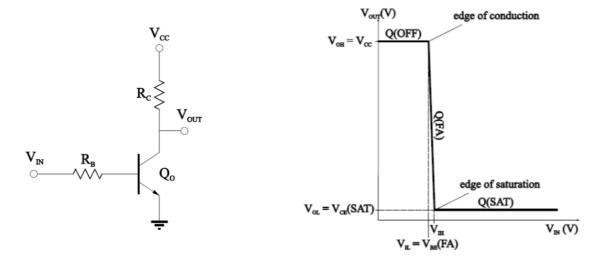
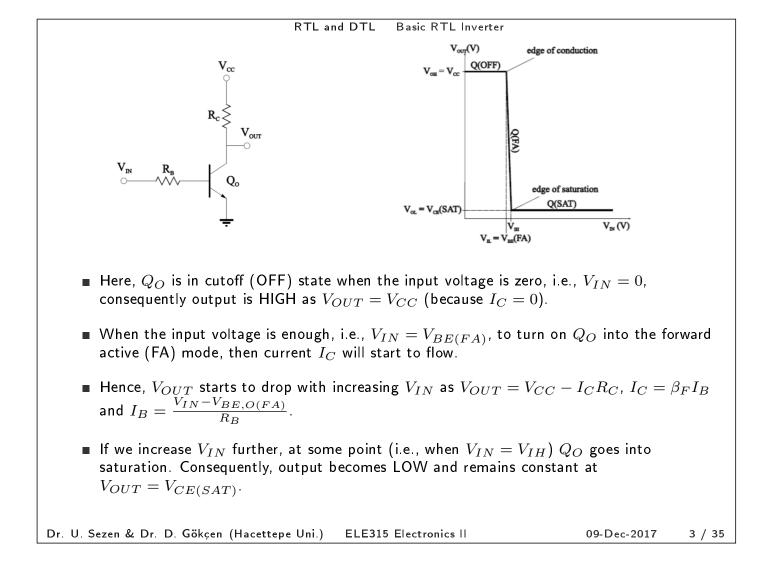
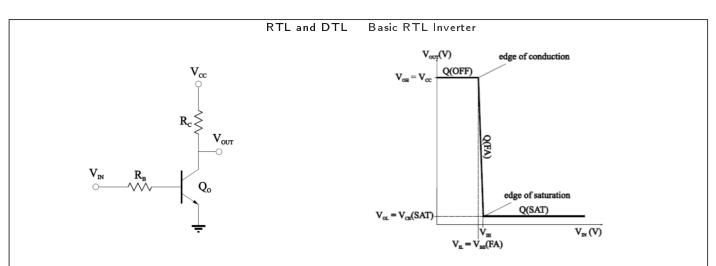
Contents


RTL and DTL Basic RTL Inverter Basic RTL NOR and NAND Gates Basic RTL Fan-Out Basic RTL Power Dissipation Basic RTL Non-Inverter RTL with Active Pull-Up RTL with Active Pull-Up Fan-Out Basic DTL Inverter Basic DTL Inverter Basic DTL NAND Gate Diode Modified DTL Transistor Modified DTL DTL NAND Gate DTL Fan-Out

