
		Power Amplifiers
Contents Power Amplifiers		Power Amplifiers
Power Amplifier Types Class A Operation Class AB Operation Class AB Operation Class C Operation Class O Operation Amplifier Efficiency Series-Fed Class A Amplifier A C-DC Load Lines		So far we have dealt with only small-signal amplifiers. In small-signal amplifiers the main factors were amplification Inearity gain
Maximum Efficiency Figure of Ment Transformer-Coupled Class A Amplifier AC-DC Load Lines Maximum Efficiency Figure of Ment Class B Amplifiers Phase Splitter Circuits Transformer-Coupled Push-Pull Class B Amplifier Complementary-Symmetry Push-Pull Class B Amplifier Maximum Efficiency Figure of Ment Crossover Distortion		Large-signal or power amplifiers function primarily to provide sufficient power to drive the output device. These amplifier circuits will handle large voltage signals and high current levels. The main factors are efficiency maximum power capability impedance matching to the output device
Crossover Distortion Class AB Amplifiers Power Transistor Heat Sinking Thermatu-Electrical Analogy Class C Amplifiers Class D Amplifiers		
)r. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II	08-Nov-2017 1 / 52	Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 08-Nov-2017 2 / 52

Power Amplifiers Power Amplifier Types	Power Amplifiers Power Amplifier Types
Class B Operation	Class AB Operation
A Class B amplifier output only conducts for 180° or half-cycle of the input signal as shown below. V_{e} $Class B defined below:$ The Q-point (bias level) is at cut-off (i.e., current is zero) on the load line, so that the AC signal can only swing for one half of a cycle. The efficiency is high , because the transistor is off , when there is no AC input. However, we will need two transistor in order to produce a full cycle-output.	A Class AB amplifier output conducts between 180° and 360° of the AC input signal. This amplifier is in between the Class A and Class B. The <i>Q</i> -point (bias level) is above the Class B but below the Class A.
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 08-Nov-2017 5 / 52	Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 08-Nov-2017 6 / 5

Power Input The power into the amplifier is from the DC supply. With no input signal, the DC current drawn is the collector bias current, $I_{CQ}{}$ Thus, power input P_{CC} is defined as the power drawn from the power supply $P_{CC} = V_{CC}I_{CO}$ Power Output $P_L = v_{o(rms)}i_{o(rms)}$ $=\frac{v_{o_{peak}}i_{o_{peak}}}{v_{o_{peak}}}$ $=\frac{v_{o_{peak}-peak}^2}{8R_{I_c}}$ 08-Nov-2017 10 / 52

Power Amplifiers Power Amplifier Types

Transistor Power Dissipation

Power dissipated as heat across a transistor is given as

$$P_Q = \frac{1}{N_O} \left(P_{CC} - P_L \right)$$

where N_{Q} is the number of transistors used in the power amplifier configuration. NOTE: The larger the output signal, the lower the heat dissipation.

Figure of Merit

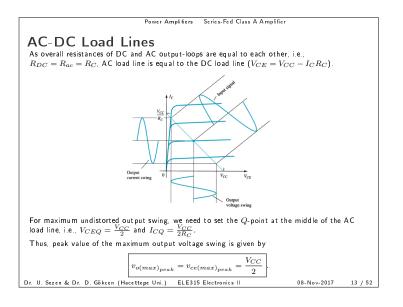
Figure of Merit (FoM) is a quantity used to characterize the cost performance of the power amplifier in terms of the ratio of the maximum power dissipated by a transistor and the maximum power delivered to the load, i.e.,

$$FoM = \frac{P_{Q_{max}}}{P_{L_{max}}}$$

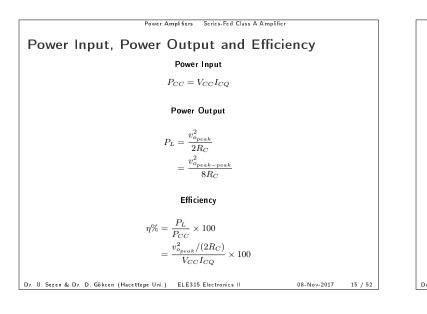
NOTE: The lower the FoM, the better the cost performance. Because the higher the maximum power rating of a transistor, the higher the price.

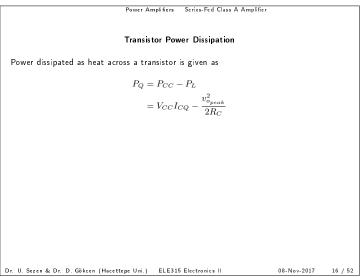
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

08-Nov-2017 11 / 52


Series-Fed Class A Amplifier This is similar to the small-signal amplifier except that it will handle higher voltages. The Q-point (bias level) is biased in the middle of the load line for maximum efficiency.

