WIENER FILTERS

Complex-valued stationary (at least w.s.s.) stochastic processes.
Linear discrete-time filter, w_0, w_1, w_2, \ldots (IIR or FIR (inherently stable))
y(n) is the estimate of the desired response $d(n)$
e(n) is the estimation error, i.e., difference bw. the filter output and the desired response

\[e(n) = d(n) - y(n) \]
Linear Optimum Filtering: Statement

- Problem statement:
 - Given
 - Filter input, \(u(n) \),
 - Desired response, \(d(n) \),
 - Find the optimum filter coefficients, \(w(n) \)
 - To make the estimation error “as small as possible”

- How?
 - An optimization problem.

Linear Optimum Filtering: Statement

- Optimization (minimization) criterion:
 - 1. Expectation of the absolute value, \(E\{|e(n)|\} \)
 - 2. Expectation (mean) square value, \(E\{|e(n)|^2\} \)
 - 3. Expectation of higher powers of the absolute value \(E\{|e(n)|^k\} \) of the estimation error.

- Minimization of the Mean Square value of the Error (MSE) is mathematically tractable.

- Problem becomes:
 - Design a linear discrete-time filter whose output \(y(n) \) provides an estimate of a desired response \(d(n) \), given a set of input samples \(u(0), u(1), u(2) \ldots \), such that the mean-square value of the estimation error \(e(n) \), defined as the difference between the desired response \(d(n) \) and the actual response, is minimized.
Principle of Orthogonality

- Filter output is the convolution of the filter IR and the input
 \[y(n) = w(n)^* u(n) = \sum_{k=0}^{\infty} w_k^* u(n-k), \quad n = 0, 1, 2, \ldots \]

- Error:

- MSE (Mean-Square Error) criterion:
 \[J = E\{e(n)^2\} = E\{e(n)e^*(n)\} \]

- Square → Quadratic Func. → Convex Func.
 - Minimum is attained when
 \[\nabla_w J = 0 \]

 - (Gradient w.r.t. optimization variable
 \ w \ is zero.)
Derivative in complex variables

- Let \(w_k = a_k + j b_k, \ k = 0, 1, 2, \ldots \)
- Then derivation w.r.t. \(w_k \) is
 \[
 \nabla_k = \frac{\partial}{\partial a_k} + j \frac{\partial}{\partial b_k}, \ k = 0, 1, 2, \ldots
 \]
- Hence
 \[
 \nabla_k J = \frac{\partial J}{\partial a_k} + j \frac{\partial J}{\partial b_k}, \ k = 0, 1, 2, \ldots
 \]
 or
 \[
 \begin{bmatrix}
 \nabla_0 J \\
 \nabla_1 J \\
 \vdots
 \end{bmatrix} =
 \begin{bmatrix}
 0 \\
 0 \\
 \vdots
 \end{bmatrix}
 \]
 !!! J: real, why? !!!

Principle of Orthogonality

- Partial derivative of \(J \) is
 \[
 \nabla_k J = E \left\{ \frac{\partial e(n)}{\partial a_k} e^*(n) + \frac{\partial e^*(n)}{\partial a_k} e(n) + \frac{\partial e(n)}{\partial b_k} j e^*(n) + \frac{\partial e^*(n)}{\partial b_k} j e(n) \right\}
 \]
- Using \(e(n) = d(n) - y(n) \) and \(w_k = a_k + j b_k \)
 \[
 \begin{align*}
 \frac{\partial e(n)}{\partial a_k} &= -u(n - k), \\
 \frac{\partial e(n)}{\partial b_k} &= j u(n - k), \\
 \frac{\partial e^*(n)}{\partial a_k} &= -u^*(n - k), \\
 \frac{\partial e^*(n)}{\partial b_k} &= -j u^*(n - k)
 \end{align*}
 \]
- Hence
 \[
 \nabla_k J = -2E \left\{ u(n - k) e^*(k) \right\}
 \]
Principle of Orthogonality

- Since $\nabla_w J = 0$, or

 $$E\{u(n - k)e^*_o(n)\} = 0, \quad k = 0, 1, 2, ...$$

- The necessary and sufficient condition for the cost function J to attain its minimum value is, for the corresponding value of the estimation error $e_o(n)$ to be orthogonal to each input sample that enters into the estimation of the desired response at time n.