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

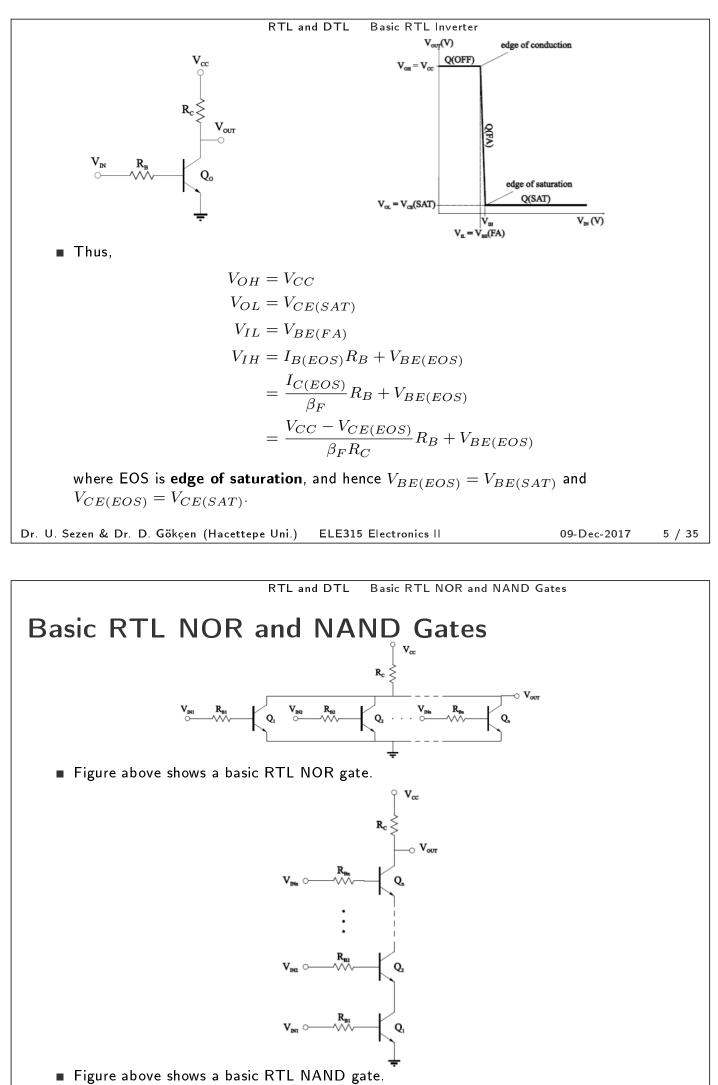
RTL and DTL Basic RTL Inverter


Resistor-Transistor Logic (RTL)


■ Resistor-Transistor Logic (RTL) which is introduced in 1962, is constructed from resistors and BJTs as shown in the figure on the left below.

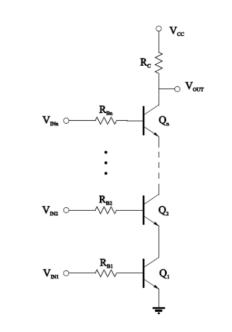
 A basic RTL inverter and its VTC are shown in the figure on the left and right above, respectively.

09-Dec-2017



■ We can summarize the state of the BJT transistor Q_O for output-high and output-low states as indicated in the table below.

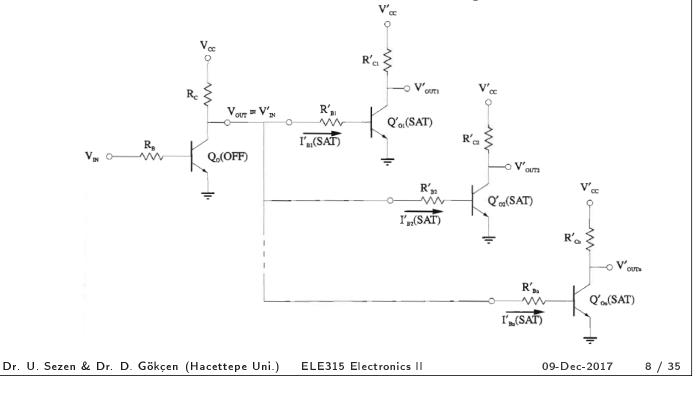
State of Active Elements	for
Output-High and Output-Low	States

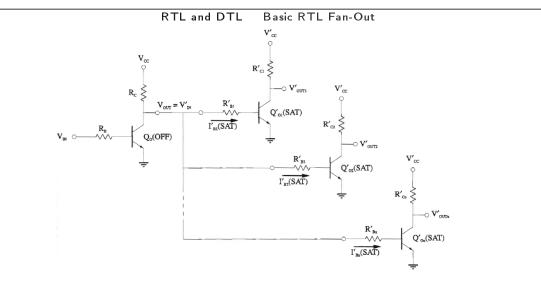

Element	V _{OH}	V _{OL}
Q_O	Cutoff (OFF)	Saturated (SAT)

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

09-Dec-2017 6 / 35

Example 1: For the basic RTL NAND gate above, determine the maximum fan-in if all stack BJTs have $V_{CE(SAT)} = 0.17$ V and all load gates have $V_{BE(FA)} = 0.7$ V.


Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II


09-Dec-2017 7 / 35

RTL and DTL Basic RTL Fan-Out

Basic RTL Fan-Out

- When a basic RTL inverter is in **output-low** state, any load gate would be in cutoff mode and draw no input current.
- Thus, maximum fan-out will be determined by the **output-high** state as shown below.

- Output voltage is given by $V_{OH} = V_{CC} I_{OH}R_C$ where $I_{OH} = I_{RC}$ and $V_{OUT} = V_{OH}$. So, V_{OH} is **not constant** and decreases with each added load gates, as the output current I_{OH} increases by each added load gate.
- Thus, output current I_{OH} which is the sum of the identical input currents I'_{IH} of N load gates, is given by

$$I_{OH} = \frac{V_{CC} - V_{OH}}{R_C} = NI'_{IH}$$

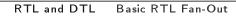
where I^\prime_{IH} is given by

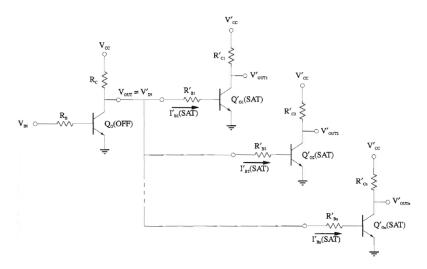
$$I_{IH}' = \frac{V_{OH} - V_{BE(SAT)}'}{R_B'}.$$