Power Amplifiers Series-Fed Class A Amplifier


The transistor used is a high power transistor. The current gain eta of a power transistor is generally less than 100. Power transistors are capable of handling large power or current while not providing much voltage gain.


Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

08-Nov-2017 12 / 52

Power Amplifiers Series-Fed Class A Amplifier			
Then, we can choose a value for ${\cal R}_B$ in order to obtain the desired Q -point values, i.e.,			
$R_B = \frac{V_{CC} - V_{BE(ON)}}{I_{BQ}} = \frac{V_{CC} - V_{BE(ON)}}{I_{CQ}/\beta}$			
NOTE: Once the value of R_B is given, it means that the Q -point is already set. Then, we have to make (or adjust) our calculations according to the given Q -point. For example, according to a given Q -point maximum undistorted output voltage swing will be the minimum of V_{CEQ} and $V_{CC} - V_{CEQ}$, i.e.,			
$v_{ce(max)_{peak}}\Big _{Q-\text{point}} = \min\left(V_{CEQ}, V_{CC} - V_{CEQ}\right)$			
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 08-Nov-2017 14 / 52			

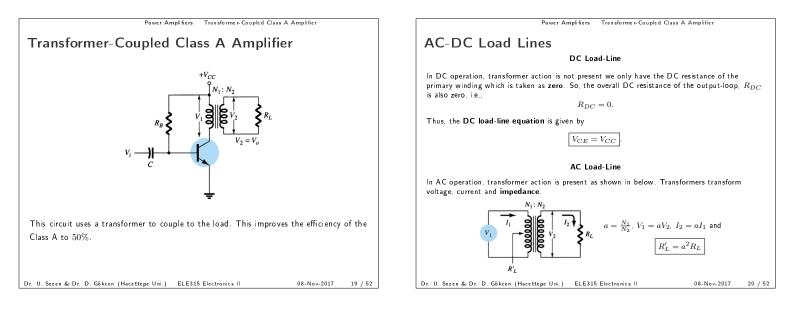
Series Fed Class A Amplifier
Series Fed Class A Amplifier
Series Fed Class A Amplifier
Figure of Merit
Series Fed Class A Amplifier
Figure of Merit
As transistor power dissipation is given by
$$P_Q = P_{CC} - P_L$$
, maximum transistor power is
dissipated when there is no AC input and output, i.e., $P_L = 0$
 $P_Q(max) = P_{CC}|_{P_L(max)} - 0 = P_{CC}|_{P_L(max)} = \frac{V_{CC}^2}{2R_C}$.
Thus, figure of merit (FoM) is given as
 $ax_l = V_{CC}\left(\frac{V_{CC}}{2R_C}\right) = \frac{V_{CC}^2}{2R_C}$
 $\frac{max_l}{r_L(max)}} \times 100$
 $\frac{V_{CC}^2/(2R_C)}{2R_C} = 4$.
This FoM value shows that a series-fed Class A amplifier is not a good choice as a power
amplifier. Because, if we want to deliver 10W to the load, we need to select a 40W-transistor.
Dr. U. Secen & Dr. D. Gökcen (Hacetteps Uni.) ELEBIS Electronics II 08-Nov-2017 18 / 52

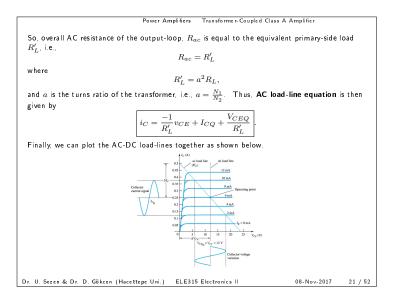
Power Amplifiers

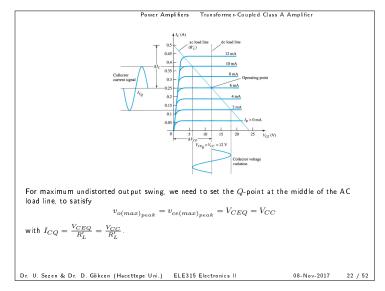
Maximum Efficiency

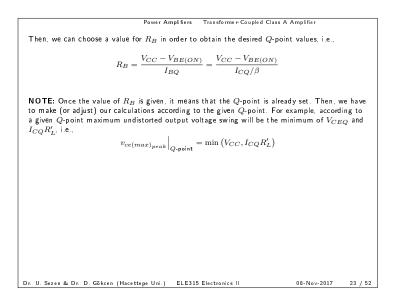
Maximum efficiency η_{max} is achieved at the maxi maximum output swing $v_{o(max)_{peak}} = rac{V_{CC}}{2}$. The

