lowpass Filter		
Highpass Filter		
Bandpass Filter		
. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II	26-Oct-2017	1/3

Operational Amplifiers Ideal Op-Amp Properties	
1. Infinite Input Resistance:	$R_i = \infty$
2. Zero Output Resistance:	$R_o = 0$
3. Infinite Voltage Gain:	$A_d = \infty$
4. Infinite Bandwidth:	$BW = \infty$
5. Infinite output current	
6. Perfect Balance, i.e., $v_o=0$ when $v_{i_2}=v_{i_1}$	
7. Above characteristics do not drift with temperature	
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II	26-Oct-2017 3 / 37

Operational Amplifiers Inverting Op-Amp Amplifier	
Inverting Amplifier Gain	Practica
From the simplified inverting amplifier circuit, gain can be determined by external resistors: R_f and $R_1.$	
$A_v = rac{v_o}{v_i} = -rac{R_f}{R_1}$	Most comm
The negative sign denotes a 180° phase shift between input and output.	1. Invert
	2. Non-ii
Homework 1: Derive the gain when $A \neq \infty$ using normal KVL and KCL equations and observe that when $A \to \infty$ it gives the result above.	3. Summ
Homework 2: Derive the same gain using feedback analysis, i.e., determine the	4. Unity
feedback type, draw the open-loop circuit, find the open-loop gain, obtain the closed-loop gain and then obtain the voltage gain v_o/v_i . Observe that the result is exactly same as	5. Integr
the one derived in Homework 1 above.	6. Differe
Homework 3: Repeat Homework 1 and Homework 2 above for the noninverting amplifier configuration.	
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 26-Oct-2017 11/37	Dr. U. Sezen & D

Operational Amplifiers Effects of Offset Voltage and Bias Currents

$$v_o = \left(1 + \frac{R_f}{R_1}\right) V_{IO} + R_f I_{B_1} - \left(1 + \frac{R_f}{R_1}\right) R_2 I_{B_2}$$

You can also obtain the result above by applying the superposition theorem.

Note that, the value of R_2 does not affect the gain equations. However, we can select a value of for R_2 in order to eliminate the effects of the offset voltage and bias currents. Hence, from the output equation above, the value of R_2 which makes the output zero, i.e., $v_o=0$, is found to be:

$$R_2 = \frac{V_{IO}}{I_{B_2}} + \left(R_f ||R_1\right) \frac{I_{B_1}}{I_{B_2}}$$

Note that, as a rule of thumb we can always select $R_2=R_f || R_1.$ Then, the output equation above reduces to

$$v_o = \left(1 + \frac{R_f}{R_1}\right) V_{IO} + R_f I_{IO}.$$

So, the output will be zero if both the input offset voltage and current are zero, i.e., $v_o = 0$ if $V_{IO} = 0$ and $I_{IO} = 0$.

Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

26-Oct-2017 27 / 37