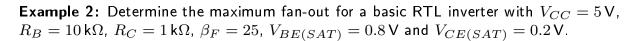
Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

RTL and DTL Basic RTL Fan-Out V_{x} V_{x} V_{x}

$$N_{\max} = \left[\frac{V_{CC} - V_{OH(\min)}}{V_{OH(\min)} - V_{BE(SAT)}} \frac{R_B}{R_C}\right]$$


• As $V_{OH(\min)} = V_{IH}$,


$$N_{\max} = \left\lfloor \frac{V_{CC} - V_{IH}}{V_{IH} - V_{BE(SAT)}} \frac{R_B}{R_C} \right\rfloor$$


Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

09-Dec-2017 10 / 35

09-Dec-2017

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

RTL and DTL Basic RTL Power Dissipation

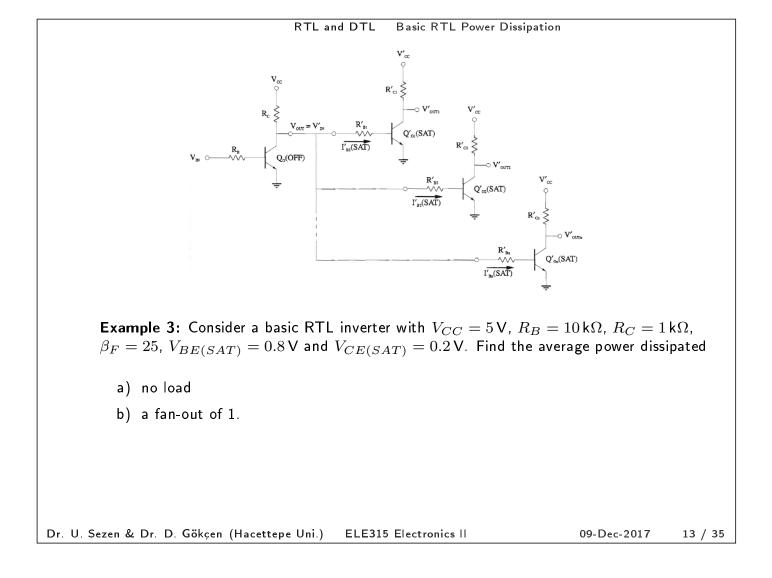
Basic RTL Power Dissipation

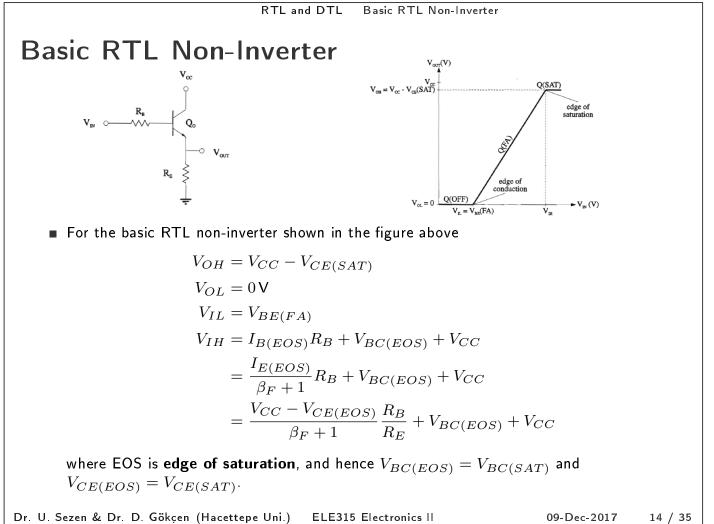
• As $V_{OL} = V_{CE(SAT)}$ all load gates will be in cutoff mode. So, **output-low current** supplied is independent of load gates and given by

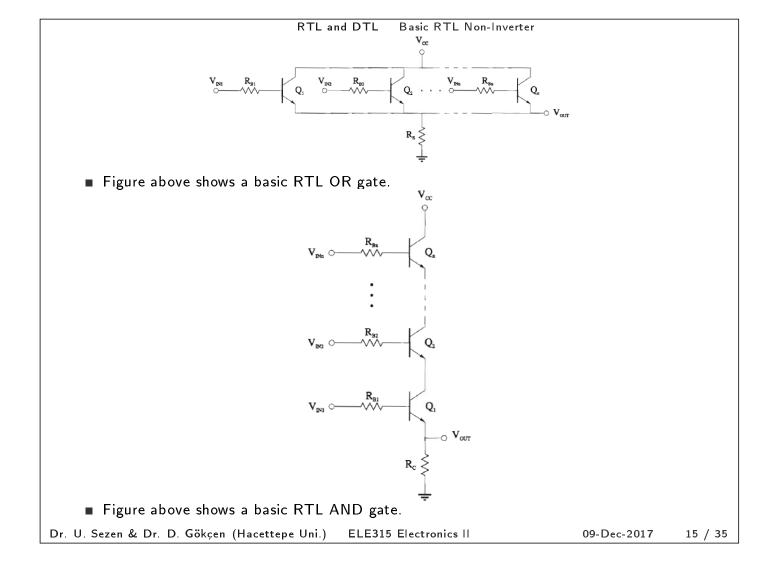
$$I_{CC(OL)} = \frac{V_{CC} - V_{CE,O(SAT)}}{R_C}$$