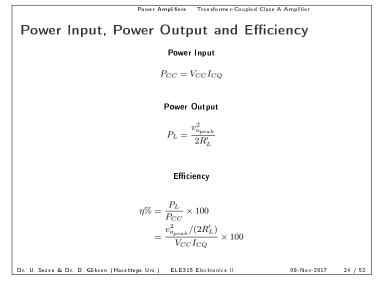
$$P_{L(max)} = \frac{v_{o(max)_{peak}}^2}{2R_C} = \frac{(V_{CC}/2)^2}{2R_C} = \frac{V_{CC}^2}{8R_C}$$

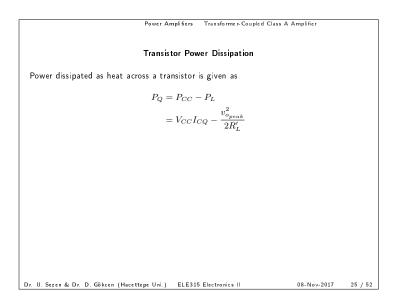

Similarly, the input power at the maximum undist


$$P_{CC}|_{P_{L(max)}} = V_{CC} I_{CQ}|_{v_{o(max)}} = V_{CC} \left(\frac{V_{CC}}{2R_{C}}\right) = \frac{V_{CC}^{2}}{2R_{C}}$$


Thus, maximum efficiency η_{max} is given as


$$\begin{split} \eta_{max} \% &= \frac{P_{L(max)}}{P_{CC}|_{P_{L}(max)}} \times 100 \\ &= \frac{V_{CC}^2/(8R_C)}{V_{CC}^2/(2R_C)} \times 100 \\ &= \frac{1}{4} \times 100 \\ &= 25\%. \end{split}$$


Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 f

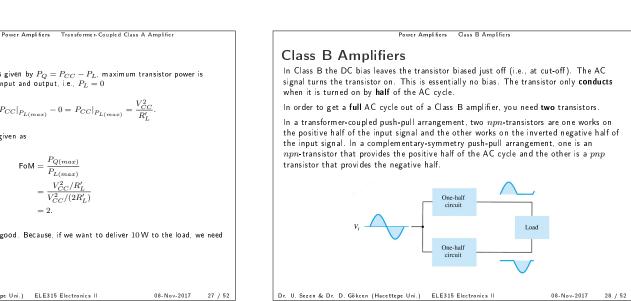


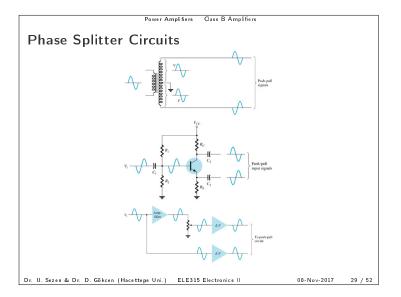
08-Nov-2017

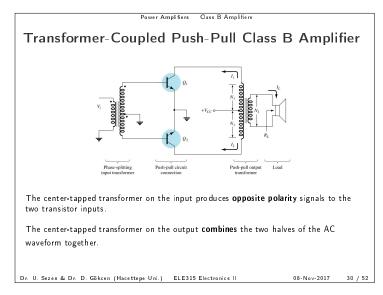
26 / 52

Maximum Efficiency

Thus


Maximum efficiency η_{max} is achieved at the maximum output power $P_{L(max)}$, i.e., at the maximum output swing $v_{o(max)_{peak}}=V_{CC}$. Thus,