- Error at the minimum is uncorrelated with the filter input!

- A good basis for testing whether the linear filter is operating in its optimum condition.

Corollary:

$$E\{y(n)e^*(n)\} = E\{|\sum_{k=0}^{\infty} w^*_k u(n - k)|e^*(n)\} = \sum_{k=0}^{\infty} w^*_k E\{u(n - k)e^*(n)\}$$

If the filter is operating in optimum conditions (in the MSE sense)

$$E\{y_o(n)e^*_o(n)\} = 0$$

When the filter operates in its optimum condition, the estimate of the desired response defined by the filter output $y_o(n)$ and the corresponding estimation error $e_o(n)$ are orthogonal to each other.
Minimum Mean-Square Error

- Let the estimate of the desired response that is optimized in the MSE sense, depending on the inputs which span the space \(\mathcal{U}_n \) i.e. \(u = w_1^* u(1) + \cdots + w_n^* u(n) \) be

\[
\hat{d}(n|\mathcal{U}_n) = y_o(n)
\]

- Then the error in optimal conditions is

\[
e_o(n) = d(n) - y_o(n) = d(n) - \hat{d}(n|\mathcal{U}_n)
\]

or

\[
d(n) = \hat{d}(n|\mathcal{U}_n) + e_o(n)
\]

- Also let the minimum MSE be \((\neq 0)\)

\[
J_{\text{min}} = E\{|e_o(n)|^2\}
\]

\[
\sigma_d^2 = \sigma_d^2 + J_{\text{min}}
\]

or

\[
J_{\text{min}} = \sigma_d^2 - \sigma_d^2
\]

HW: try to derive this relation from the corollary.

Minimum Mean-Square Error

- Normalized MSE: Let

\[
\epsilon = \frac{J_{\text{min}}}{\sigma_d^2} = 1 - \frac{\sigma_d^2}{\sigma_d^2}
\]

Meaning

\[
0 \leq \epsilon \leq 1
\]

- If \(\epsilon \) is zero, the optimum filter operates perfectly, in the sense that there is complete agreement bw. \(d(n) \) and \(\hat{d}(n|\mathcal{U}_n) \). (Optimum case)

- If \(\epsilon \) is unity, there is no agreement whatsoever bw. \(d(n) \) and \(\hat{d}(n|\mathcal{U}_n) \) (Worst case)
Wiener-Hopf Equations

- We have (principle of orthogonality)

\[E\{u(n-k)e_o^*(n)\} = 0 \quad e_o(n) = d(n) - y_o(n) = d(n) - \sum_{k=0}^{\infty} w_o^* u(n-k) \]

\[E\{u(n-k)[d^*(n) - \sum_{k=0}^{\infty} w_o u^*(n-k)]\} = 0 \]

- Rearranging

\[\sum_{i=0}^{\infty} w_o E\{u(n-k)u^*(n-i)\} = E\{u(n-k)d^*(n)\} \]

or

\[\sum_{i=0}^{\infty} w_o r(i-k) = p(-k), \quad k = 0, 1, 2, \ldots \]

where

\[r(k) = E\{u(n)u^*(n-k)\} \quad \text{and} \quad p(k) = E\{u(n)d^*(n-k)\} \]

Solution – Linear Transversal (FIR) Filter case

- \(M \) simultaneous equations

\[\sum_{i=0}^{M-1} w_o r(i-k) = p(-k), \quad k = 0, 1, 2, \ldots (M-1) \]
Wiener-Hopf Equations (Matrix Form)