However, **output-high current supplied** depends on the number of load gates connected and given by $V_{CC} = V'$

$$I_{CC(OH)} = \frac{V_{CC} - V_{BE(SAT)}}{R_C + R'B/N}$$

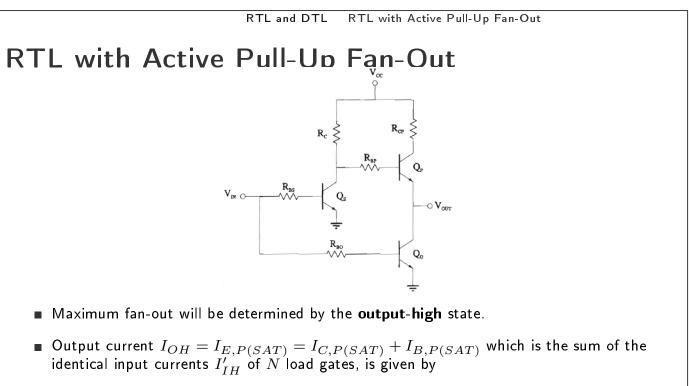

If there is no load, $I_{CC(OH)} = 0$.


Consequently, average power dissipation is given by


$$P_{CC(\text{avg})} = \frac{I_{CC(OL)} + I_{CC(OH)}}{2} V_{CC}$$

09-Dec-2017 12 / 35

09-Dec-2017

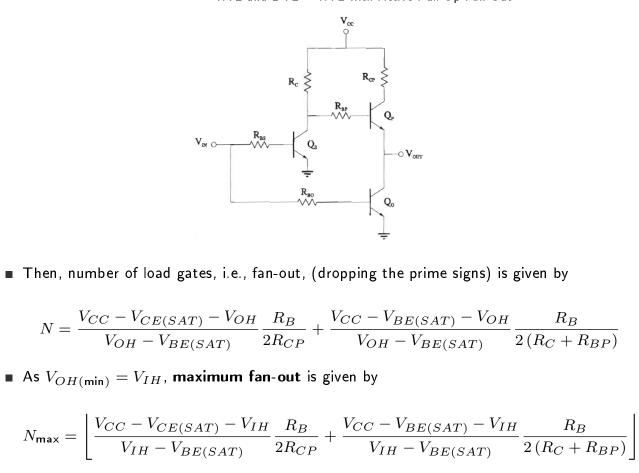

RTL and DTL RTL with Active Pull-Up RTL with Active Pull-Up V_{α} $V_{$

Element	Purpose		
R_{BS}, R_{BO}	Matched input resistors		
Q_S	Drive splitter and pull-down of Q_P		
R_C	Along with Q_S provides logic-inversion to outpu	t-high driver	
R_{BP}	Limits base current to Q_P		
Q_O	Output inverting BJT and active pull-down for o	utput-low driver	
Q_P	Provides active pull-up for output-high driver		
R_{CP}	Part of active pull-up		
Dr. D. Gökcen (H	acettene IIni) ELE315 Electronics II	09-Dec-20	

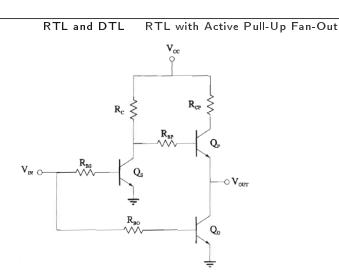
Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

c-2017 16 / 35

The states of	RTL and DTL RTL with Active P V_{cc} R_{c} R_{c} R_{cr} R_{cr} R_{cr} R_{cr} R_{cr} R_{cr} R_{r} R_{r} Q_{s}		
	State of Active Elements fo Output-High and Output-Low S		
Eleme	· · · · ·	V _{OL}	
Q_O	Cutoff (OFF)	Saturated (SAT)	
Q_S	Cutoff (OFF)	Saturated (SAT)	
Q_P	Saturated (SAT) (for fan-out $\geq 1)$	Cutoff (OFF)	
	Edge of conduction (EOC) (for no load)		


$$I_{OH} = \frac{V_{CC} - V_{CE,P(SAT)} - V_{OH}}{R_{CP}} + \frac{V_{CC} - V_{BE,P(SAT)} - V_{OH}}{R_{C} + R_{BP}} = NI'_{IH}$$

