IV. Principles of rotating machines

Terms & Definitions	
Constructional view machine:	point: There are two mechanical parts of every rotating – rotor: inner rotating member
	- stator: outer stationary member
Operational viewpoi	int: There are two main parts :
– <u>fi</u>	<u>eld</u>: incorporates field winding when excited field produce the main flux in the M.C. (primary source of flux)
— <u>ar</u>	mature: incorporates the armature winding. This is the sid at which the work is done. Armature react upon the

Types of Rotating Machines

The field & the armature sides can be placed on the stator or rotor sides depending on the machine type:

(a) DC machines

(rotor is cylindrical, stator is salient-pole)

- Field is on stator
 - Armature is on rotor

(b) Induction machines

- (both stator and rotor are cylindrical)
 - Field is on stator
 - Armature is on rotor

(c) Synchronous machines

stator is cylindrical, rotor is either salient-pole or cylindrical)

- Field is on rotor
- Armature is on stator

Type of Windings:

- (a) Distributed type (e.g. armature winding of DC machines)
- (b) Concentrated type (e.g. field winding of DC machines)

Ex3: Figure on the right shows the cross section of a salient-pole synchronous machine having two identical stator windings a and b on a laminated steel core. The salient-pole rotor is made of steel and carries a field winding f connected to sp slip rings.

Because of the nonuniform air gap, the self- and mutual inductances are functions of the angular position θ_0 of the rotor. Their variation with θ_0 can be approximated as:

 $\begin{array}{l} L_{aa} = L_0 + L_2 \cos 2\theta_0, L_{bb} = L_0 - L_2 \cos 2\theta_0 \mbox{ and } M_{ab} = L_2 \sin 2\theta_0 \\ \mbox{where } L_0 \mbox{ and } L_2 \mbox{ are positive constants. The mutual inductance between the rotor and the stator windings are functions of θ_0 \\ \end{array}$

 $\mathbf{M}_{af} = \mathbf{M} \cos \theta_0$ and $\mathbf{M}_{bf} = \mathbf{M} \sin \theta_0$

where M is also a positive constant. The self inductance of the field winding, L_{rr} is constant, independent of θ_0 .

Consider the operating condition in which the field winding is excited by direct current I_r and stator windings are connected to a balanced two-phase voltage source of frequency ω . With the rotor revolving at synchronous speed, its angular position will be given by $\varphi_n = \omega t$.

Under this operating condition, the stator currents will be of the form

 $i_a = \sqrt{2}I_a \cos(\omega t + \delta)$ and $i_b = \sqrt{2}I_a \sin(\omega t + \delta)$.

a. Derive an expression for the electromagnetic torque acting on the rotor.

b. Can the machine be operated as a motor and/or a generator?
c. Will the machine continue to run if the field current I_f is reduced to zero?

(Fitzgerald, 6th ed.)