- Let
 \[u(n) = [u(n) \ u(n-1) \ \cdots \ u(n-(M-1))]^T \]

- Then
 \[R = E\{u(n)u^H(n)\} = \begin{bmatrix} r(0) & r(1) & \cdots & r(M-1) \\ r(-1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r(-M+1) & r(-M+2) & \cdots & r(0) \end{bmatrix} \]

and
 \[P = E\{u(n)d^*(n)\} = \begin{bmatrix} p(0) \\ p(-1) \\ \vdots \\ p(-(M-1)) \end{bmatrix} \]

Wiener-Hopf Equations (Matrix Form)

- Then the Wiener-Hopf equations can be written as
 \[Rw_o = p \]

where
 \[w_o = [w_{o,0} \ w_{o,1} \ \cdots \ w_{o,M-1}]^T \]

is composed of the optimum (FIR) filter coefficients.

The solution is found to be
 \[w_o = R^{-1}p \]

- Note that \(R \) is almost always positive-definite.
Error-Performance Surface

- Substitute \(e(n) = d(n) - \sum_{k=0}^{M-1} w^*_k u(n-k) \) \(\rightarrow \) \(J = E\{e(n)e^*(n)\} \)

\[
J = \sigma_d^2 - \sum_{k=0}^{M-1} w^*_k E\{u(n-k)d^*(k)\} - \sum_{k=0}^{M-1} w^*_k E\{u^*(n-k)d(k)\} + \sum_{k=0}^{M-1} \sum_{i=0}^{M-1} w^*_k w_i E\{u(n-k)u^*(n-i)\} - r(i-k)
\]

- Rewriting

\[
J = \sigma_d^2 - \sum_{k=0}^{M-1} w^*_k p(-k) - \sum_{k=0}^{M-1} w_k p^*(-k) + \sum_{k=0}^{M-1} \sum_{i=0}^{M-1} w^*_k w_i r(i-k)
\]

Error-Performance Surface

- Quadratic function of the filter coefficients \(\rightarrow \) convex function, then

\[
\nabla_w J = \begin{bmatrix} \nabla_0 J \\ \nabla_1 J \\ \vdots \\ \nabla_{M-1} J \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
\]

or

\[
\nabla_k J = -2p(-k) + 2 \sum_{i=0}^{M-1} w_i r(i-k) = 0
\]

Wiener-Hopf Equations

\[
\sum_{i=0}^{M-1} w_i r(i-k) = p(-k), \quad k = 0, 1, \ldots, M-1
\]
Minimum value of Mean-Square Error

- We calculated that
 \[J_{\text{min}} = \sigma_d^2 - \sigma_\hat{d}^2 \]
- The estimate of the desired response is
 \[\hat{d}(n|\mathcal{U}_n) = y_\nu(n) = \sum_{k=0}^{M-1} w_{\nu k}^* u(n - k) = w_\nu^* u(n) \]
 Hence its variance is
 \[\sigma_{\hat{d}}^2 = E\{w_\nu^* u(n)u^*(n)w_\nu\} = w_\nu^* E\{u(n)u^*(n)\}w_\nu = w_\nu^* R w_\nu \]
 \[= p^H R^{-1} p \]
 Then
 \[J_{\text{min}} = \sigma_d^2 - p^H R^{-1} p \]
 (At \(w_\nu \), \(J_{\text{min}} \) is independent of \(w \))