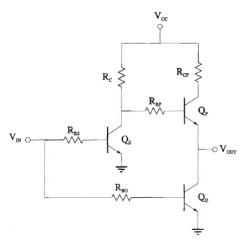
where I^\prime_{IH} is


$$I_{IH}' = \frac{V_{OH} - V_{BE(SAT)}'}{R_B'/2}$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

09-Dec-2017 18 / 35

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

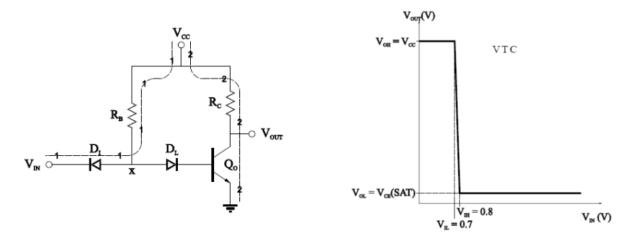


• If we ignore $I_{B,P(SAT)}$ (i.e., $(R_C + R_{BP}) \gg R_{CP}$), maximum fan-out simplifies to

$$\left| N_{\max} \approx \left[\frac{V_{CC} - V_{CE(SAT)} - V_{IH}}{V_{IH} - V_{BE(SAT)}} \frac{R_B}{2R_{CP}} \right] \right|$$

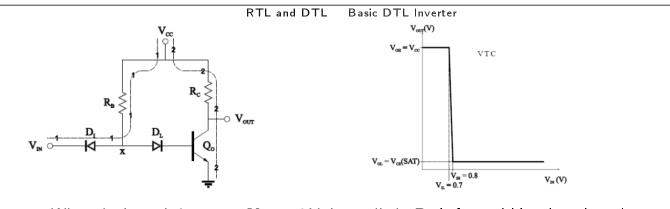
19 / 35

09-Dec-2017


Example 4: Compare the maximum fan-out for the RTL inverter with active pull-up with that of basic RTL inverter where $V_{CC} = 5 \text{ V}$, $R_{BP} = R_{BS} = R_{BO} = 10 \text{ k}\Omega$, $R_C = 1 \text{ k}\Omega$, $R_{CP} = 100 \Omega$, $V_{BE(SAT)} = 0.8 \text{ V}$, $V_{CE(SAT)} = 0.2 \text{ V}$ and $\beta_F = 25$.

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

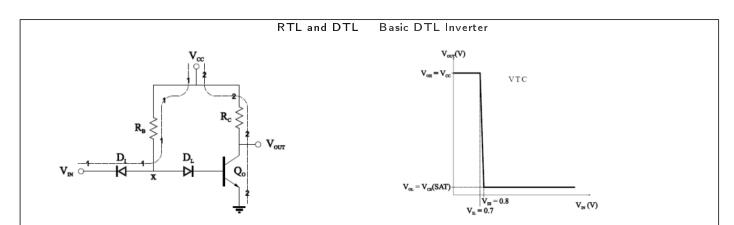
RTL and DTL Basic DTL Inverter


Diode-Transistor Logic (DTL)

 Diode-Transistor Logic (DTL) which is introduced in 1964 in order to overcome the low fan-out of RTL, is constructed from diodes and BJTs as shown in the figure on the left below.

 A basic DTL inverter and its VTC are shown in the figure on the left and right above, respectively.

09-Dec-2017



• When the input is low, e.g., $V_{IN} = 0$ V, input diode D_I is forward biased so the voltage V_x between the diodes will be $V_x = V_{IN} + V_{D,I(ON)}$ and thus as $V_{BE,O} = V_x - V_{D,L(ON)} = V_{IN}$, output transistor Q_O will be in **cutoff** mode. Consequently, output is HIGH as $V_{OUT} = V_{CC}$ (because $I_C = 0$)

$$V_x = V_{IN} + V_{D,I(ON)} \qquad (\text{while } V_{IN} < V_{BE(SAT)})$$
$$V_{BE,O} = V_x - V_{D,L(ON)}$$
$$V_{BE,O} = V_{IN}$$

- \blacksquare When the input voltage is high enough, i.e., $V_{IN}=V_{BE(FA)}$, to turn on Q_O into the forward active (FA) mode, then current I_C will start to flow.
- Hence, V_{OUT} starts to drop with increasing V_{IN} as $V_{OUT} = V_{CC} I_C R_C$.
- If we increase V_{IN} further, at some point (i.e., when $V_{IN} = V_{BE(SAT)}$), Q_O goes into saturation and D_I starts to turn off. As a result, V_{OUT} becomes LOW and remains constant at $V_{OUT} = V_{CE,O(SAT)}$.

