Introduction
This project aims to design and development of a 6-legged robot. Legged robots have more advantage than the wheeled robots for rough terrains, climbing up stairs and other not flat surfaces. However, legged robots are more complex structures because balancing the robot, movement structure and contact of legs to surfaces are difficult problems for these robots.

Specifications and Design Constraints
We developed a mini-scale robotic hexapod that can realize the basic locomotion gaits such as walking/running. The legs are C type from elastic materials. Each leg is controlled with a DC motor. Encoders on each motor are used to measure and control leg position. A microcontroller is used to control all of these motors.

The robot should synchronize all legs and control them simultaneously to perform stable locomotion. Robot works indoors and outdoors on slightly uneven terrain.

Solution Methodology

![Diagram of microcontroller, motor driver, motor, and encoder signals](image)

for each leg x6

Results and Discussion
Position controller is so important for synchronization. Speed controller is important for decreasing nonlinearity for position controller. Also, speed controller increases the robustness and stability.

Without speed controller, system reaction is faulty. Motor’s response is affected by the disturbances a lot. When speed controller is enabled, system reacts and resists to changes.

![Diagram of position controller and speed controller](image)

Position Controller cascaded with Speed Controller

Application Areas
Due to its flexibility on rough terrains, our robot can be used in various applications such as search and rescue, exploration and defense industry.

Acknowledgements
This project was completed within the context of ELE401-402 Graduation Project courses in Hacettepe University, Faculty of Engineering, Department of Electrical and Electronics Engineering in 2021 and 2022.

We thank our supervisor Dr. İsmail Uyanık for his invaluable contributions to our project.