DTFT and z-Transform Tables

Discrete-Time Fourier Transform (DTFT)

The Discrete-Time Fourier Transform (DTFT) of a sequence x[n] is given by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Inverse discrete-time Fourier transform is given by

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

Commonly used DTFT pairs

Sequence		DTFT
$\delta[n]$	\longleftrightarrow	1
1	\longleftrightarrow	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
$\mu[n]$	\longleftrightarrow	$\frac{\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega+2\pi k)}{\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi\delta(\omega+2\pi k)}$
$\alpha^n \mu[n] (\alpha < 1)$	\longleftrightarrow	
$h_{LP}[n] = \frac{\sin(\omega_c n)}{\pi n} (-\infty < n < \infty)$	\longleftrightarrow	$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le \omega \le \omega_c \\ 0, & \omega_c < \omega \le \pi \end{cases}$

DTFT theorems

	g[n]	$G(e^{j\omega})$	
	h[n]	$H(e^{j\omega})$	
Linearity	$\alphag[n] + \betah[n]$	$\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$	
Time-reversal	g[-n]	$G(e^{-jw})$	
Time-shifting	$g[n-n_0]$	$e^{-j\omega n_0} G(e^{j\omega})$	
Frequency-shifting	$e^{j\omega_0 n}g[n]$	$G(e^{j(\omega-\omega_0)})$	
Differentiation in frequency	n g[n]	$j \frac{dG(e^{j\omega})}{d\omega}$	
Convolution	g[n]*h[n]	$G(e^{j\omega}) H(e^{j\omega})$	
Modulation	g[n]h[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$	
Parseval's relation	$\sum_{n=-\infty}^{\infty} g[n]h^*[n] =$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}G(e^{j\omega})H^*(e^{j\omega})d\omega$	
Conservation of energy	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$		

• Note that $X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$. Thus, z-transform is usually enough to obtain DTFT.

z-Transform

The z-transform of a sequence x[n] is given by

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

Inverse discrete-time Fourier transform is given by

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

where C represents a counterclockwise closed contour within the region-of-convergence (ROC) of the z-transform.

Commonly used *z*-transform pairs

Sequence	z-transform	ROC
$\delta[n]$	1	All values of z
$\mu[n]$	$\frac{1}{1-z^{-1}}$	z > 1
$lpha^n \mu[n]$	$\frac{1}{1 - \alpha z^{-1}}$	$ z > \alpha $
$-\alpha^n \mu[-n-1]$	$\frac{1}{1 - \alpha z^{-1}}$	$ z < \alpha $
$r^n \cos\left(\omega_0 n\right) \mu[n]$	$\frac{1 - r\cos\omega_0 z^{-1}}{1 - 2r\cos\omega_0 z^{-1} + r^2 z^{-2}}$	z > r
$r^n \sin(\omega_0 n) \mu[n]$	$\frac{r\sin\omega_0 z^{-1}}{1 - 2r\cos\omega_0 z^{-1} + r^2 z^{-2}}$	z > r

z-Transform theorems

	g[n]	G(z)	\mathcal{R}_{g}
	h[n]	H(z)	\mathcal{R}_h
Conjugation	$g^*[n]$	$G^*(z^*)$	\mathcal{R}_{g}
Linearity	$\alphag[n]+\betah[n]$	$\alpha G(z) + \beta H(z)$	Includes $\mathcal{R}_g \bigcap \mathcal{R}_h$
Time-reversal	g[-n]	G(1/z)	$1/\mathcal{R}_g$
Time-shifting	$g[n-n_0]$	$z^{-n_0} G(z)$	\mathcal{R}_g , except possibly $z = 0$ or ∞
Multiplication by exp. seq.	$\alpha^n g[n]$	G(z/lpha)	$ lpha \mathcal{R}_g$
Differentiation of $G(z)$	n g[n]	$-z \frac{dG(z)}{dz}$	\mathcal{R}_g , except possibly $z = 0$ or ∞
Convolution	$g[n]\ast h[n]$	G(z) H(z)	Includes $\mathcal{R}_g \bigcap \mathcal{R}_h$
Modulation	g[n]h[n]	$\frac{1}{2\pi j}\oint_C G(\nu)H(z/\nu)\nu^{-1}d\nu$	Includes $\mathcal{R}_g \mathcal{R}_h$
Parseval's relation	$\sum_{n=-\infty}^{\infty}g[n]h^{*}[n]$ =	$= \frac{1}{2\pi} \oint_C G(z) H^*(1/z^*) z^{-1} dz$	

Note: If \mathcal{R}_g denotes region $r_1 < |z| < r_2$ and \mathcal{R}_h denotes region $r_3 < |z| < r_4$, then $1/\mathcal{R}_g$ denotes region $1/r_2 < |z| < 1/r_1$ and $\mathcal{R}_g \mathcal{R}_h$ denotes the region $r_1 r_3 < |z| < r_2 r_4$.