Contents

Operational Amplifiers
Ideal Op-Amp Properties
MC1530 Operational Amplifier
DC Analysis
Small-signal Analysis
Op-Amp Gain
Inverting Op-Amp Amplifier
Virtual Ground
Gain
Practical Op-Amp Circuits
Logarithmic Amplifier
Op-Amp Specifications
Input Bias and Offset Currents
Input Bias and Offset Currents
Input Offset Voltage.
Input Offset Voltage
Slew Rate
Open-Loop Bandwidth
Op-Amp Performance
Effects of Offset Voltage and Bias Currents
Multistage Gains
Active Filters
Lowpass Filter
Highpass Filter
Bandpass Filter
Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Operational Amplifiers Ideal Op-Amp Properties

Ideal Op-Amp Properties

1. Infinite Input Resistance:
$R_{i}=\infty$
2. Zero Output Resistance:
$R_{o}=0$
3. Infinite Voltage Gain:
$A_{d}=\infty$
4. Infinite Bandwidth:
$B W=\infty$
5. Infinite output current
6. Perfect Balance, i.e., $v_{o}=0$ when $v_{i_{2}}=v_{i_{1}}$
7. Above characteristics do not drift with temperature

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \| 26-Oct-2017 $3 / 37$

Operational Amplifiers MC1530 Operational Amplifier

DC Analysis

Operational Amplifiers

Operational amplifier or op-amp, is a very high gain differential amplifier with a high input impedance (typically a few mega ohms) and low output impedance (less than 100 ohms).

Note the op-amp has two inputs and one output, and op-amp amplifier model is shown below.

[^0]MC1530 Operational Amplifier

$V_{B_{8}}=-V_{E E}+2 V_{B E(O N)}=-4.6 \mathrm{~V}$
$I_{9}=\frac{V_{4}-V_{B_{8}}}{R_{9}}=1.4 \mathrm{~mA}$
$I_{10}=I_{C_{7}}+I_{B_{8}}-I_{9} \cong I_{C_{7}}-I_{9}=0.16 \mathrm{~m}$
$V_{o}=V_{B_{8}}+I_{10} R_{10}=200 \mathrm{mV} \cong 0 \mathrm{~V}$.

The input is applied to the inverting (-)-input; the non-inverting $(+)$-input is grounded. The resistor R_{f} is the feedback resistor; it is connected from the output to the negative (inverting) input. This is negative feedback.

Inverting Amplifier Gain

From the simplified inverting amplifier circuit, gain can be determined by external resistors: R_{f} and R_{1}.

$$
A_{v}=\frac{v_{o}}{v_{i}}=-\frac{R_{f}}{R_{1}}
$$

The negative sign denotes a 180° phase shift between input and output.

Homework 1: Derive the gain when $A \neq \infty$ using normal KVL and KCL equations and observe that when $A \rightarrow \infty$ it gives the result above.

Homework 2: Derive the same gain using feedback analysis, i.e., determine the feedback type, draw the open-loop circuit, find the open-loop gain, obtain the closed-loop gain and then obtain the voltage gain v_{o} / v_{i}. Observe that the result is exactly same as the one derived in Homework 1 above.

Homework 3: Repeat Homework 1 and Homework 2 above for the noninverting amplifier configuration.

Op-Amp Gain

Op-Amps have a very high open-loop gain. They can be connected open- or closed loop.
Open-loop refers to a configuration where there is no feed back from output back to the input. In the open-loop configuration the gain can exceed 10000 .

Closed-loop configuration reduces the gain. In order to control the gain of an op-amp it must have feedback. This feedback is a negative feedback. A negative feedback will reduce the gain and improve many characteristics of the op-amp

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 26-Oct-2017 | $8 / 37$ |
| :--- | :--- | :--- | :--- | :--- |

Operational Amplifiers Inverting Op-Amp Amplifier

Virtual Ground

An understanding of the concept of virtual ground provides a better understanding of how an ideal op-amp operates.

- The non-inverting input pin is at ground. The inverting input pin is also at 0 V for an AC signal. This is because ideal op-amp open-loop gain is infinity As $A=\infty, v_{+}-v_{-}=\frac{v_{o}}{A}=\frac{v_{o}}{\infty}=0$. Thus, $v_{+}=v_{-}$
- As the ideal op-amp input resistance is infinity, i.e., $R_{i}=\infty$, no current goes through the terminals of the op-amp, i.e., $i_{+}=-i_{-}=\frac{v_{+}-v_{-}}{R_{i}}=0$. Thus, all of the current is through R_{f}.