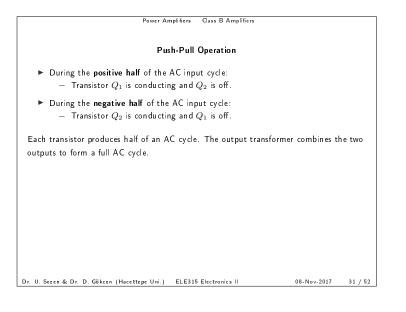

$$P_{L(max)} = \frac{v_{o(max)_{peak}}^2}{2R'_L} = \frac{V_{CC}^2}{2R'_L}$$

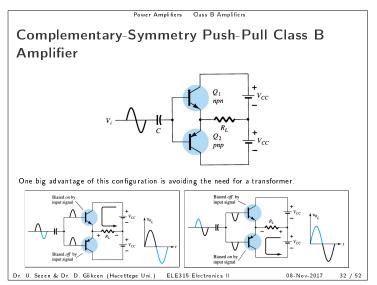

Similarly, the input power at the maximum undistorted swing is given as

$$\begin{split} P_{CC}|_{P_{L}(max)} &= V_{CC} \left. I_{CQ} \right|_{v_{o}(max)} = V_{CC} \left(\frac{V_{CC}}{R'_{L}} \right) = \frac{V_{CC}^{2}}{R'_{L}} \\ \text{maximum efficiency } \eta_{max} \text{ is given as} \\ \eta_{max} \% &= \frac{P_{L}(max)}{P_{CC}|_{P_{L}(max)}} \times 100 \\ &= \frac{V_{CC}^{2}/(2R'_{L})}{V_{CC}^{2}/R'_{L}} \times 100 \\ &= \frac{1}{2} \times 100 \end{split}$$

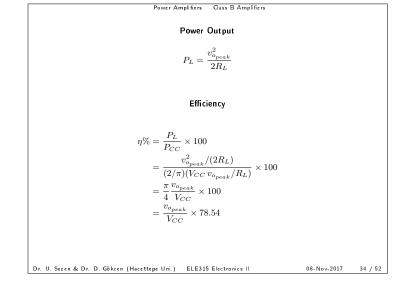
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

As transistor power dissipation is given by $P_Q=P_{CC}-P_L,$ maximum transistor power is dissipated when there is no AC input and output, i.e., $P_L=0$


 $P_{Q(max)} = \left. P_{CC} \right|_{P_{L(max)}} - 0 = \left. P_{CC} \right|_{P_{L(max)}} = \frac{V_{CC}^2}{R_L'}.$


Thus, figure of merit (FoM) is given as

$$\begin{aligned} \mathsf{FoM} &= \frac{P_Q(max)}{P_L(max)} \\ &= \frac{V_{CC}^2/R'_L}{V_{CC}^2/(2R'_L)} \\ &= 2. \end{aligned}$$


This FoM value is not also very good. Because, if we want to deliver $10\,\mathrm{W}$ to the load, we need to select a 20W-transistor.

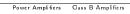
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

Power Amplifiers Class B Amplifiers Power Input, Power Output and Efficiency Power Input The power supplied to the load by an amplifier is drawn from the power supply (or power supplies) that provides the input or dc power. The amount of this input power can be calculated using $P_{CC} = V_{CC}I_{CC}$ where ${\it I}_{\it CC}$ is the average or DC current drawn from the power supplies. In Class B operation, the current drawn from a single power supply has the form of a full-wave rectified signal, while that drawn from two power supplies has the form of a half-wave rectified signal from each supply. In either case, the value of the average current drawn can be expressed as $I_{CC}=\frac{2}{\pi}i_{o_{peak}}=\frac{2}{\pi}\frac{v_{o_{peak}}}{R_L}$ where $i_{o_{peak}}$ and $v_{o_{peak}}$ are the peak values of the output current and voltage waveforms, respectively. Thus, the power input equation becomes $P_{CC} = \frac{2}{\pi} \frac{V_{CC} v_{o_{peak}}}{R_L}$ Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II 08-Nov-2017 33 / 52

tion is given
tion is given

$$\begin{aligned}
\text{Maximum efficiency } \eta_{max} \text{ is achieved at the maximum output power } P_{L(max)} \text{ i.e., at the maximum output swing}} \\
v_o(max)_{peak} = V_{CC}. \\
\text{where each transistor provides half cycle of the output swing.} \\
\text{Thus, maximum efficiency } \eta_{max} \text{ is given as} \\
\eta_{max} \% = \frac{P_{L(max)}}{P_{CC}|_{P_{L(max)}}} \times 100 \\
&= \frac{\pi}{4} \frac{v_{O(max)peak}}{V_{CC}} \times 100 \\
&= \frac{\pi}{4} \times 100 \\
&= 78.54\%.
\end{aligned}$$

Power Amplifiers Class B Amplifiers


Transistor Power Dissipation

Power dissipated as heat across a transistor in a Class B push-pull configura as

$$\begin{split} P_Q &= \frac{1}{2} \left(P_{CC} - P_L \right) \\ &= \frac{1}{2} \left(\frac{2}{\pi} \frac{V_{CC} \, v_{o_{peak}}}{R_L} - \frac{v_{o_{peak}}^2}{2R_L} \right) \\ &= \frac{1}{\pi} \frac{V_{CC} \, v_{o_{peak}}}{R_L} - \frac{v_{o_{peak}}^2}{4R_L} \end{split}$$

Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II

08-Nov-

Figure of Merit

 $P_Q=\frac{1}{\pi}\frac{V_{CC}\,v_{o_{peak}}}{R_L}-\frac{v_{o_{peak}}^2}{4R_L}$ Let us find the value of $v_{o_{peak}}$ to give the maximum transistor power dissipation $P_{Q(max)}$ as follows

$$\left. \begin{array}{l} \displaystyle \frac{dP_Q}{dv_{o_{peak}}} \right|_{P_Q(max)} = 0 \\ \\ \displaystyle \frac{V_{CC}}{\pi} - \frac{v_{o_{peak}}}{2} = 0 \\ \\ \displaystyle v_{o_{peak}} \right|_{P_Q(max)} = \frac{2}{\pi} V_{CC}. \end{array}$$

Substituting the result above in the transistor power dissipation equation we obtain $P_{Q_{max}}$ as follows

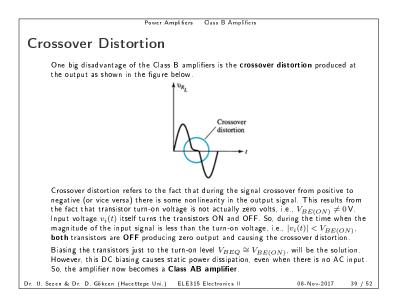
$$P_{Q(max)} = \frac{1}{\pi^2} \frac{V_{CC}^2}{R_L}.$$

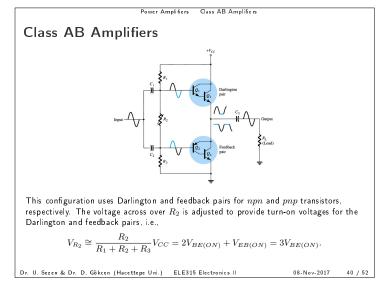
As $v_{o(max)_{peak}} = V_{CC}$, we obtain the maximum output power as

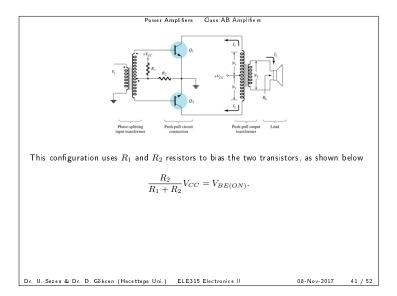
$$P_{L(max)} = \frac{V_{CC}^2}{2R_L}$$

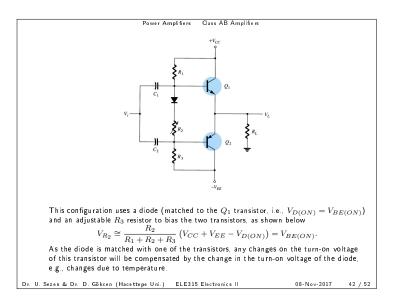
08-Nov-2017 37 / 52

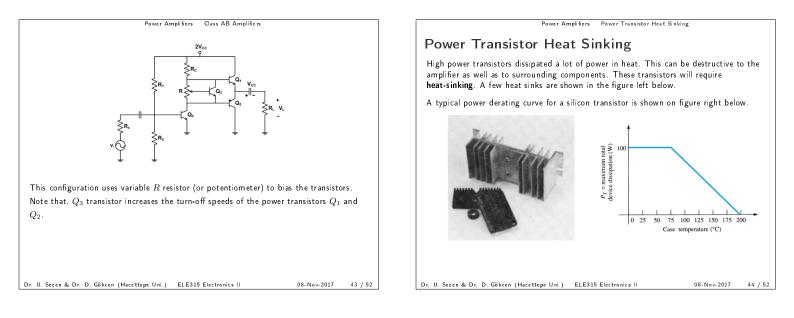
Dr. U. Sezen & Dr. D. Gökcen (Hacettepe Uni.) ELE315 Electronics II


Thus, figure of merit (FoM) is given as


$$FoM = \frac{P_Q(max)}{P_L(max)}$$


$$= \frac{V_{CC}^2/(\pi^2 R_L)}{V_{CC}^2/(2R_L)}$$


$$= \frac{2}{\pi^2}$$


$$\cong \frac{1}{5}.$$
This FoM value is quite good. Because, if we want to deliver 10W to the load, we only need to select two 2W-transistors.