Canonical Form of the Error-Performance Surface

\[J = \sigma_d^2 - \sum_{k=0}^{M-1} w_k^* p(-k) - \sum_{k=0}^{M-1} w_k p^*(k) + \sum_{k=0}^{M-1} \sum_{i=0}^{M-1} w_k^* w_i r(i - k) \]
- Rewrite the cost function in matrix form
 \[J(w) = \sigma_d^2 - w^H p - p^H w + w^H R w \]
- Next, express \(J(w) \) as a perfect square in \(w \)
 \[J(w) = \sigma_d^2 - p^H R^{-1} p + (w - R^{-1} p)^H (w - R^{-1} p) \]
- Then, by substituting
 \[w_\nu = R^{-1} p \]
 Minimize \(J(w) = \sigma_d^2 - p^H R^{-1} p \)
- In other words,
 \[J(w) = J_{\text{min}} + (w - w_\nu)^H R (w - w_\nu) \]
Canonical Form of the Error-Performance Surface

- Observations:
 - $J(w)$ is quadratic in w,
 - Minimum is attained at $w=w_0$,
 - J_{\min} is bounded below, and is always a positive quantity,
 - $J_{\min}>0 \Rightarrow \sigma_d^2 > \sigma_s^2$

Canonical Form of the Error-Performance Surface

- Transformations may significantly simplify the analysis,
- Use Eigendecomposition for R
 \[R = QAQ^H \]
- Then
 \[J(w) = J_{\min} + (w - w_0)^H Q\Lambda Q^H (w - w_0) \]
- Let \[v = Q^H (w - w_0) \]
- Substituting back into J
 \[J(w) = J_{\min} + v^H \Lambda v \]
 \[= J_{\min} + \sum_{k=1}^{M} v_k^* \lambda_k v_k \]
 \[= J_{\min} + \sum_{k=1}^{M} \lambda_k |v_k|^2 \]

- The transformed vector v is called as the principal axes of the surface.
Canonical Form of the Error-Performance Surface

Multiple Linear Regressor Model

- Wiener Filter tries to match the filter coefficients to the model of the desired response, \(d(n) \).

- Desired response can be generated by
 - 1. a linear model, \(a \)
 - 2. with noisy observable data, \(d(n) \)
 - 3. noise is additive and white.

- Model order is \(m \), i.e. \(a = [a_0 \ a_1 \ \cdots \ a_{M-1}]^T \)

- What should the length of the Wiener filter be to achieve min. MSE?

\[
d(n) = a^T u_m(n) + \nu(n)
\]
Multiple Linear Regressor Model

- The variance of the desired response is
 \[\sigma_d^2 = E\{d(n)d^*(n)\} \]
 \[= a^H R_m a + \sigma_v^2 \]

- But we know that
 \[J_{\text{min}} = \sigma_d^2 - \sigma_d^2 \]
 \[= \sigma_v^2 + (a^H R_m a - w_o^H R w_o) \]

 where \(w_o \) is the filter optimized w.r.t. MSE (Wiener filter) of length \(M \).

 - 1. Underfitted model: \(M < m \)
 - Performance improves quadratically with increasing \(M \).
 - Worst case: \(M = 0 \), \(J_{\text{min}} = \sigma_v^2 + (a^H R_m a) \)

 - 2. Critically fitted model: \(M = m \)
 - \(w_o = a, R = R_m \), \(J_{\text{min}} = \sigma_v^2 \) (irreducible value)

 - 3. Overfitted model: \(M > m \)
 - \(w_o = \begin{bmatrix} a \\ 0 \end{bmatrix} \)
 - \(J_{\text{min}} = \sigma_v^2 \) (irreducible value)

 - Filter longer than the model does not improve performance.
Example

Let

\[d(n) = [a_0, a_1, a_2]^T \]

the model length of the desired response be 3.

the autocorrelation matrix of the input \(u(n) \) be (for consec. 3 samples)

\[
R = \begin{bmatrix}
1.1 & 0.5 & 0.1 & -0.05 \\
0.5 & 1.1 & 0.5 & 0.1 \\
0.1 & 0.5 & 1.1 & 0.5 \\
-0.05 & 0.1 & 0.5 & 1.1
\end{bmatrix}
\]

The cross-correlation of the input and the (observable) desired response be

\[
p = \begin{bmatrix} 0.5272 & -0.4458 & -0.1003 & -0.0126 \end{bmatrix}^T
\]

The variance of the observable data (desired response) be

\[\sigma_d^2 = 0.9486 \]

The variance of the additive white noise be

\[\sigma_v^2 = 0.1066 \]

Week 3

Example

Question:

a) Find \(J_{\text{min}} \) for a (Wiener) filter length of \(M=1,2,3,4 \)

b) Draw the error-performance (cost) surface for \(M=2 \)

c) Compute the canonical form of the error-performance surface.