Consequently, the inverting op-amp circuit simplifies to the following circuit below

$\begin{array}{llll}\text { Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) } & \text { ELE315 Electronics II } & \text { 26-Oct-2017 } & 10 \text { /37 }\end{array}$

Practical Op-Amp Circuits

Most commonly used opamp circuits are given below:

1. Inverting Amplifier
2. Non-inverting Amplifier
3. Summing Amplifier
4. Unity Follower
5. Integrator
6. Differentiator

Op-Amp Specifications - DC Bias and Offset
 Parameters

Even though the input voltage is zero, i.e., $v_{i 1}=v_{i 2}=0$, there will be an output, i.e., $v_{o} \neq 0$. This is called offset. Some of the following can cause this offset.

1. Input Bias Current
2. Input Offset Current
3. Input Offset Voltage
4. Input Offset Voltage and Current Drifts
5. Power Supply Rejection Ratio
6. Open-Loop Voltage Gain
7. Slew Rate
8. Common-Mode Rejection Ratio
9. Input Resistance
10. Output Resistance
11. Open-Loop Bandwidth
12. Power Consumption (no input, no load)
13. Power Dissipation (with input, with load)

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Operational Amplifiers Op-Amp Specifications

Input Bias and Offset Currents

Even though the input voltage is zero, i.e., $v_{i 1}=v_{i 2}=0$, sometimes the output is not zero, i.e. $v_{o} \neq 0$. Then, bias currents $I_{B_{1}}$ and $I_{B_{2}}$ are supplied to the opamp to make the output zero,
i.e., $v_{o}=0$.

- Input Bias Current $\left(I_{I B}\right)$ is defined as the average of the two bias currents:

$$
I_{I B}=\frac{I_{B_{1}}+I_{B_{2}}}{2}
$$

- Similarly, Input Offset Current ($I_{I O}$) is defined as the difference of the two bias currents:

$$
I_{I O}=I_{B_{1}}-I_{B_{2}}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \|

Even though the input voltage is zero, i.e., $v_{i 1}=v_{i 2}=0$, sometimes the output is not zero, i.e. $v_{o} \neq 0$. Then, an offset voltage $V_{I O}$ is supplied to the opamp to make the output zero, i.e., $v_{o}=0$. This offset voltage is called the Input Offset Voltage defined by

$$
V_{I O}=V_{1}-V_{2}
$$

Input Offset Voltage and Current Drifts

Input Offset Voltage Drift, $\frac{\Delta V_{I O}}{\Delta T}$, and Input Offset Current Drift, $\frac{\Delta I_{I O}}{\Delta T}$, where T denotes the temperature, indicate the sensitivities of the input offset voltage and input offset currents to the change in temperature.
Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 26-Oct-2017 $19 / 37$

Operational Amplifiers Op-Amp Specifications

Slew Rate

Slew rate is the time rate of change of the closed-loop amplifier output voltage under large-signal conditions, that is, the maximum rate at which an op-amp can change output without distortion.

$$
\mathrm{SR}=\frac{\Delta V_{o}}{\Delta t}
$$

The SR rating is given in the specification sheets as $V / \mu s$ rating

Maximum Signal Frequency

The slew rate determines the highest frequency of the op-amp without distortion

$$
f \leq \frac{S R}{2 \pi V_{p}}
$$

where V_{p} is the peak voltage
\qquad

Power Supply Rejection Ratio

Open-Loop Voltage Gain

Open-loop voltage gain, A_{v}, of an opamp is very high, e.g., for $741, A_{v} \cong 2 \times 10^{5}$

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 26-Oct-2017 | $20 / 37$ |
| :--- | :--- | :--- | :--- | :--- |

Operational Amplifiers Op-Amp Specification

Common-Mode Rejection Ratio (CMRR)

One rating worth mentioning that is unique to op-amps is CMRR or Common-Mode Rejection Ratio.

Because the op-amp has two inputs that are opposite in phase (inverting input and the non-inverting input) any signal that is common to both inputs will be cancelled. A measure of the ability to cancel out common signals is called CMRR and it is given by

$$
\operatorname{CMRR}(\mathrm{dB})=20 \log _{10}\left|\frac{A_{d}}{A_{c}}\right|
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

The op-amp's high frequency response is limited by internal circuitry. The plot shown is for an open loop gain ($A_{O L}$ or $A_{V D}$).
This means that the op-amp is operating at the highest possible gain with no feedback resistor.
In the open loop, the op-amp has a narrow bandwidth.
Gain-bandwidth product is constant. So, the bandwidth will widen in closed loop operation, but then the gain will be lower.

