

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

Osci lla tors

In reality, no input signal is needed to start the oscillator going. Only the condition eta A=1must be satisfied for self-sustained oscillations to result. In practice, βA is made greater than 1 and the system is started oscillating by amplifying **noise voltage**, which is always present. Saturation factors in the practical circuit provide an average value of $\beta A=1$. The resulting waveforms are never exactly sinusoidal. However, the closer the value βA is to exactly 1, the more nearly sinusoidal is the waveform.

The figure below shows how the noise signal results in a buildup of a steady-state oscillation condition

Oscillators Phase-Shift Oscillator

Example 1: It is desired to design phase-shift oscillator (as in the previous slide) using an FET having $g_m = 5 \,\mathrm{mS}$, $r_{ds} = 40 \,\mathrm{k\Omega}$, and feedback circuit resistor value of $R = 10 \,\mathrm{k\Omega}$. Select the value of C for oscillator operation at 1 kHz and R_D for A > 29 to ensure oscillator operation.

Solution: Since $f_0 = \frac{1}{2\pi R C \sqrt{6}}$, we can solve for C as follows

$$C = \frac{1}{2\pi f_0 R \sqrt{6}} = \frac{1}{2\pi (1k)(10k)\sqrt{6}}$$

= 6.5 n F.

Next, we solve for R_D' where $R_D'=r_{ds}||R_D$ to provide a gain of A=40 (this allows for some loading between R_D' and the feedback network input impedance):

$$|A| = g_m R'_D = 40$$
$$R'_D = \frac{|A|}{g_m} = \frac{40}{5 \times 10^{-3}} = 8 \text{ k}\Omega$$

Finally, we solve for ${\cal R}_D$ to be

$$R_D = \frac{r_{ds}R'_D}{r_{ds} - R'_D} = 10\,\mathrm{k}\Omega$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

18-Nov-2016 9 / 31