Solution:

a) we know that \(w_o = R^{-1}p \) and \(J_{\text{min}} = \sigma_d^2 - p^H R^{-1} p \) then

<table>
<thead>
<tr>
<th>Filter length (M)</th>
<th>Correlation matrix (R)</th>
<th>Cross-correlation vector (p)</th>
<th>Optimum tap-weight vector (w_o)</th>
<th>(J_{\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>([1.1])</td>
<td>([0.5272])</td>
<td>([0.4793])</td>
<td>0.6659</td>
</tr>
<tr>
<td>2</td>
<td>([1.1, 0.5, 0.5])</td>
<td>([-0.4458, 0.5272, 0.8360])</td>
<td>([-0.7853, -0.7853])</td>
<td>0.1578</td>
</tr>
<tr>
<td>3</td>
<td>([1.1, 0.5, 0.1])</td>
<td>([-0.1003, 0.5272, -0.8719])</td>
<td>([-0.2441, -0.2441])</td>
<td>0.1096</td>
</tr>
<tr>
<td>4</td>
<td>([1.1, 0.5, 0.1, -0.05])</td>
<td>([-0.0003, 0.5272, -0.8719, 0.0003])</td>
<td>([-0.0126, -0.0126, -0.0126])</td>
<td>0.1096</td>
</tr>
</tbody>
</table>
Example

Solution, b)

\[
J(w) = \sigma^2 - w^H p - p^H w + w^H R w
\]

\[
= \sigma^2 - 2p^T w + w^T R w
\]

\[
= 0.9486 - 2 \begin{bmatrix} 0.5272 & -0.4458 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} + \begin{bmatrix} 1.1 & 0.5 \\ 0.5 & 1.1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}
\]

\[
= 0.9486 - 1.0544w_0 + 0.8961w_1 + w_0w_1 + 1.1(w_0^2 + w_1^2)
\]

where \(\lambda_1 = 1.6\) and \(\lambda_2 = 0.6\)

Then

\[
J(v_1, v_2) = J_{\min} + 1.6v_1^2 + 0.6v_2^2
\]
Application – Channel Equalization

- Transmitted signal passes through the dispersive channel and a corrupted version (both channel & noise) of $x(n)$ arrives at the receiver.
- Problem: Design a receiver filter so that we can obtain a delayed version of the transmitted signal at its output.
 - Criterion: 1. Zero Forcing (ZF)
 - 2. Minimum Mean Square Error (MMSE)

MMSE cost function is:

$$J = E\{|x(n-\delta) - z(n)|^2\}$$

Filter output

$$z(n) = w^H y_n = \begin{bmatrix} \ast \end{bmatrix} \begin{bmatrix} w_0^* & w_1^* & \cdots & w_{M-1}^* \end{bmatrix} \begin{bmatrix} y(n) \\ y(n-1) \\ \vdots \\ y(n-(M-1)) \end{bmatrix}$$

Filter input

$$y(n) = h^H x_n + \nu(n) = \begin{bmatrix} \ast \end{bmatrix} \begin{bmatrix} h_0^* & h_1^* & \cdots & h_{L-1}^* \end{bmatrix} \begin{bmatrix} x(n) \\ x(n-1) \\ \vdots \\ x(n-(L-1)) \end{bmatrix} + \nu(n)$$
Application – Channel Equalization