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

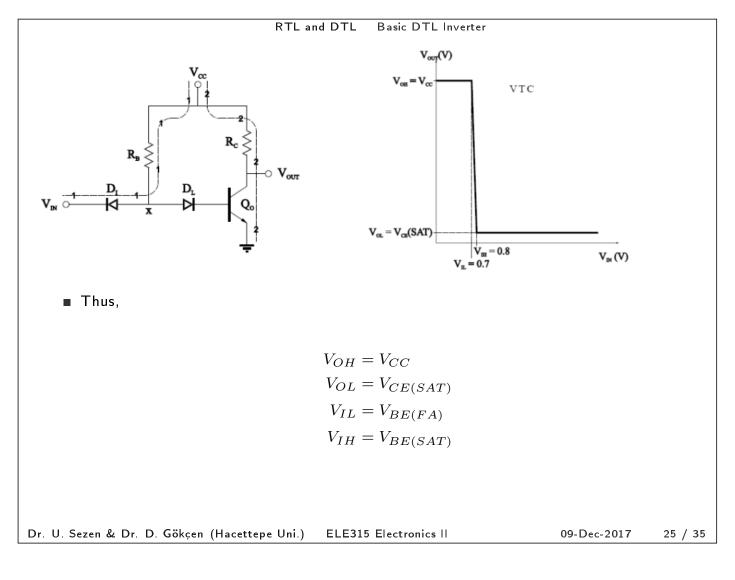
We can summarize the state of the active elements for output-high and output-low states as indicated in the table below.

	Output-High and Output-Low States			
Element	V_{OH}	V_{OL}		
Q_O	Cutoff (OFF)	Saturated (SAT)		

Conducting (ON)

Cutoff (OFF)

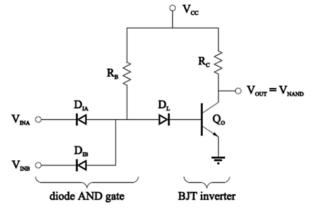
Edge of Conduction (EOC)


Conducting (ON)

State of Active Elements	for
Output-High and Output-Low	States

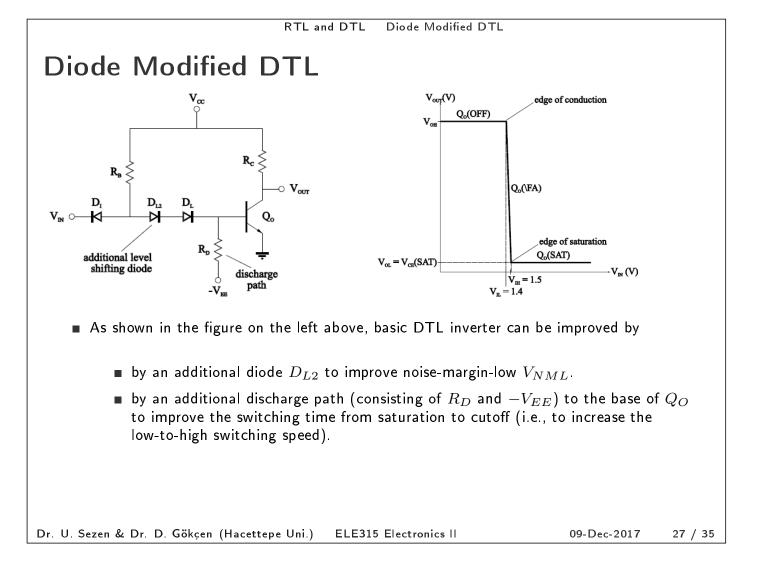
 D_L

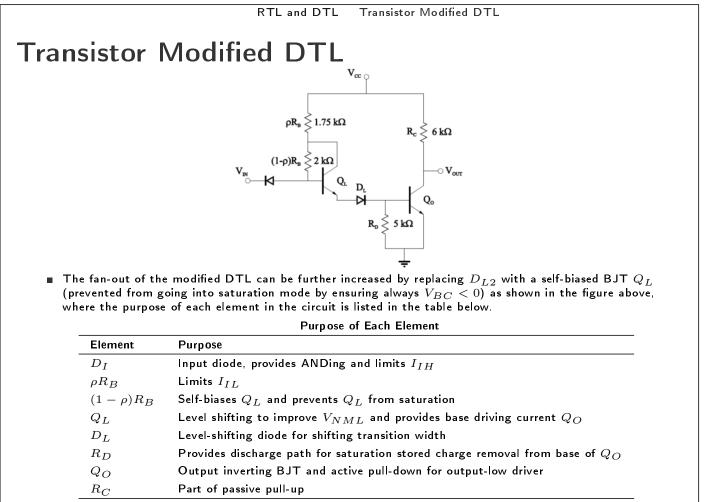
 D_I


09-Dec-2017

RTL and DTL Basic DTL NAND Gate

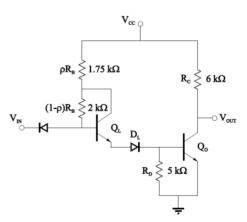
Basic DTL NAND Gate


NAND function is inherently provided by the DTL logic family by adding diodes in parallel at the input pointing outward (i.e., towards the input) as shown in the figure below for a two-input basic DTL NAND gate.