Operational Amplifiers Op-Amp Specifications

Op-Amp Performance

The specification sheets will also include graphs that indicate the performance of the op-amp over a wide range of conditions

The table below shows some characteristics of a 741 opamp.

Characteristic	MIN	TYP	MAX	Unit
$V_{\text {IO }}$ Input offset voltage		1	6	mV
I_{10} Input offset current		20	200	nA
$I_{\text {IB }}$ Input bias current		80	500	nA
$V_{\text {ICR }}$ Common-mode input voltage range	± 12	± 13		V
V_{OM} Maximum peak output voltage swing	± 12	± 14		v
$A_{\text {VD }}$ Large-signal differential voltage amplification	20	200		V/mV
r_{i} Input resistance	0.3	2		$\mathrm{M} \Omega$
r_{o} Output resistance		75		Ω
C_{i} Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB
$I_{\text {CC }}$ Supply current		1.7	2.8	mA
P_{D} Total power dissipation		50	85	mW

Note that, these ratings are for specific circuit conditions, and they often include minimum, maximum and typical values.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 26-Oct-2017 $25 / 37$

Operational Amplifiers Effects of Offset Voltage and Bias Currents

$$
v_{o}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{I O}+R_{f} I_{B_{1}}-\left(1+\frac{R_{f}}{R_{1}}\right) R_{2} I_{B_{2}}
$$

You can also obtain the result above by applying the superposition theorem.
Note that, the value of R_{2} does not affect the gain equations. However, we can select a value of for R_{2} in order to eliminate the effects of the offset voltage and bias currents. Hence, from the output equation above, the value of R_{2} which makes the output zero, i.e., $v_{o}=0$, is found to be:

$$
R_{2}=\frac{V_{I O}}{I_{B_{2}}}+\left(R_{f} \| R_{1}\right) \frac{I_{B_{1}}}{I_{B_{2}}}
$$

Note that, as a rule of thumb we can always select $R_{2}=R_{f} \| R_{1}$. Then, the output equation above reduces to

$$
v_{o}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{I O}+R_{f} I_{I O}
$$

So, the output will be zero if both the input offset voltage and current are zero, i.e., $v_{o}=0$ if $V_{I O}=0$ and $I_{I O}=0$.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \| 26-Oct-2017 $27 / 37$

Effects of Offset Voltage and Bias Currents

Let us write down the two KVL equations (implicitly using KCL) available in the figure above in order to express output v_{o} in terms of the input offset voltage, $V_{I O}$, and input bias currents, $I_{B_{1}}$ and $I_{B_{2}}$ when there is no input present, i.e., $v_{i_{1}}=v_{i_{2}}=0$.

$$
\begin{aligned}
\left(I_{B_{1}}-I_{f}\right) R_{1}-I_{f} R_{f}+v_{o} & =0 \\
\left(I_{B_{1}}-I_{f}\right) R_{1}+V_{I O}-I_{B_{2}} R_{2} & =0
\end{aligned}
$$

Thus, we obtain output v_{o} by eliminating I_{f} in the KVL equations above as:

$$
v_{o}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{I O}+R_{f} I_{B_{1}}-\left(1+\frac{R_{f}}{R_{1}}\right) R_{2} I_{B_{2}}
$$

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 26-Oct-2017 | $26 / 37$ |
| :--- | :--- | :--- | :--- | :--- |

Operational Amplifiers Effects of Offset Voltage and Bias Current

Example 1: Change the circuit below, in order to eliminate the effect of input offset voltage and current, i.e., make $v_{o}=0$, where $V_{I O}=0 \mathrm{~V}$ and $I_{B_{1}}=I_{B_{2}}=100 \mathrm{nA}$.

Solution: Let us first show that $v_{o} \neq 0$ when there is no resistor the non-inverting terminal, i.e., when $R_{2}=0$, as $v_{o}=R_{f} I_{B_{1}}=(0.3 M)(0.1 \mu)=30 \mathrm{mV}$. Thus, the value of R_{2} which eliminates the offset is $R_{2}=R_{1}\left\|R_{f}=100 k\right\| 300 k=75 \mathrm{k} \Omega$.

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 26-Oct-2017 | $28 / 37$ |
| :--- | :--- | :--- | :--- | :--- |

Operational Amplifiers Effects of Offset Voltage and Bias Currents

Example 2: Change the circuit below, in order to eliminate the effect of input offset voltage and current, i.e., make $v_{o}=0$, where $V_{I O}=0 \mathrm{~V}, I_{B_{1}}=100 \mathrm{nA}$ and $I_{B_{2}}=80 \mathrm{nA}$.