- Combine last two equations
 \[y_n = Hx_n + \nu_n \]
 \[
 = \begin{bmatrix}
 h_0 & \cdots & h_{M-1} & 0 & \cdots & 0 \\
 0 & h_0 & \cdots & h_{M-1} & \vdots & 0 \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
 0 & \cdots & 0 & h_0 & \cdots & h_{M-1}
 \end{bmatrix}
 \begin{bmatrix}
 x(n) \\
 x(n-1) \\
 \vdots \\
 n(n-(L+M-1))
 \end{bmatrix}
 + \begin{bmatrix}
 \nu(n) \\
 \nu(n-1) \\
 \vdots \\
 \nu(n-(L+1))
 \end{bmatrix}
\]

 Toeplitz matrix performs convolution
 - Convolution

- Compact form of the filter output
 \[z(n) = w^H (Hx_n + \nu_n) \]

- Desired signal is \(x(n-\delta) \), or
 \[x_\delta = \begin{bmatrix}
 0 & \cdots & 0 & x(n-\delta) & 0 & \cdots & 0
 \end{bmatrix}^T = e_\delta^T x(n-\delta) \]
 \[0 \leq \delta \leq (L+M-1) \]

Application – Channel Equalization

- Rewrite the MMSE cost function
 \[J = E\{e_\delta^T x(n-\delta) - w^H (Hx_n + \nu_n)\}^2 \]

- Expanding (data and noise are uncorrelated \(E\{x(n)v(k)\} = 0 \) for all \(n,k \))

\[
J = e_\delta^T E\{x(n-\delta)x^*(n-\delta)\}e_\delta - e_\delta^T E\{x(n-\delta)x_n^H\}H^Hw \\
- w^H E\{x_nx^*(n-\delta)\}e_\delta + w^H E\{x_nx_n^H\}H^Hw + w^H E\{\nu_n \nu_n^H\}w
\]

- Re-expressing the expectations

\[J = \sigma_z^2 - e_\delta^T P_\delta H^Hw - w^H P_\delta e_\delta + w^H R_{xx} H^Hw + w^H R_{\nu \nu} w \]
Application – Channel Equalization

- Quadratic function → gradient is zero at minimum
 \[\nabla_w J = -e_\delta^T \delta^H H^H + w^H (HR_{xx} H^H + R_{nn}) = 0 \]

- The solution is found as
 \[w^H = e_\delta^T \delta^H H^H (HR_{xx} H^H + R_{nn})^{-1} \]

- And \(J_{min} \) is
 \[J_{min} = \sigma_z^2 - e_\delta^T \delta^H H^H (HR_{xx} H^H + R_{nn})^{-1} H \delta_\delta \]

- \(J_{min} \) depends on the design parameter \(\delta \)

Application – Linearly Constrained Minimum - Variance Filter

- Problem:
 1. We want to design an FIR filter which suppresses all frequency components of the filter input except \(\omega_o \), with a gain of \(g \) at \(\omega_o \).
Problem:

1. We want to design a beamformer which can resolve an incident wave coming from angle θ_0 (with a scaling factor g), while at the same time suppress all other waves coming from other directions.

Although these problems are physically different, they are mathematically equivalent. They can be expressed as follows:

- Suppress all components (freq. ω or dir. θ) of a signal while setting the gain of a certain component constant (ω_0 or θ_0)

They can be formulated as a constrained optimization problem:

- Cost function: variance of all components (to be minimized)
- Constraint (equality): the gain of a single component has to be g.