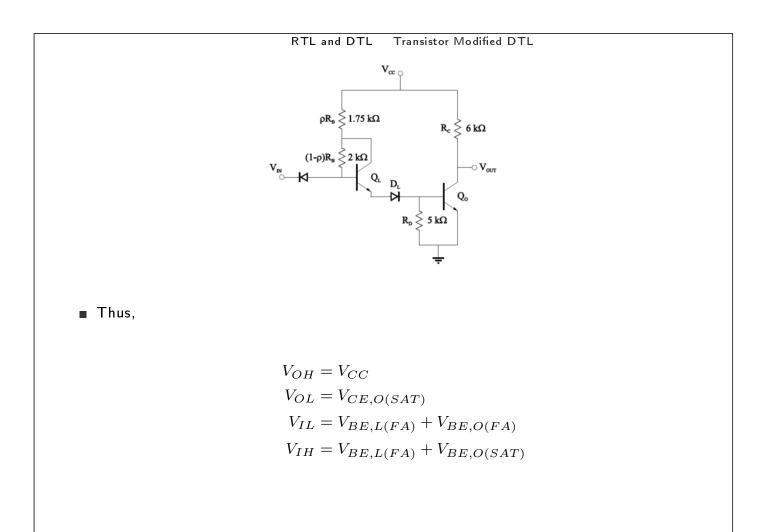


Example 5: Consider the DTL NAND gate in the figure above, and determine

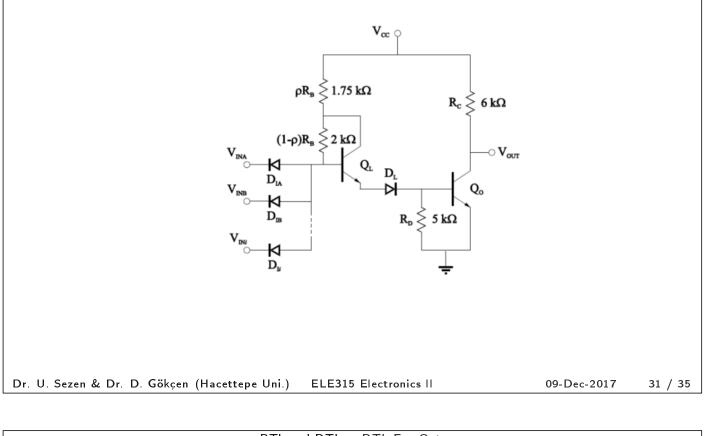
- a) Truth table for V_{INA} , V_{INB} and V_{OUT} (using LOW-HIGH states),
- b) States of $D_{IA},\,D_{IB}$ and Q_O when $V_{INA}=0.4\,{\rm V}$ and $V_{INB}=0.7\,{\rm V},$
- c) States of D_{IA} , D_{IB} and Q_O when $V_{INA} = 0.3 \,\mathrm{V}$ and $V_{INB} = 0.4 \,\mathrm{V}$,
- d) States of D_{IA} , D_{IB} and Q_O when $V_{INA} = 0.53 \text{ V}$ and $V_{INB} = 0.55 \text{ V}$.