Solution: Let us first show that $v_{o} \neq 0$ when $R_{2}=75 \mathrm{k} \Omega$, as
$v_{o}=R_{f} I_{I O}=(0.3 M)(0.02 \mu)=6 \mathrm{mV}$. Thus, the value of R_{2} which eliminates the offset is $R_{2}=\left(R_{1} \| R_{f}\right) \frac{I_{B_{1}}}{I_{B_{2}}}=75 k(100 \mathrm{n} / 80 \mathrm{n})=93.75 \mathrm{k} \Omega$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Operational Amplifiers Effects of Offset Voltage and Bias Currents

Example 3: Change the circuit below, in order to eliminate the effect of input offset voltage and current, i.e., make $v_{o}=0$, where $V_{I O}=2 \mathrm{mV}, I_{B_{1}}=100 \mathrm{nA}$ and $I_{B_{2}}=80 \mathrm{nA}$.

Solution: Let us first show that $v_{o} \neq 0$ when $R_{2}=75 \mathrm{k} \Omega$, as
$v_{o}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{I O}+R_{f} I_{I O}=(1+0.3 M / 0.1 M)(2 m)+(0.3 M)(0.02 \mu)=14 \mathrm{mV}$.
Thus, the value of R_{2} which eliminates the offset is
$R_{2}=\frac{V_{I O}}{I_{B_{2}}}+\left(R_{1} \| R_{f}\right) \frac{I_{B_{1}}}{I_{B_{2}}}=25 k+93.75 k=118.75 \mathrm{k} \Omega$.

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics \|

Figures (a) and (b) above show inverting and noninverting amplifiers both with an offset compensation R_{2} resistors, respectively.
As a rule of thumb, always use an R_{2} resistor in your opamp circuit, at least with a value of $R_{2}=R_{1} \| R_{f}$.

Operational Amplifiers Active Filters

Active Filters

Adding capacitors to op-amp circuits provides an external control for the cutoff frequencies. The op-amp active filter provides controllable cutoff frequencies and controllable gain

Lowpass Filter
■ Highpass Filter

- Bandpass Filter
- By adding more RC networks the roll-off can be made steeper. Each RC network adds and additional 20 dB /decade (or $6 \mathrm{~dB} /$ octave) slope.

Multistage Gains

As a voltage-gain amplifier, the input resistance of op-amp amplifiers are high and the output resistances are small. So, when cascaded we can ignore the loading effects and multiply the gains of each stage in order to find overall gain, i.e.,

$$
\begin{aligned}
A_{v}=\frac{v_{o}}{v_{i}} & =A_{V_{1}} A_{V_{2}} A_{v_{3}} \\
& =\left(A_{v_{1}} \frac{R_{i_{2}}}{R_{i_{2}}+R_{o_{1}}}\right)\left(A_{v_{2}} \frac{R_{i_{3}}}{R_{i_{3}}+R_{o_{2}}}\right) A_{v_{3}} \\
& \cong A_{v_{1}} \times A_{v_{2}} \times A_{v_{3}} \\
& =\left(1+\frac{R_{f}}{R_{1}}\right)\left(-\frac{R_{f}}{R_{2}}\right)\left(-\frac{R_{f}}{R_{3}}\right)
\end{aligned}
$$

| Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) | ELE315 Electronics II | 26-Oct-2017 | $32 / 37$ |
| :--- | :--- | :--- | :--- | :--- |

Lowpass Filter

- First-order lowpass filter

- The upper (or higher) cutoff frequency $f_{O H}$ is

$$
f_{O H}=\frac{1}{2 \pi R_{1} C_{1}}
$$

Low frequency gain A_{v} is

$$
A_{v}=1+\frac{R_{F}}{R_{G}}
$$

Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.)	ELE315 Electronics II	26-Oct-2017	34 / 37

Highpass Filter

- First-order highpass filter

(b)
- The lower cutoff frequency $f_{O L}$ is

$$
f_{O L}=\frac{1}{2 \pi R_{1} C_{1}}
$$

- High frequency gain A_{v} is

$$
A_{v}=1+\frac{R_{F}}{R_{G}}
$$

Bandpass Filter

- There are two cutoff frequencies: upper and lower. They can be calculated using the same low-pass cutoff and high-pass cutoff frequency formulas given in the previous slides.

[^0]: Dr. U. Sezen \& Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