Observe that there is no desired response!
Application – Linearly Constrained
Minimum - Variance Filter

- Mathematical model:
 - Filter output
 \[y(n) = \sum_{k=0}^{M-1} w_k^* u(n-k) \]
 - Beamformer output
 \[y(n) = e^{j\omega n} \sum_{k=0}^{M-1} w_k^* e^{-j\omega k} \]

- Constraints:

 \[\sum_{k=0}^{M-1} w_k^* e^{-j\omega k} = g \]

 \[\sum_{k=0}^{M-1} w_k^* e^{-j\theta_k} = g \]

- Cost function: output power \(\rightarrow \) quadratic \(\rightarrow \) convex
- Constraint: linear
- Method of Lagrange multipliers can be utilized to solve the problem.

\[J = \sum_{k=0}^{M-1} \sum_{i=0}^{M-1} w_k^* w_i r(i-k) + \Re \left\{ \lambda^* \left(\sum_{k=0}^{M-1} w_k^* e^{-j\theta_k} - g \right) \right\} \]

- Solution: Set the gradient of \(J \) to zero
 \[\nabla_k J = 2 \sum_{i=0}^{M-1} w_i r(i-k) + \lambda^* e^{-j\theta_k} = 0 \]

- Optimum beamformer weights are found from the set of equations

 \[\sum_{i=0}^{M-1} w_{\alpha l} r(i-k) = -\lambda e^{-j\theta_k}, \quad k = 0, 1, ..., M - 1 \]

 similar to Wiener-Hopf equations.
Application – Linearly Constrained Minimum - Variance Filter

- Rewrite the equations in matrix form:
 \[\mathbf{R} \mathbf{w}_o = -\frac{1}{2} \mathbf{s}(\theta_0) \]
 where \(\mathbf{s}(\theta_0) = [1 \ e^{-j\theta_0} \ \ldots \ e^{-j(M-1)\theta_0}]^T \)
- Hence
 \[\mathbf{w}_o = -\frac{1}{2} \mathbf{R}^{-1} \mathbf{s}(\theta_0) \]
- How to find \(\lambda \)? Use the linear constraint:
 \[\mathbf{w}_o^H \mathbf{s}(\theta_0) = g \]
 to find
 \[\lambda = -\frac{2g}{\mathbf{s}^H(\theta_0) \mathbf{R}^{-1} \mathbf{s}(\theta_0)} \]
- Therefore the solution becomes
 \[\mathbf{w}_o = \frac{g \mathbf{R}^{-1} \mathbf{s}(\theta_0)}{\mathbf{s}^H(\theta_0) \mathbf{R}^{-1} \mathbf{s}(\theta_0)} \]
- For \(\theta_0 \), \(w_o \) is
 - the linearly Constrained Minimum-Variance (LCMV) beamformer
- For \(\omega_0 \), \(w_o \) is
 - the linearly Constrained Minimum-Variance (LCMV) filter

Minimum-Variance Distortionless Response Beamformer/Filter

- Distortionless \(\rightarrow \) set \(g=1 \), then
 \[\mathbf{w}_o = \frac{\mathbf{R}^{-1} \mathbf{s}(\theta_0)}{\mathbf{s}^H(\theta_0) \mathbf{R}^{-1} \mathbf{s}(\theta_0)} \]
- We can show that (HW)
 \[J_{\text{min}} = \mathbf{w}_o^H \mathbf{R} \mathbf{w}_o \]
 \[= \frac{1}{\mathbf{s}^H(\theta_0) \mathbf{R}^{-1} \mathbf{s}(\theta_0)} \]
- \(J_{\text{min}} \) represents an estimate of the variance of the signal impinging on the antenna array along the direction \(\theta_0 \).
- Generalize the result to any direction \(\theta \) (angular frequency \(\omega \)):
 \[S_{\text{MVDR}}(\theta) = \frac{1}{\mathbf{s}^H(\theta) \mathbf{R}^{-1} \mathbf{s}(\theta)} \]
 where \(\mathbf{s}(\theta) = [1 \ e^{-j\theta} \ \ldots \ e^{-j(M-1)\theta}]^T \)
- minimum-variance distortionless response (MVDR) spectrum
 - An estimate of the power of the signal coming from direction \(\theta \)
 - An estimate of the power of the signal coming from frequency \(\omega \)