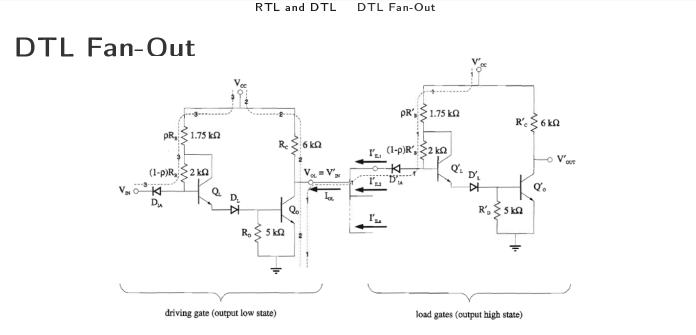

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

Dr. U. Sezen & Dr.	D. Gök	çen (Hacettepe Uni	.) ELE315 Electronics II


09-Dec-2017 28 / 35

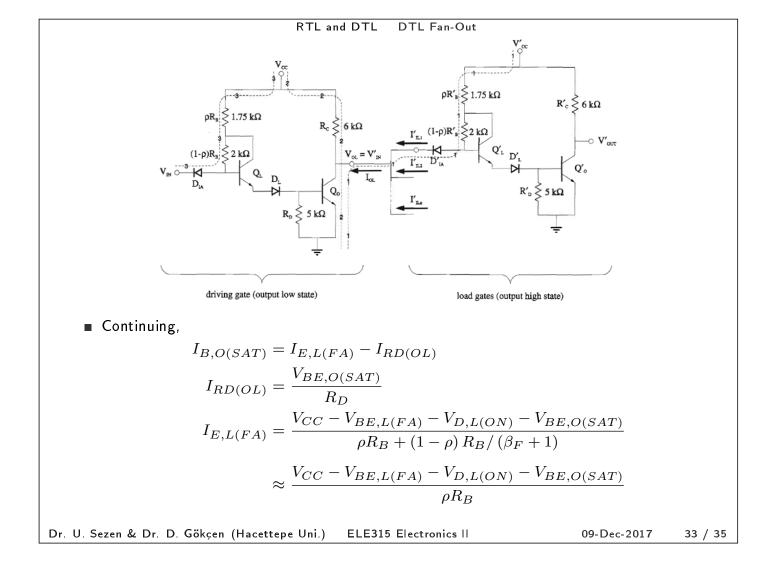
The states of active elements in a transistor modified DTL inverter are given in the table below.

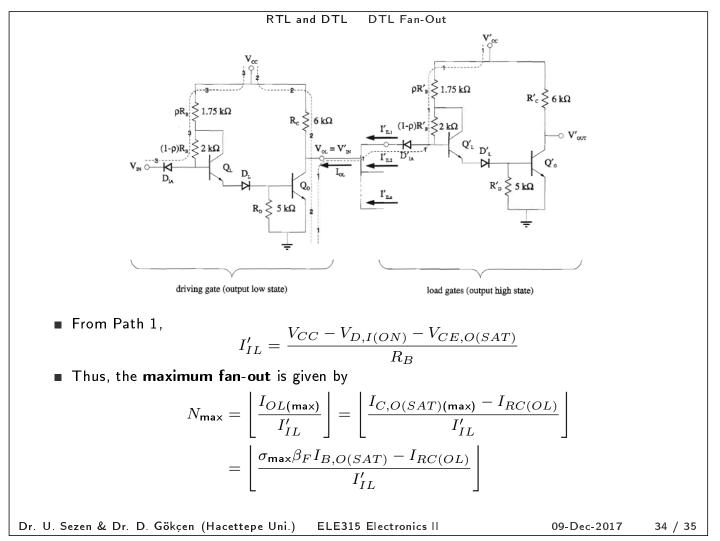

State of Active Elements for Output-High and Output-Low States

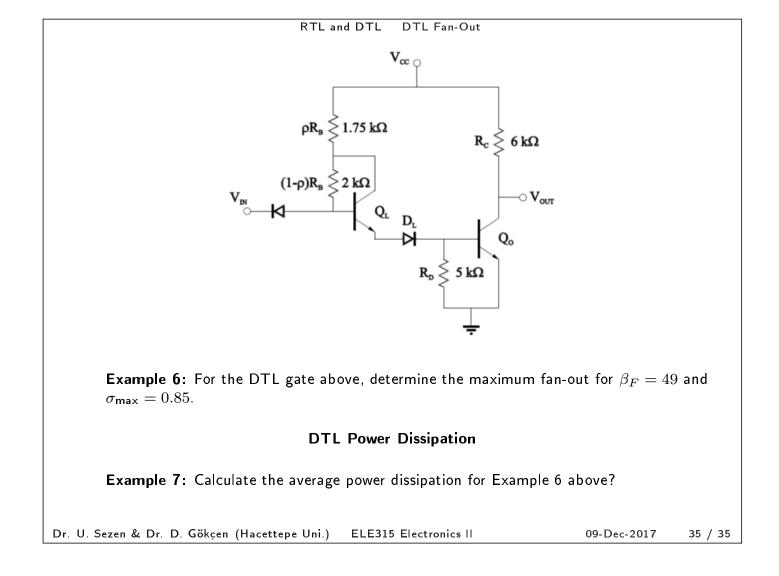

	Element	V _{OH}	V _{OL}	_	
	Q_O	Cutoff (OFF)	Saturated (SAT)	_	
	D_L	Cutoff (OFF)	Conducting (ON)		
	Q_L	Cutoff (OFF)	Forward Active (FA)		
	D_I	Conducting (ON)	Cutoff (OFF)		
Dr. U. Sezen & Dr. D. Göl	cen (Hacettep	e Uni.) ELE315 Electr	onics	 09-Dec-2017	29 / 35

DTL NAND Gate

NAND function is inherently provided by the DTL logic family by adding diodes in parallel at the input pointing outward as shown in the figure below.






- Maximum fan-out will be determined by the **output-low** state, as when output is high input diode D'_I is cutoff (i.e., $I'_{IH} = 0$).
- From Path 2 and Path 1,

$$I_{OL} = I_{C,O(SAT)} - I_{RC(OL)}$$
$$I_{RC(OL)} = \frac{V_{CC} - V_{CE,O(SAT)}}{R_C}$$
$$I_{C,O(SAT)} = \sigma\beta_F I_{B,O(SAT)}$$

Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE315 Electronics II

